
Baltic J. Modern Computing, Vol. 2 (2014), No. 2, pp. 84–115

Wireless Sensor Network Software Design Rules

Girts Strazdins1,2, Leo Selavo1,2

1 Faculty of Computing, University of Latvia
Raina blvd 19, Riga, LV 1050, Latvia

2 Institute of Electronics and Computer Science
Dzerbenes 14, Riga LV 1006, Latvia

girts@strazdins.lv, leo.selavo@gmail.com

Abstract. In the last decade wireless sensor networks (WSNs) have evolved as a promising ap-
proach for smart investigation of our planet, providing solutions for environment and wild animal
monitoring, security system development, human health telemonitoring and other domains. Lack
of unified standards and methodologies leads to limited sensor network solution interoperability
and portability. The goal of this work is to propose wireless sensor network software development
design rules that serve as a unified methodology for operating system and application develop-
ment. The design rules are based on 40 existing WSN deployment extensive analysis and common
trend inference. Improvements for existing WSN deployments and operating systems are iden-
tified. The evaluation shows the proposed design rules as an important tool for WSN software
development at different stages, from planning to testing and change request analysis.

Keywords: wireless sensor networks, methodology, design rules, operating systems, deployment
survey, case study

1 Introduction

Environmental scientists, biologists, geologists and other researchers and industry pro-
fessionals are interested in measuring a variety of parameters and phenomena of our
planet. Wireless sensor networks (WSNs) is a paradigm of measuring and event de-
tection in the surrounding environment. It is a tool for smart sensing of our planet,
having wide variety of applications, including wild animal monitoring (Zhang et al.,
2004), remote island flora inspection (Selavo et al., 2007), volcano eruption prediction
(Werner-Allen et al., 2006), interactive dance music generation (Aylward and Paradiso,
2007), restricted area monitoring (Wittenburg et al., 2007), and battlefield surveilance
(Arora et al., 2004), among others.

Sensor nodes typically are match-box size embedded devices (Figure 1). Such de-
vices are called motes. Other networks of devices with sensing and communication
capabilities can also be considered sensor networks, for example vehicular sensor net-
works with car on-board computers (Mednis et al., 2010) or human-centric networks of

Wireless Sensor Network Software Design Rules 85

smartphones (Burke et al., 2006). However, these kinds of networks use devices signifi-
cantly different from motes, and therefore different software abstractions could be more
appropriate. In this work, the main focus is on networks consisting of mote devices.

External memory

Microcontroller

Wireless transceiver

SensorsPower

Fig. 1. A typical wireless sensor node architecture - power, microcontroller, wireless
transceiver, sensors and external memory (optional)

Sensor network design and programming contains a set of challenges to solve:

1. Limited energy budget and energy efficiency is the main challenge of sensor net-
works. High-capacity batteries and energy harvesting methods (Kansal et al., 2007)
have to be combined in an efficient way, using energy buffering and duty cycling.

2. Small size and low-power computation (see Table 1) implies limited central pro-
cessing unit (CPU), random-access memory (RAM) and flash memory resources,
which require highly effective software abstractions and low-level hardware con-
trol.

3. Standard communication hardware and protocol stacks used in Internet servers and
desktop computers are not suitable for sensor networks, due to low-power require-
ments and duty cycling.

4. Different platforms are often used during evolution of the projects. System design
requires rapid prototyping, including hardware and software tool support.

5. Embedded systems are event-driven, while most desktop programming languages
provide sequential programming paradigms. Therefore easily-adoptable software
abstractions must be provided to WSN programmers, without requirement of long
learning process.

6. Sensor nodes are often deployed in the wild, industrial or other open and harsh
environment, requiring additional effort for packaging problem solution.

7. Wireless communication has remarkable irregularities and disturbances, which must
be mitigated by both hardware and software methods.

86 Strazdins and Selavo

8. Despite the unfriendly environment, sensor networks should be fault tolerant and
self-adaptive.

9. Deployment site is often hardly reachable for physical hardware inspection and
maintenance. Remote real-time management support is therefore desirable.

Table 1. Typical mote resource limits - CPU performance and memory amounts are serious
constraints for software design

Resource Typical amount
CPU 1 - 20MHz

RAM memory 256B - 10KiB
Non-volatile flash memory 40 - 128KiB

Optional external flash memory 1MiB - 4GiB

Wireless sensor network research has evolved over the last decade and has reached
a state where standardization becomes essential for interoperability between different
hardware and software solutions. Although parts of the WSN solutions are standard-
ized, such as communication protocols (802.15.4 standard (IEEE, 2014)), a common
methodology for WSN software development is still missing. WSN designers face typ-
ical problems during software development.

Therefore central thesis of this work states: a common methodology is required
for wireless sensor network software development. Such methodology would foster ef-
ficient new solution design and serve as a tool for existing software evaluation and
identification of improvements.

