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Abstract. The paper proposes an approach how to develop a configurator (tool) allowing defining 

a wide range of DSML tools. The configurator is based on the idea that DSML tool definition may 

be given by a universal metamodel (i.e., UML class diagram), and then it can be interpreted by a 

universal interpreter to obtain the working tool. But for non-standard cases when the existing 

metamodel facilities are limited, the extension point mechanism is introduced allowing adding a 

tool-specific functionality by specifically programming it. The developed configurator has been 

verified in several practical applications and has proven its effectiveness. 
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Introduction 

Domain Specific Modeling Language (DSML) (Kelly and Tolvanen, 2008) and DSML 

tools have become increasingly more important in the context of system modeling 

(Sprinkle, 2007). We can use UML (WEB, l), BPMN (WEB, a), SysML (WEB, k), and 

the corresponding heavy weight tools, but in such case a number of problems arise. 

Firstly, heavy weight tools are built by IT people and they are well understood by IT 

people, but not by business people. Secondly, universal languages are designed to 

describe a wide area of domains, whereas in real applications only a few language 

constructs are used and unused constructs complicate the tool's usability. Thirdly, heavy 

weight tools have a fixed list of features, and there is no mechanism to add new domain 

specific features, for instance, model consistency checking, text generation from models, 

connections to external databases, etc. Finally, the internal structure of such tools is not 

open for external programs and therefore external programs cannot access the model 

data. 

DSML tools solve most of these problems by developing a tool specific functionality 

for each application area (Cook et.al., 2007). But there is another problem, namely, it 

takes a lot of effort to program a single DSL tool from scratch (Robert et.al., 2009).  

The way DSML tool development process can be made simpler and quicker is to 

develop a universal tool building platform. Since platform development is complicated 

and expensive, there are not many tool building platforms, and the most popular 

platforms are Eclipse EMF (WEB, b), Microsoft DSL (WEB, p) and MetaEdit (WEB, 

g). 
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Typically DSML tool building platforms exploit two approaches. The most common 

approach is used by Eclipse EMF and Microsoft DSL and it consists of three steps. The 

first step creates an abstract syntax model of DSML, the second step creates the concrete 

syntax model and the third step establishes mappings between the two models. The 

purpose of such architecture is to have an exactly one abstract syntax model, which can 

be mapped to an arbitrary number of concrete syntax models. Platforms exploiting this 

approach provide a fixed functionality, but if extra features are needed they have to be 

programmed additionally that is usually not easy. 

This architecture has two benefits. Firstly, it is more convenient to process complex 

data in abstract syntax model instead of concrete syntax model. Secondly, this approach 

ensures automatic data synchronization between concrete syntax models, namely, the 

changes in one of concrete syntax models are first introduced in the abstract syntax 

model, and then automatically synchronized with other concrete syntax models.  

Obviously, this approach has advantages, if there are many concrete syntax models 

or there is a necessity for complex data procession. However, if there are one or two 

concrete models and data processing is relatively simple as it is mainly in DSML tools, it 

is sufficient to have only concrete syntax models in the platform while abstract syntax 

model with its mapping establishment unnecessarily complicates the DSML tool 

development process. 

The second approach is used by MetaEdit, and it states that DSML tools are specified 

only by concrete syntax model and afterwards this model is interpreted. In many cases 

this approach is very convenient and allows creating DSML tools quickly and easily. 

However, DSML world is complex, and it is not possible to cover all the use-cases with 

a single metamodel and the interpreter with a fixed functionality. 

By comparing both approaches we may conclude that both methods have its limits, 

namely, the first approach allows defining a broad class of DSML tools, but it is 

difficult, whereas the second approach allows defining DSML tools in a relatively easy 

way, but it is limited to the functionality of the interpreter. Thus, the problem is to find 

the method that, firstly, allows developing DSML tools in an easy way, secondly, is not 

limited to a fixed functionality, but allows adding an additional functionality for non-

standard cases by programming it and, thirdly, provides tool openness for accessing 

model data by external applications. 

The paper presents an approach allowing defining a broad class of DSML tools as 

well as satisfies the mentioned three points. 

1. The context 

To implement the proposed approach, TDA tool building platform (Kozlovics, 2012), 

(Barzdins et.al., 2008), (Barzdins et.al., 2013) and model transformation language 

lQuery (Liepins, 2011), (Liepins, 2012) is used. In more detail we will examine the 

structure of TDA, and a schematic representation of TDA is shown in Fig. 1. The main 

components of TDA are engines and metamodels. Every engine provides a particular 

service in the tool, for instance, the presentation engine (Barzdins et.al., 2009b) 

visualizes diagrams and provide an interface between tool users and diagrams, but the 

dialog engine (Kozlovics, 2010) constructs dialog forms and provide an interface 

between tool users and dialog forms. Whereas metamodels are data schemas, that store 

the information of the tool state for engines. 
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Technically speaking, the platform is based on three components - a model 

repository, model transformations and an event-command mechanism. An event-

command mechanism provides an interaction among tool users, engines and model 

transformations. In particular, the working tool is provided by an engine, and if a tool 

user performs an action, for instance, double-clicks on an element in the diagram, the 

user’s action is “caught” and classified by the engine that creates a corresponding  

instance in the repository. Each engine has a fixed list of events and every event is 

attached to the model transformation that processes the event. Thus, when the engine has 

"caught" the user action and has created an instance of an event in the repository, then 

the control is transferred to the model transformation that is responsible for the 

procession of this type of event. 

 

 
Fig. 1. Transformation-Driven Architecture (the author of the image is S. Kozlovics) 

 

Transformations perform an event processing and for this reason they can be 

considered the "brains" of the platform. They are allowed to change the contents of the 

repository, for instance, to create new diagram elements or change element values. When 

transformations finish the execution of the assigned task, they return the control of the 

tool to the engine which assigned the task. In case the transformation must have to give 

an order to do something for the engine, for instance, to order to re-draw the diagram 

(for example, if a new element was created), the transformation has to create a new 

instance of the corresponding command in the repository. Every engine has a fixed list 

of supported commands and when an order is issued, the engine performs appropriate 

actions. 

There are three engines (and their corresponding meta-models) implemented in the 

platform. The presentation engine visualizes diagrams stored in the repository and 

provides tool functionality - palettes, toolbars, etc. The dialogue engine constructs 

dialogue forms from instances of the dialog metamodel and processes end-user actions – 

button clicks, values entered in text fields, etc. The tree engine constructs tree diagrams 

and processes end-user actions – clicking on tree elements, collapsing tree elements, etc. 

Theoretically we can build DSML tools using only the presented engines and their 

metamodels, that is, for every single tool we have to create a list of model 

transformations that process user created events according to the tool specification. 

However, it is a laborious process and therefore the question, whether this process can 

be simplified, arises. The paper presents the solution to this problem and it proposes the 

following: 
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 to develop a formal DSML tool specification language; 

 to develop the interpreter of this language as a list of universal transformations 

that create a working tool from the given specification; 

 to develop the configurator to give the tool specification faster and easier. 

2. Formal DSML tool specification 

The purpose of this chapter is to find a formal specification language (or method), which 

can specify a wide range of DSML languages and their corresponding tools. If we 

managed to find such a formal language, then we can construct a universal interpreter (or 

compiler) that converts every specification (written in the language) into the working 

tool. Thus to get a working tool, it is sufficient to pass a particular DSML tool 

specification to the interpreter. 

To better explain the complexity of the task, we will look at a simpler task, that is, 

we will seek a formal specification method, which can define a wide range of DSML 

languages (without their corresponding tools). The main problem is that there are well-

known single-level metamodeling languages, that is, there are well-known techniques to 

define particular languages by metamodels, for example, UML activity diagrams, UML 

class diagrams, flowchart diagrams, etc., but there are no formal methods allowing rising 

one meta level higher, that is, to specify a family of languages instead of one particular 

language. In other words, a single-level metamodeling problem is well resolved, but the 

two-level metamodeling problem in the context of DSML languages is not. 

The paper presents an alternative metamodeling approach, namely, the tool definition 

metamodel that is presented in Fig. 2. The tool definition metamodel describes two 

things – the tool language and its behavior. Tool languages are specified by the class 

GraphDiagramType and its attribute caption stores the language name. The elements of 

the language are specified by the class ElemType and its attribute caption stores the 

name of the element, but the composition elemType-graphDiagramType shows which 

language the element belongs. The class ElemType and its subclasses NodeType, 

PortType and EdgeType specify whether the element type is box, port or line. 