The rest of this work describes the process of identification of common WSN prob-
lems, WSN design rule proposal and evaluation in different aspects: existing software
assessment and new software design. These rules form a basis for common WSN soft-
ware development methodology. Although standardization is a slow and complex pro-
cess, these rules can have impact towards establishment of common WSN software
development standards and protocols.

The main contribution in this work includes:

1. Analysis of 40 sensor network deployments described in the research literature. As
a result the critical and recurring WSN properties were distilled.

2. Identification of common WSN design problems that identify the challenges based
on critical WSN properties and user requirements.

3. Introduction of a WSN software development methodology in the form of 25 de-
sign rules and analysis of their mapping to underlying problems.

4. Evaluation of the proposed design rule impact on existing WSN software improve-
ment. Design rules are shown as a tool for existing system comparison, drawback
identification and future direction sketch. The evaluation consists of three parts:

(a) Improvements to the analyzed deployment set showing design rule applicabil-
ity in general, for WSN users.

Wireless Sensor Network Software Design Rules 87

(b) Existing operating system conformance to proposed rules and suggestions for
OS improvement. Design rules are shown as an important tool for WSN OS
developers. This evaluation includes the authors’ participation in the develop-
ment and improvement analysis of MansOS: a portable operating system (OS)
for sensor networks.

(c) A wearable sensor network use-case scenario - assessment of prototype im-
plementation and suggestions for future work. This part shows more detailed
improvement of a particular WSN deployment in terms of network lifetime and
network coverage.

2 Related work

For WSN requirement summary and trend inference we first have to survey existing
WSNs and establish a taxonomy. Numerous researchers have surveyed and described
sensor network characteristics and challenges. In her book Anna Hac describes sensor
networks in general, including typical challenges (Hac, 2003). Hill et.al. describe WSN
hardware platforms (Hill et al., 2004). Tilak et al. propose to categorize sensor networks
based on different criteria (Tilak et al., 2002). Mottola and Picco propose another tax-
onomy focusing on programming aspects (Mottola and Picco, 2011). During this work
authors have also developed a taxonomy, described in more detail in (Strazdins, 2014).
The taxonomy is based on the authors’ experience and summary of multiple survey
articles.

Metric definition is also an important task. Beutel proposes metrics for WSN hard-
ware platforms (Beutel, 2006). Here we used subset of these metrics for deployment
analysis in Section 4. However, we add significantly more metrics in the survey, see full
list of tables in (Strazdins, 2014).

Romer and Mattern have analyzed WSN deployments and assessed the WSN de-
sign space based on application characteristics (Romer and Mattern, 2004). This work
includes similar deployment analysis approach. Handziski et.al. have analyzed WSN
challenges and come to conclusions similar to the authors’: standardizations and unified
methodologies are required (Handziski et al., 2003). Handzinski is proposing sugges-
tions for handling the challenges, without formalization. Jason Hill’s thesis (Hill, 2003)
is the closest effort to this paper. He analyzes WSN system architecture, describes con-
straints and challenges. Hill substantiates TinyOS design choices with qualitative sug-
gestions based on the identified challenges. We take a step further and propose specific
design rules based on a deployment survey. The WSN survey is performed similarly
to previous work, yet with more detail and more formalized outcomes: the proposed
design rules.

Different approaches are possible in WSN design and specification. Several re-
searchers have proposed algorithms and formulas to optimize WSN communication.
Mhatre and Rosenberg propose an algorithm how to choose between different commu-
nication approaches (Mhatre and Rosenberg, 2004). Olariu and Stojmenovic describe
formulas how to calculate energy depletion dependence on network topology and op-
timal transmission power (Olariu and Stojmenovic, 2006). Stojmenovic et.al. describe
design guidelines for WSN routing protocols (Stojmenovic et al., 2005). Oppermann

88 Strazdins and Selavo

and Peter propose a framework to transform informal end-user requirements to techni-
cal specifications (Oppermann and Peter, 2010). It tries to solve communication prob-
lem between different WSN user groups: end-users and engineers.

In contrast, we focus on optimizing software development process, not commu-
nication protocols or social communication problems. We extract technical WSN de-
ployment characteristics based on the information available. In some cases it is not
possible to gather quantitative information. Qualitative discussion is used in such situa-
tions. Nevertheless, to the best of the authors’ knowledge, this work proposes the most
comprehensive and formalized set of design rules for WSN software development.

3 Software abstractions

Sensor nodes can be programmed using different abstractions (Figure 2). The choice of
abstraction to use is up to user and depends on application requirements and user skills.

Runtime Environment

Sensor Node

Application

Operating system

Hardware

Middleware

Configuration

NetworkBinary
executable

Interpretable
code

Development Environment

Development
tools

Fig. 2. Abstractions for sensor networks - Application can be written using custom code, on-top
of operating system or using additional middleware. The whole network can be reprogrammed or
re-tasked remotely

The following abstractions are typical in runtime environment:

– Direct hardware access in the application user creates the whole application.
– Operating system provides ready-to-use services and libraries, maintaining effi-

cient low-level hardware access.
– Middleware additional services and interfaces for simplified and generalized ac-

cess, losing some degree of expressiveness.