Every element type has its constraints. The association containerType-

componentType shows that one type of boxes may contain other type of boxes. The 

association portType-nodeType shows that ports always have to be attached to a certain 

type of box. But to define a line, we have to specify which element is the start element 

and which is the end element, and this information is given by two associations start-

eStart and end-eEnd. 

The association subType-superType shows that an element is a super type to another 

element, that is, the association allows making element type hierarchy where subtypes 

inherit its super type restrictions. In other words, this construction allows simulating the 

generalization relationship used in UML class diagrams. 

In order to specify an element appearance, we have to add its style. The class 

GraphDiagramStyle specifies diagram’s style, the class ElemStyle and its subclasses 

NodeStyle, PortStyle and EdgeStyle specify the style for boxes, ports and lines, but 

CompartStyle specifies attribute styles. 

The other thing the tool definition metamodel describes is tool’s behavior. To build 

new elements, the metamodel contains classes PaletteType and PaletteElementType. The 

association graphDiagramType-paletteType shows the language the palette belongs, but 

the association elemType-paletteElementType shows the corresponding element to the 
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palette button. The class PaletteElementType has attributes - caption, nr and picture.  

The attribute caption stores the button’s name, nr stores the position of the button on the 

palette, but picture stores the address of the button’s picture. 

 

 

 
Fig. 2. Tool definition metamodel 
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To implement the context menu (appear when users perform mouse right-clicks), 

new classes and associations are introduced in the metamodel. The class 

PopUpDiagramType corresponds to the context menu, but its items are specified by 

PopUpElementType but its attributes caption and nr stores item’s name and item’s 

position on the menu. To provide items with predefined actions, the metamodel contains 

the class DefaultPopUpElementType and its attribute action respectively stores one of 

the predefined actions. 

To display the context menu, three cases are distinguished depending on the context. 

In case the user has clicked on a single element, the context menu is constructed using 

the association elemType-popUpDiagramType. In case the user has clicked on an empty 

place in the diagram, the context menu is constructed using the association 

rClickCollection-cType. And finally, in case the user has clicked on an element 

collection, the context menu is constructed using the association rClickCollection-cType. 

The class KeyDown and its attribute key specifies the pressed key combination. By 

analogy with context menus, to provide predefined actions, the metamodel contains the 

class DefaultKeyDown and its attribute action stores one of the predefined actions. But 

the context of the key combination is distinguished by the introduced three cases, 

namely, if a key combination is pressed when there is one active element (association 

elemType-keyDown), no active elements (association eType-eKeyDown) and several 

active elements (association cType-cKeyDown). 

To enter attribute values, generic dialog windows are constructed. The class 

PropertyElement is an abstract class, which indicates that all dialog window components 

have an attribute caption to store its name. The class PropertyDiagram corresponds to 

the dialog form and it consists of rows or tabs (corresponding classes are PropertyRow 

and PropertyTab). Every dialogue window’s row is displayed as a row having a name 

and an input field. The attribute caption (the attribute is inherited from the class 

PropertyElement) corresponds to the row name, but the input field type is specified by 

the attribute’s rowType value. The class PropertyTab allows building tabs on dialogue 

windows, thus the rows can be located directly on the dialog window (specified by the 

association propertyRow-propertyDiagram) or on the tab (specified by the association 

propertyRow-propertyTab). 

The purpose of classes ToolbarType, ToolbarElementType, 

ExtendedPopUpElementType, ExtendedKeyDown and Translet is to allow adding 

transformations that are specifically designed for the specific tool, thus supplementing 

the interpreter’s behavior (see Chapter 3.2.). 

 

3. Implementation 

The previously described tool building metamodel is constructed in a way that all the 

necessary information that gives a DSML tool specification, is stored as the instance of 

the tool definition metamodel. This means that we can develop an interpreter (or a list of 

universal transformations) that creates a working tool from the given specification. Thus 

it reduces the tool development process to creation of instances of the tool definition 

metamodel. 
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3.1. Implementation metamodel 

To apply the tool definition metamodel in practice, it has to be integrated with the 

existing platform metamodels, namely, presentation metamodel, dialog window 

metamodel and tree diagram metamodel. The combination of these four metamodels 

accompanied by scaffolding associations gives us the implementation metamodel as it is 

schematically represented in Fig. 3. 
 

 
Fig. 3. Schematic representation of implementation metamodel 

 

A simplified representation of the metamodel (scaffolding associations are colored 

thicker and they are between classes GraphDiagram and GraphDiagramType, Element 

and ElemType, Compartment and CompartType, Compartment and Component, 

GraphDiagram and Node) is shown in Fig. 4 (a simplified metamodel). 

 

 

 
Fig. 4. A simplified implementation metamodel 

 

3.2. Interpreter and extension points 

As already mentioned before, to build a DSML tool means to implement a list of tool 

specific transformations. Since we have a universal tool definition metamodel, it allows 

us to process each platform’s event by a universal transformation and thus every tool 

specific transformation can be replaced by the universal transformation.  
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To perform this task, we have to take a list of events of every platform’s engine and 

then we have to implement universal transformations that process them. Since the 

platform has three engines, we have to take only the list of their events. 

However, it is not possible to cover every single feature by a single metamodel and a 

fixed interpreter. Therefore an extension point mechanism is introduced allowing 

executing tool specific lQuery transformations during the run-time of the universal 

transformation. Since the platform’s internal data structure is open, the scope of tool 

specific transformations is the whole repository (i.e., implementation metamodel) and 

they can arbitrarily change its content. 

Extension points are divided into two categories - weak and hard extension points. 

Weak extension points occur when the user performs one of the following actions – 

presses a toolbar button, selects an operation from the context menu or enters a key 

combination. To execute these actions the metamodel contains classes 

ToolbarElementType, ExtendedPopUpElementType and ExtendedKeyDown, and its 

attribute procedureName stores the name of the transformation that will be executed 

when the user performs one of the mentioned actions. 

The hard extension points allow supplementing universal transformations during the 

run-time and in the metamodel they are implemented through the class Translet and its 

subclasses DiagramTranslet, ElemTranslet, CompartTranslet and DialogTranslet. The 

attribute extensionPoint stores the extension point’s name, but the attribute 

procedureName stores the transformation name. 

Technically speaking, extension points are implemented as procedure 

(transformation) calls in certain places in universal transformations, and to precisely 

explain them, every universal transformation containing an extension point is 

represented by a flowchart which precisely indicates what steps have been made before 

the execution of the extension point transformation and what steps will be taken after. 

To demonstrate the idea of hard extension points, the Fig. 5 shows a flowchart 

describing the universal transformation processing RClick event. Thus, when the user 

performs a right-click, RClick event is created and the universal transformation 

distinguishes three cases. 

In case the user has clicked on a single element, the transformation searches the 

transformation corresponding to the extension point “DynamicPopUp”, namely, the 

transformation looks for element’s corresponding ElemType instance and then for 

Translet instance (link elemType-translet) that has an attribute extensionPoint containing 

„DynamicPopUp” value. If such an instance of Translet exists, then the universal 

transformation executes the transformation that is stored in the Translet instance’s 

attribute procedureName. If not, the universal transformation constructs a static context 

menu from the instances of the tool definition metamodel. 

In case the user has clicked on an element collection, the universal transformation 

searches the transformation corresponding to the extension point “DynamicPopUpC”. 

The following steps are the same as in the first case – the context menu is dynamically 

built by the extension point transformation (if there is a corresponding Translet 

instance), or it is statically built from the instances of the tool definition metamodel (if 

there is no corresponding Translet instance). 

In case the user has clicked on an empty place in the diagram, the transformation 

searches the transformation corresponding to the extension point “DynamicPopUpE” 

and then the context menu is built either dynamically or statically. 
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Fig. 5. RClick flowchart 

4. Configurator 

In the previous chapters we saw that DSML tools can be specified by the instances of the 

tool definition metamodel, and then processed by the interpreter to create a working tool 

from the given specification. Thus, the effectiveness of the DSML tool development 

process depends on how quickly and easily the instances of the type metamodel can be 

created. 