Wireless Sensor Network Software Design Rules 89

– Application user configures and adapts template applications.

This paper concentrates on the operating system level, as it is a efficient tradeoff
between flexible access and expressiveness, and satisfactory programming complexity,
not requiring long training. In addition, application level is also reviewed and middle-
ware level is summarized.

The following WSN operating systems are analyzed in this paper:

– MansOS portable and easy to use WSN operating system (Strazdins et al., 2010;
Elsts et al., 2012).

– TinyOS de facto standard in the WSN community, however, has a very steep learn-
ing curve (Levis et al., 2005).

– Contiki provides rich service set and simple programming interface, yet its source
code is less portable, compared to other solutions (Dunkels et al., 2004).

– LiteOS brings multiple Unix concepts to sensor networks; AVR architecture- spe-
cific, not portable (Cao et al., 2008).

– Mantis provides signal processing algorithms and multiple platform support; not
maintained; MCU and architecture code mixed in source files (Bhatti et al., 2005).

– Arduino development environment for electronics enthusiasts, targeted for em-
bedded system prototyping, can be adapted to sensor network needs (Arduino SA,
2014a).

4 Deployment survey

To understand WSN application trends, the authors have performed WSN deployment
survey. 40 research papers published in 2002-2011 have been analyzed, covering wide
WSN application range (see Table 2). In contrast to previously published deployment
surveys this survey describes not only WSN deployments in stable phase, yet also pilot
projects and prototypes, as requirements for rapid and dynamic software development
and debugging tools is essential in these stages. Full details are described in Strazdins’
PhD thesis Strazdins (2014). The main conclusions are summarized here:

– In 80% of cases network consists of less than 50 nodes; in 50% of cases lesS than
20 nodes; in 34% - 10 or fewer nodes. Therefore WSN software developers should
focus on applicability and portability of the solutions, scalability is secondary.

– Off-the-shelf nodes are used only in 20% of deployments. In the remaining 80%
nodes are either customized or fully custom-designed. 60% use TinyOS, however,
25% use custom OS. Easily portable software solutions are required, adaptable to
every platforms needs.

– In 33% of cases application consists of a single central task. However, in more
complex scenarios up to 6 parallel processes are executed.

– Preemptive scheduling (kernel forcedly switches control between user tasks on a
periodic schedule) is required in 30% of cases. In the remaining 70% cooperative
scheduling with explicit control yield is sufficient.

90 Strazdins and Selavo

– Time synchronization is used in 38% of cases, therefore it should be included as a
core service of the operating system. While also localization is used in 38% of de-
ployments, it uses very different environmental conditions in each case (indoor/out-
door, with/without additional infrastructure), and it is not possible to implement
universal localization service.

– Temperature, light and acceleration sensors are most widely used. Most of sensors
are analog; analog-to-digital converter (ADC) is used to sample them.

– Significant part of deployments (40%) have target lifetime of 7 days or more, there-
fore energy-effective software solutions are required.

– In more than 80% of cases network contains nodes with continuous power source.
This fact can be used to simplify network protocols.

– The most popular hardware platform in recent years is TelosB (TMote Sky). Popu-
lar microcontroller architectures: TI MSP430 and Atmel AVR. 802.15.4- compati-
ble radio chips are widely used, including TI CC2420.

– Multi-hop networking is used in 65% of deployments.
– 70% use Carrier Sense Multiple Access (CSMA) based Media Access Control

(MAC) protocols.
– Remote data access and node reprogramming is used in 35% of cases.

These findings form a basis for typical WSN problem and design rule definition in
Sections 5 and 6.

Table 2: Deployments: general information

Nr Codename Year Title Class Description

1 Habitats
(Mainwar-
ing et al.,
2002)

2002 Wireless sensor networks for habitat
monitoring

Habitat and weather
monitoring

One of the first sensor network de-
ployments, designed for bird nest
monitoring on a remote island

2 Minefield
(Merrill
et al., 2003)

2003 Collaborative Networking Requirements
for Unattended Ground Sensor Systems

Opposing force in-
vestigation

Unattended ground sensor system
for self healing minefield applica-
tion

3 Battlefield
(He et al.,
2004)

2004 Energy-Efficient Surveillance System
Using Wireless Sensor Networks

Battlefield surveil-
lance

System for tracking of the posi-
tion of moving targets in an energy-
efficient and stealthy manner

4 Line in the
sand (Arora
et al., 2004)

2004 A line in the sand: a wireless sensor net-
work for target detection, classification,
and tracking

Battlefield surveil-
lance

System for intrusion detection, tar-
get classification and tracking

5 Counter-
sniper
(Simon
et al., 2004)

2004 Sensor Network-Based Countersniper
System

Opposing force in-
vestigation

An ad-hoc wireless sensor network-
based system that detects and accu-
rately locates shooters even in ur-
ban environments.