To simplify and accelerate the creation of the tool definition metamodel instances, 

the configurator (Sprogis and Barzdins, 2013), (Sprogis et.al., 2010), (Sprogis, 2010), 

(WEB, d) was developed. The configurator is a DSML tool allowing specifying DSML 

tools graphically. The language used by the configurator is in a higher level of 

abstraction compared to UML metamodels, namely, they are more compact then UML 

class diagrams because element styles are defined by the look and feel and the relevant 

information is entered using dialogue forms. 

The benefit of using the configurator is that it automatically transforms its models to 

instances of the tool definition metamodel, and the tool developer does not have to know 

the details of the tool definition metamodel. Thus, the application of configurator 

significantly reduces the time spent to create instances of the type metamodel and 

excludes the possibility to create instances of the type metamodel that is not supported 

by the interpreter. 



          Configuration language for domain specific modeling tools and its implementation 65 

 

4.1. Configurator language 

The configurator’s graphical language consists of four elements - Box, Line, Port, and 

Specialization (see Fig. 6). The element Box specifies the elements of box type, Line 

specifies the elements of line type, Port specifies the elements of port type, but 

Specialization shows that one element is a subtype to another (Box1 is a subtype to Box). 

 

 
Fig. 6. Elements of the configurator language 

 

These four elements allow defining DSML tools in the configurator. Fig. 7 shows the 

definition of the flowchart editor that is used to draw the flowchart diagram in Fig. 5. 

The definition indicates that elements - "Start", "Activity", "Branching" and "End" are of 

box type but elements "Out" and "In" are abstract super types showing the start and the 

end elements of "Flow". Since subtypes inherit incoming and outgoing lines of their 

super types, the definition specifies that the following pairs can be connected: "Start" 

and "Activity", "Start" and "Branching", "Start" and "End", "Activity" and "Activity", 

"Activity" and "Branching", "Activity" and "End", "Branching" and "Activity", 

"Branching" and "Branching", "Branching" and "End" (but the following pairs cannot be 

connected - "End" and "Start", "End" and "Activity", "End" and "Branching", "End" and 

"End", "Start" and "Start", "Activity" and "Start" and  "Branching" and "Start"). 

 

 
Fig. 7. The configuration of the flowchart editor 

4.2. The implementation of the configurator 

The configurator is implemented as a DSML tool using the components of TDA and 

exploiting the same mechanism as for the other DSML tools, namely, the specification  
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Fig. 8. A simplified configurator’s specification 
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of the configurator is given by the instance of the tool definition metamodel, and its 

events are processed by the interpreter’s transformations (although the transformation 

functionality is extended through the extension point mechanism). 

As mentioned in chapter 4.1, then configurator’s language consists of four graphical 

elements – Box, Line, Port and Specialization and thus to specify these elements, we 

have to create the specification with the tool definition metamodel instances, as shown in 

Fig. 8 (a simplified specification). 

We should note, since the configurator is specified by the instances of the tool 

definition metamodel, it is possible to give the same specification by the configurator 

itself (bootstrapping method), and its corresponding specification (graphical model) by 

the configurator is shown in Fig. 9. 

 

 
Fig. 9. The graphical model of configurator’s specification 

 

The next step is to interpret the given specification. In case of the configurator, the 

interpreter’s functionality is not sufficient and therefore it is supplemented with six 

transformations in the following extension points - Properties, DynamicDoubleClick, 

CreateElementDomain, DeleteElementDomain, CopyDomain and MoveLine. 

4.3. Tool versioning and model data migration 

Typically the development of DSML tool is an iterative process falling under the 

following scenario. At the first step we develop the first version of the tool, and then we 

update it and produce the second version, the third, fourth, and so on until we achieve 

the desired result. The problem of such a development process is that there are models 

created by older tool versions and it is necessary to use them by the latest tool version. 

Thus, the platform needs a mechanism that allows migrating models created by the older 

tool version to the latest tool version. 

At first, we should specify that by the “tool” and “version of the tool” we mean its 

specification by the tool definition metamodel instance, or, in other words, a particular 

tool version is an instance of the tool definition metamodel, but by “model data” we 

mean an instance of presentation metamodel.  Thus, “to develop a new version of the 

tool” means to create an instance of the tool definition metamodel, but “to migrate model 
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data from the older version to the latest” means to achieve the situation that model data 

are linked to the new tool’s specification, meaning, the presentation metamodel instance 

is linked to the latest tool definition metamodel instance. To achieve the desired 

situation, there are two possible scenarios. One possible scenario is to evaluate the old 

specification to the latest, the second scenario is to replace the old specification by the 

latest. 

We will look at each scenario in more details. In order to execute evaluation 

scenario, we have to use two things. Firstly, the latest version is created by executing a 

sequence of actions in the older tool version. Secondly, tools are developed by the 

configurator, and it allows us to record user actions performed in the configurator. Thus, 

we can record all the user actions that were executed to create the latest tool version and 

use them to develop a transformation that migrates model data between two different 

tool versions. 

In contrary, the second scenario replaces the old tool specification by the latest 

instead of evaluating it. The migration process according to the second scenario consists 

of two steps and the initial state of the repository before the migration has started is 

shown in Fig. 10 representing the instances of the tool definition and the presentation 

metamodels. 

 

 
Fig. 10. The initial state of the repository 

 

 

The first step creates new instance of the tool definition metamodel, thus there are 

old and new instances of the tool definition metamodel in the repository, but the 

presentation metamodel instance is still linked to the old instance of the tool definition 

metamodel. The result of the first migration step is shown in Fig. 11. 

 

 
Fig. 11. The result of the first migration 

 

The second step disconnects the instance of the presentation metamodel from the old 

instance of the tool definition metamodel, then links them to the new instance of the tool 

definition metamodel and finally deletes the old instance of the tool definition 

metamodel from the repository. The result of the second migration step is shown in Fig. 

12. 

 

Tipi 
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Fig. 12. The result of the migration process 

 

By comparing the two scenarios, we can see that evaluation scenario requires 

recording all the actions that were performed to create the next tool version. In other 

words, we have to store every single change in the tool definition metamodel instances, 

and taking into account the size of the tool definition metamodel, the implementation of 

the evaluation scenario would be complex. Whereas executing the replacement scenario 

we have to migrate all the links so that they connect model data and the latest tool 

specification. Since the tool definition metamodel and the presentation metamodel are 

connected by only three associations, then it is easier to track the changes in the tool 

definition metamodel instances to reconstruct links of the mentioned three associations 

then to track all the changes in the tool definition metamodel, and, therefore, the 

replacement scenario is used for implementation of the tool versioning and model data 

migration. 

5. Practical applications 

The proposed method of defining DSML tool has been validated in practice, and it has 

developed a number of tools. 

 

 

 
 

Fig. 13. The graphical model of BiLingva configuration 
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5.1. BiLingva 

BiLingva (Karnitis et.al., 2009) is a business process modeling tool developed to model 

processes for Latvian Investment and Development Agency. The graphical model of tool 

configuration is shown in Fig. 13. 

 

5.2. ProMod 

ProMod (Barzdins et.al., 2009a) is a business process modeling tool developed to model 

processes for the State Social Insurance Agency. The graphical model of configuration 

for one diagram type that is implemented in the tool is shown in Fig. 14. 

 

 
Fig. 14. The graphical model of ProMod configuration 

 

5.3. OWLGrEd 

OWGrEd (WEB, j), (Liepins et.al, 2012), (Cerans et.al., 2012), (Cerans et.al., 2013), 

(Barzdins et.al., 2010), (Barzdins et.al., 2011) is a UML class diagram syntax-based 

graphical OWL ontology (WEB, i) editor. The graphical model of tool configuration is 

shown in Fig. 15. 

 

 

 
Fig. 15. The graphical model of OWLGrEd configuration 
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5.4. LUMod 

LUMod (Barzdins et.al., 2013) is a business process modeling tool developed to model 

processes for University of Latvia. The graphical model of tool configuration is shown 

in Fig. 16. 