6 Electro-
shepherd
(Thorstensen
et al., 2004)

2004 Electronic shepherd - a low-cost, low-
bandwidth, wireless network system

Domestic animal
monitoring and
control

Experiments with sheep GPS and
sensor tracking

7 Virtual
fences
(Butler
et al., 2004)

2004 Virtual fences for controlling cows Domestic animal
monitoring and
control

Experiments with virtual fence for
domestic animal control

. . .

Wireless Sensor Network Software Design Rules 91

Table 2 – continued

Nr Codename Year Title Class Description

8 Oil tanker
(Krish-
namurthy
et al., 2005)

2005 Design and Deployment of Industrial
Sensor Networks: Experiences from a
Semiconductor Plant and the North Sea

Industrial equip-
ment monitoring
and control

Sensor network for industrial ma-
chinery monitoring, using Intel
motes with Bluetooth and high-
frequency sampling

9 Enemy
vehicles
(Sharp
et al., 2005)

2005 Design and Implementation of a Sen-
sor Network System for Vehicle Track-
ing and Autonomous Interception

Opposing force in-
vestigation

A networked system of distributed
sensor nodes that detects an evader
and aids a pursuer in capturing the
evader

10 Trove game
(Mount
et al., 2005)

2005 Trove: a Physical Game Running on an
Ad-Hoc Wireless Sensor Network

Child education and
sensor games

Physical multiplayer real-time
game, using collaborative sensor
nodes

11 Elder RFID
(Ho et al.,
2005)

2005 A Prototype on RFID and Sensor Net-
works for Elder Healthcare: Progress Re-
port

Medication intake
accounting

In-home elder healthcare system
integrating sensor networks and
RFID technologies for medication
intake monitoring

12 Murphy
potatoes
(Langen-
doen et al.,
2006)

2006 Murphy Loves Potatoes Experiences
from a Pilot Sensor Network Deploy-
ment in Precision Agriculture

Precision agricul-
ture

A rather unsuccessful sensor net-
work pilot deployment for precision
agriculture, demonstrating valuable
lessons learned

13 Firewxnet
(Hartung
et al., 2006)

2006 FireWxNet: A Multi-Tiered Portable
Wireless System for Monitoring Weather
Conditions in Wildland Fire Environ-
ments

Forest fire detection A multi-tier WSN for safe and easy
monitoring of fire and weather con-
ditions over a wide range of loca-
tions and elevations within forest
fires

14 AlarmNet
(Wood
et al., 2006)

2006 ALARM-NET: Wireless Sensor Net-
works for Assisted-Living and Residen-
tial Monitoring

Human health tele-
monitoring

Wireless sensor network for
assisted-living and residental mon-
itoring, integrating environmental
and physiological sensors and
providing end-to-end secure com-
munication and sensitive medical
data protection

15 Ecuador
Volcano
(Werner-
Allen et al.,
2006)

2006 Fidelity and Yield in a Volcano Monitor-
ing Sensor Network

Volcano monitoring Sensor network for volcano seis-
mic activity monitoring, using high
frequency sampling and distributed
event detection

16 Pet game
(Liu and
Ma, 2006)

2006 Wireless Sensor Network Based Mobile
Pet Game

Child education and
sensor games

Augmenting mobile pet game with
physical sensing capabilities: sen-
sor nodes act as eyes, ears and skin

17 Plug (Lifton
et al., 2007)

2007 A Platform for Ubiquitous Sensor De-
ployment in Occupational and Domestic
Environments

Smart energy usage Wireless sensor network for human
activity logging in offices, sensor
nodes implemented as power strips

18 B-Live
(Santos
et al., 2007)

2007 B-Live - A Home Automation System
for Disabled and Elderly People

Home/office au-
tomation

Home automation for disabled and
elderly people integrating hetero-
geneous wired and wireless sensor
and actuator modules

. . .

92 Strazdins and Selavo

Table 2 – continued

Nr Codename Year Title Class Description

19 Biomotion
(Aylward
and Par-
adiso,
2007)

2007 A Compact, High-Speed, Wearable Sen-
sor Network for Biomotion Capture and
Interactive Media

Smart user inter-
faces and art

Wireless sensor platform designed
for processing multipoint human
motion with low latency and high
resolutions. Example applications:
interactive dance, where move-
ments of multiple dancers are trans-
lated into real-time audio or video

20 AID-N
(Gao et al.,
2007)

2007 The Advanced Health and Disaster Aid
Network: A Light-Weight Wireless Med-
ical System for Triage

Human health tele-
monitoring

Lightweight medical systems to
help emergency service providers in
mass casualty incidents

21 Firefighting
(Wilson
et al., 2007)

2007 A Wireless Sensor Network and Incident
Command Interface for Urban Firefight-
ing

Human-centric ap-
plications

Wireless sensor network and inci-
dent command interface for fire-
fighting and emergency response,
especially in large and complex
buildings. During a fire accident,
fire spread is tracked and firefighter
position and health status is moni-
tored.

22 Rehabil
(Jaro-
chowski
et al., 2007)

2007 Ubiquitous Rehabilitation Center: An
Implementation of a Wireless Sensor
Network Based Rehabilitation Manage-
ment System

Human indoor
tracking

Zigbee sensor network based ubiq-
uitous rehabilitation center for pa-
tient and rehabilitation machine
monitoring

23 CargoNet
(Mali-
nowski
et al., 2007)

2007 CargoNet: a low-cost micropower sensor
node exploiting quasi-passive wakeup
for adaptive asychronous monitoring of
exceptional events

Good and daily ob-
ject tracking

System of low-cost, micropower
active sensor tags for environmen-
tal monitoring at the crate and case
level for supply-chain management
and asset security

24 Fence
monitor
(Wittenburg
et al., 2007)

2007 Fence Monitoring Experimental Evalu-
ation of a Use Case for Wireless Sensor
Networks

Security systems Sensor nodes attached to a fence for
collaborative intrusion detection

25 BikeNet
(Eisenman
et al., 2010)

2007 The BikeNet Mobile Sensing System for
Cyclist Experience Mapping

City environment
monitoring

Extensible mobile sensing system
for cyclist experience (personal, bi-
cycle and environmental sensing)
mapping leveraging opportunistic
networking principles

26 BriMon
(Chebrolu
et al., 2008)

2008 BriMon: A Sensor Network System for
Railway Bridge Monitoring

Bridge monitoring Delay tolerant network for bridge
vibration monitoring using ac-
celerometers. Gateway mote
collects data and forwards oppor-
tunistically to a mobile base station
attached to a train passing by.

27 IP net
(Finne
et al., 2008)

2008 Experiences from Two Sensor Net-
work Deployments - Self-Monitoring
and Self-Configuration Keys to Success

Battlefield surveil-
lance

Indoor and outdoor surveillance
network for detecting troop move-
ment

28 Smart home
(Suh et al.,
2006)

2008 The Design and Implementation of
Smart Sensor-based Home Networks

Home/office au-
tomation

Wireless sensor network deployed
in a miniature model house, which
controls different household equip-
ment: window curtains, gas valves,
electric outlets, TV, refrigerator,
door locks

. . .

Wireless Sensor Network Software Design Rules 93

Table 2 – continued

Nr Codename Year Title Class Description

29 SVATS
(Song et al.,
2008)

2008 SVATS: A Sensor-network-based Vehi-
cle Anti-Theft System

Anti-theft systems Low cost, reliable sensor-network
based, distributed vehicle anti-theft
system with low false-alarm rate

30 Hitchhiker
(Bar-
renetxea
et al., 2008)

2008 The Hitchhikers Guide to Successful
Wireless Sensor Network Deployments

Flood and glacier
detection

Multiple real-world sensor network
deployments performed, including
glacier detection, experience and
suggestions reported.

31 Daily morn-
ing (Ince
et al., 2008)

2008 Detection of Early Morning Daily Ac-
tivities with Static Home and Wearable
Wireless Sensors

Daily activity
recognition

Flexible, cost-effective, wireless in-
home activity monitoring system
integrating static and mobile body
sensors for assisting patients with
cognitive impairments

32 Heritage
(Ceriotti
et al., 2009)

2009 Monitoring Heritage Buildings with
Wireless Sensor Networks: The Torre
Aquila Deployment

Heritage building
and site monitoring

Three different motes (sensing tem-
perature, vibrations and deforma-
tion) deployed in a historical tower
to monitor its health and identify
potential damage risks.

33 AC meter
(Jiang et al.,
2009)

2009 Design and Implementation of a High-
Fidelity AC Metering Network

Smart energy usage AC outlet power consumption mea-
surement devices, which are pow-
ered from the same AC line, but
communicate wirelessly to IPv6
router

34 Coal mine
(Li and Liu,
2009)

2009 Underground Coal Mine Monitoring
with Wireless Sensor Networks

Coal mine monitor-
ing

Self-adaptive coal mine WSN sys-
tem for rapid detection of structure
variations caused by underground
collapses

35 ITS
(Frances-
chinis et al.,
2009)

2009 Wireless Sensor Networks for Intelligent
Transportation Systems

Vehicle tracking and
traffic monitoring

Traffic monitoring system imple-
mented through WSN technology
within SAFESPOT Project

36 Underwater
(Detweiler
et al., 2010)

2010 Adaptive Decentralized Control of Un-
derwater Sensor Networks for Modeling
Underwater Phenomena

Underwater net-
works

Measurement of dynamics of un-
derwater bodies and their impact in
the global environment, using sen-
sor networks with nodes adapting
their depth dynamically