 

 
 

Fig. 16. The graphical model of LUMod configuration 

6. Related work 

Graphical tool building is not a new topic, and therefore there are a number of existing 

tool building platforms. Typically these platforms require, at first, to specify an abstract 

syntax model of the language using UML class diagrams (Eclipse GMF, Microsoft DSL, 

ObeoDesigner (WEB, h), Graphiti (WEB, e)), UML profile (RSA (WEB, f)) or the 

language that is similar to UML class diagrams (GME (Davis, 2003), (WEB, c)). When 

abstract syntax model is specified, we have to specify the concrete syntax of the 

language, and usually it means to create the concrete syntax model and then map it to the 

abstract syntax model. If the tool we are developing requires an additional functionality, 

it is possible to program it, but mostly it is not a simple task requiring to intervene in the 

platform’s internal structure or in the generated code. The conclusion is that such a tool 

specification process is long, resulting in complicated and difficult to understand tool 

development process. 

A different tool building approach is used by MetaEdit allowing specifying the tool’s 

language directly in terms of concrete syntax, thus significantly reducing the complexity 

of the tool development process. The conclusion is that this is a convenient approach to 

develop tools but MetaEdit solution has a very limited ability to complement the tool’s 

functionality. 

The main difference between the proposed approach and the existing platforms is 

that the proposed approach allows a specification of the tool language in terms of 

concrete syntax (that is, configurator’s graphical model) and, if necessary, an addition of 

the tool specific functionality using the extension point mechanism. Besides, the 

extension point mechanism allows not only an addition of toolbar buttons, context 

menus, etc. (through weak extensions) but it also allows intervening in the interpreter’s 

run-time with tool specific transformations (through hard extensions). Secondly, the 

proposed approach allows migrating tool models between different tool versions. 

We have to admit that the proposed approach has its limits. Firstly, the proposed 

approach can define such languages that are composed of three types of elements – 
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boxes, lines and ports. Secondly, the tools build using the proposed approach do not 

offer such a wide range of graphical elements and a rich interface as, for instance, 

Microsoft Visio (WEB, o) does. 

7. Conclusions 

The purpose of the paper is to present a DSML tool building approach that is relatively 

easy, allows extending the platform’s functionality and is open for external applications. 

To accomplish the task, the proposed approach uses the TDA platform components. 

Generally speaking, it would be enough to build a DSML tools using these components, 

namely, for every single tool we would have to create a list of model transformations 

that process user created events. However, it is a laborious and complex process, and 

therefore the paper presents a solution that proposes the following three issues: 

 development of a formal DSML tool specification language; 

 development of the interpreter of this language that transforms the given 

specification in a working tool; 

 development of the configurator to make the tool specification process faster and 

easier. 

To accomplish the first task, that is, to develop a formal DSML tool specification 

language the tool definition metamodel was created. 

To transform a specification in a working tool, a universal interpreter was developed 

as a list of universal transformations that universally process user created events. In 

addition, to be able to go beyond the fixed functionality of the interpreter, an extension 

point mechanism was introduced allowing executing tool specific transformations during 

the run-time of the universal transformation. It should be noted that the platform’s 

internal data structure is open, thus the transformations can easily access model data and 

modify them. As a result, we can use the interpreter to develop tools of different 

complexity, ranging from as simple as a flowchart editor, that can be implemented 

without programming, and as complex as the configurator that is powerful enough to 

develop other DSML tools.  

To simplify the creation of instances of the tool definition metamodel, the 

configurator tool was developed allowing specifying DSML tools graphically, not in the 

level of the tool definition metamodel. The purpose of the configurator is to facilitate the 

DSML tool specification process, and the main idea is to specify DSMLs "directly" by 

the concrete syntax model instead of abstract syntax model. Thus, unlike most other 

platforms, which use both models to specify the language and then establish mappings 

between them, the configurator specifies only one model and no mappings. Since there is 

a broad class of DSML tools that do not require performing complex calculations and 

model processions, the proposed method is suitable as it reduces the development time 

and simplifies the development process. 

Another advantage of the configurator is that, when it is combined with the 

interpreter, they form a technology that significantly increases tool developer’s 

productivity by making the tool development process iterative with the following 

advantages. Firstly, the language concepts are defined one-by-one, thus the obtained 

result can be checked after each step. Secondly, we can modify and run Lua (interpreted 

language) programs (transformation are implemented in Lua (Ierusalimschy, 2006)) 

without restarting the tool and no compilation. Thirdly, perform model migrations 

between different tool versions. 
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The described technology has been practically verified and successfully applied to 

develop such tools - ProMod, BiLingva, LuMod and OWLGrEd. 
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