37 PipeProbe
(Lai et al.,
2010)

2010 PipeProbe: A Mobile Sensor Droplet for
Mapping Hidden Pipeline

Power line and wa-
ter pipe monitoring

Mobile sensor system for determin-
ing the spatial topology of hidden
water pipelines behind walls

38 Badgers
(Dyo et al.,
2010)

2010 Evolution and Sustainability of a
Wildlife Monitoring Sensor Network

Wild animal moni-
toring

Badger monitoring in a forest

39 Helens
volcano
(Huang
et al., 2012)

2011 Real-World Sensor Network for Long-
Term Volcano Monitoring: Design and
Findings

Volcano monitoring Robust and fault-tolerant WSN for
active volcano monitoring

40 Tunnels
(Ceriotti
et al., 2011)

2011 Is There Light at the Ends of the Tunnel?
Wireless Sensor Networks for Adaptive
Lighting in Road Tunnels

Tunnel monitoring Closed loop wireless sensor and ac-
tuator system for adaptive lighting
control in operational tunnels

94 Strazdins and Selavo

5 Typical wireless sensor network problems

The author has identified common WSN problems that will be addressed by the pro-
posed design rules. The problems are grouped and described in the following subsec-
tions.

5.1 Portability problems

Problem 1: Chip reuse. Various hardware platforms do exist that have common mi-
crochip and sensor base but different wiring and combination.

Problem 2: Field experts. WSN is a promising field not only for programmers and
electrical engineers but also field experts with limited programming skills.

Problem 3: Hardware evolution. WSN users may choose different hardware plat-
forms during the evolution of sensor network. However, the application logic and
source code should be portable with minimal modifications.

5.2 Wireless communication problems

Problem 4: Protocol variety. Many WSN communication protocols do exist, yet not
many ready-to-use implementations are available.

Problem 5: WSN 6= Internet. WSN architecture is completely different from the In-
ternet. Traditional protocols are not optimal, custom approach is required.

Problem 6: Complex protocols. Communication protocols are often too complex to
provide full flexibility in unreliable networks.

Problem 7: Limited resources. WSNs must be able to communicate in dynamic topolo-
gies. However, memory and other resources are limited.

Problem 8: Experimentation. WSN researchers investigate and analyze protocols.
An environment and infrastructure for experimentation is required.

Problem 9: QoS. A certain degree of Quality-of-Service (QoS) is required, especially
in applications where WSNs are replacing traditional wired solutions.

5.3 Services and efficiency problems

Problem 10: Energy. The central problem of WSNs is energy efficiency, yet many
pilot and prototype deployments use 100% duty cycle. Such approach may incur
significant loss of realism in these deployments.

Problem 11: Data caching. Dynamic Networks with probabilistic communication may
require data caching and preprocessing. In addition, local data logging for redun-
dancy might be important, especially during prototyping phases.

Problem 12: Complex states. It is hard for programmers to think in event-driven ap-
proach that requires explicit management of system state and split-phase operation.
Also it is hard to design programs with multiple concurrent events within a single
thread of execution.

Problem 13: Cooperation. The whole network of nodes should cooperate to reach
the real benefits of WSNs: higher resolution, energy efficiency and cooperative
decision making.

Wireless Sensor Network Software Design Rules 95

6 WSN design rules

The following subsections list WSN design rules proposed by the authors. Although
most of the rules are related to operating systems, they can be generalized to other
WSN software abstractions: middleware and applications. Design rules in the form op-
erating system should provide X become should use X in the application level. Detailed
substantiation for each rule can be found in the full text of Strazdins thesis Strazdins
(2014). Only definitions are listed in this paper.

The importance of rules is divided into the following classes based on their popu-
larity among analyzed deployments:

1. MUST: the feature must be implemented. Deployment support: 40-100%.
2. SHOULD: feature implementation has lower impact. Deployment support: 20-50%.

Feature classes are overlapping in terms of popularity in deployments, as it is hard
to define sharp thresholds for feature popularity and strictly assign importance classes.
Overlapping boundaries open space for discussion.

Proposed rules are divided into multiple categories based on addressed aspects of
WSN development. Table 3 lists all proposed rules in a summarized form.

Table 3: WSN software design rules proposed by the author

Rule Description Importance

Communication

1 Sink-oriented The provided communication protocols must be sink-
oriented.

MUST

2 Powered motes Powered mote availability must be considered when de-
signing a default networking protocol library.

MUST

3 30 byte payload Default packet size should be at least 30 bytes with op-
tion to change this constant easily, when required.

SHOULD

4 11 hop routing Multi-hop routing must be provided as a default com-
ponent, which can be turned off, if one-hop topology is
used. Topology changes must be expected, at least 11
hops should be supported.

MUST

5 CSMA MAC A simple and generic CSMA-based MAC protocol must
be included in WSN solutions, preferable as part of OS
libraries.

MUST

6 Custom protocol API Interface for custom MAC and routing protocol devel-
opment must be provided.

MUST

7 Packet acknowledgment Simple transport layer delivery acknowledgment mech-
anisms must be provided by the operating system.

MUST

8 IPv6 support IPv6 (6lowpan) networking stack should be included in
the operating system libraries to increase interoperabil-
ity.

SHOULD

Portability

9 TelosB support TelosB-compatible platform should be supported by
WSN operating systems.

SHOULD

10 Rapid driver development WSN operating systems must support implementation
of additional sensor and other module drivers

MUST

. . .

96 Strazdins and Selavo

Table 3 – continued

Rule Description Importance

11 Rapid platform definition Porting to completely new platforms must be simple
enough and operating systems should contain highly
portable code.

MUST

12 802.15.4 support Driver support for CC2420 radio or other 802.15.4-
compatible radio communication chips should be pro-
vided by WSN operating systems.

SHOULD

13 AVR and MSP430 support WSN operating systems must support Atmel AVR and
Texas Instruments MSP430 MCU architectures.

MUST

Task scheduling

14 Low duty-cycle WSN operating systems must set effective low-energy,
low duty-cycle sampling as the first priority. High per-
formance for sophisticated audio or other signal process-
ing is secondary.

MUST

15 5 kernel + 6 user tasks OS task scheduler must support up to 5 kernel services
and up to 6 user level tasks.

MUST

16 Cooperative scheduling Operating systems must provide cooperative tasks
scheduling.

MUST

17 Preemptive scheduling Operating systems should provide preemptive schedul-
ing.

SHOULD

18 Event-based scheduling Operating systems should provide event-based schedul-
ing as an option.

SHOULD

Services

19 External storage Interface for user data storage in external memory
should be provided by WSN operating systems.

SHOULD

20 File system Convenient file system interface should be provided by
operating systems.

SHOULD

21 Time synchronization Simple time synchronization should be provided by
WSN operating systems.

SHOULD

User support

22 Base station example WSN OS toolset must include an example base station
application, which is easily extensible to user specific
needs.

MUST

23 Popular sensor API WSN operating system should provide common inter-
face for temperature, light and acceleration sensor read-
ing.

SHOULD

24 ADC API ADC sampling interface must be provided by WSN op-
erating systems.

MUST

25 Remote access Remote data access and reprogramming of sensor nodes
should be provided either by operating systems or other
software abstractions.

SHOULD

In this paper the authors analyze how the proposed design rules can be used to solve
common WSN problems. Mapping between design rules and problems is shown in
Table 4. Problems and rules have M:N (many-to-many) relationship. I.e., each problem
is addressed by several rules and each rule is addressing several problems. Design rule
set is consistent, without contradictions.

Wireless Sensor Network Software Design Rules 97

Table 4. Addressing WSN problems by design rules (rules in rows, problems in columns)

Design rules #1
C

hi
p

re
us

e
#2

Fi
el

d
ex

pe
rt

s
#3

H
ar

dw
ar

e
ev

ol
ut

io
n

#4
Pr

ot
oc

ol
va

ri
et

y
#5

W
SN

6=
In

te
rn

et
#6

C
om

pl
ex

pr
ot

oc
ol

s
#7

L
im

ite
d

re
so

ur
ce

s
#8

E
xp

er
im

en
ta

tio
n

#9
Q

oS
#1

0
E

ne
rg

y
#1

1
D

at
a

ca
ch

in
g

#1
2

C
om

pl
ex

st
at

es
#1

3
C

oo
pe

ra
tio

n

Communication rules
1 Sink-oriented x x x
2 Powered motes x x x
3 30 Byte payload x
4 11 hop routing x x x x x
5 CSMA MAC x x x
6 Custom protocol API x x x
7 Packet acknowledgment x x x x
8 IPv6 support x x x

Portability rules
9 TelosB support x x
10 Rapid driver dev. x x
11 Rapid platform def. x x
12 802.15.4 support x
13 AVR & MSP430 support x

Task scheduling rules
14 Low duty-cycle x
15 5 kernel + 6 user tasks x x
16 Cooperative sched. x x x
17 Preemptive sched. x x
18 Event-based sched. x x

Service rules
19 External storage x x
20 File system x x
21 Time Synchronization x x x

User support rules
22 Base-station example x
23 Popular sensor API x x
24 ADC API x x x
25 Remote access x x

98 Strazdins and Selavo

The following sections discuss how design rules can be used to analyze existing
WSN software solutions and plan their improvements both, for operating systems and
applications.

7 Design rule impact on existing WSN deployments

In the deployment survey, described in previous sections, the authors identify trends
that form basis for proposed design rules. However, none of the design rules is not sat-
isfied by 100% of the deployments. Not all applications are optimal. Although different
environments and constraints are encountered in deployments, some of the analyzed
deployments can be optimized by adapting design rules. This section discusses the pos-
sible optimizations.

7.1 Rapid driver development and porting (design rules #10 and #11)

80% of deployments have involved custom driver development for either platform with
specific components or porting the same application to another or completely custom
platform (32.5%). Source code portability is important for WSNs as the platforms of-
ten evolve and development follows the prototyping model. Existing code modules as
well as the operating system ideology and structure should support rapid and frequent
changes. Unfortunately, the most popular operating system, TinyOS, follows ideology
and contains source code that is hard to read and understand (distributed in various
places, contains nesC specific constructs), and even harder to design during porting.
While TinyOS might have high performance and resource efficiency, it should be im-
proved dramatically in terms of usability. Although TinyOS us used here as an example
(most popular OS choice among deployments), the portability and driver development
rules are important for any WSN OS as these aspects impact many deployments.

7.2 Sink-oriented protocols and powered motes (design rules #1 and #2)

38 of 40 deployments (95%) needed a sink-oriented protocol and in 11 cases (27.5%)
it was not provided by the operating system. Providing such protocol at OS or library
level saves development time for users. Development of communication protocols is
a complex task requiring thorough testing either in simulations or real pilot networks.
Similarly, powered motes should be considered in these protocols (used in 82.5% of
deployments, not provided by OS in 22.5%). By providing such protocols at OS level
or libraries, users of 22.5% of deployments could have improved software development
speed.

7.3 Custom protocol interface (design rule #6)

Interface for definition of custom MAC and routing protocols is essential part of oper-
ating system or middleware - this feature is required by 62.5% of deployments, and the
requirement is satisfied only in 68% of cases when it is needed (42.5% of total deploy-
ments). This rule could decrease development time for WSN protocol researchers and
encourage testing protocols on real platforms, as well as simulations, if the OS allows
to compile application for simulated sensor nodes.

Wireless Sensor Network Software Design Rules 99

7.4 Cooperative scheduling (design rule #16)

In 62.5% cases a cooperative scheduling strategy is sufficient (preemption is not re-
quired). That implies that cooperative scheduling should be preferred as it is more ef-
ficient in different aspects, including efficient memory usage, less context switch time
overhead and more appropriate task switch time selection. The design rule that suggests
cooperative scheduling could improve 15% of deployments where cooperative schedul-
ing is not provided by an operating system.

7.5 Sensor sampling interface (design rule #23)

In 65% of cases at least one of the most popular sensors (light, temperature, accelerom-
eter) is used. Therefore operating system or middleware should provide a unified API
for these sensor sampling. Some platform inspection functionality should be available
telling the application what sensors are available. Unfortunately, such API is provided
only in one of the cases where specific sensor extension board is used. By doing so one
can assure that the same application can be run on different platforms.

7.6 Time synchronization (design rule #21)

In 35% of deployments some form of time synchronization is implemented in the appli-
cation. Proper time synchronization requires complex algorithms, similarly to network
protocols. Therefore it would be valuable to include basic time synchronization in the
operating system. In 7.5% of deployments advanced and application specific time syn-
chronization is used, which cannot be implemented at the OS level. However, in most
of cases a generic time synchronization would suffice.

8 Impact on existing WSN operating systems

This section analyzes existing WSN OS conformance to proposed design rules and
proposes potential improvements by identifying gaps. Summary of OS conformance is
shown in Table 5.

8.1 TinyOS

As TinyOS complies to majority of rules, only the non-satisfied rules will be discussed
in detail.

TinyOS disregards the following design rules : design rule#10 (rapid driver devel-
opment), design rule#11 (rapid platform definition), design rule#20 (file system), de-
sign rule#21 (time synchronization), design rule#23 (popular sensor API), and design
rule#25 (remote access). Although TinyOS is portable (wide range of supported plat-
forms is a proof for it), code readability and simplicity is doubtful. The main reasons of
TinyOS complexity are:

100 Strazdins and Selavo

Table 5. Existing OS conformance to proposed design rules

Rule TinyOS Contiki LiteOS Mantis MansOS Arduino

Communication

1 Sink-oriented + + + + +

2 Powered motes + + + +

3 30 byte payload + + + + + +

4 11 hop routing + + ± + + +

5 CSMA MAC + + + +

6 Custom protocol API + + +

7 Packet acknowledgment + + + + +

8 IPv6 support + + +

Portability

9 TelosB support + + + +

10 Rapid driver development + + + + +

11 Rapid platform definition ± ± +

12 802.15.4 support + + + + + +

13 AVR and MSP430 support + + ± + +

Task scheduling

14 Low duty-cycle + + + + +

15 5 kernel + 6 user tasks + + + + ±

16 Cooperative scheduling + + +

17 Preemptive scheduling + + + + +

18 Event-based scheduling + + +

Services

19 External storage + + + + + +

20 File system + + + + +

21 Time synchronization + + +

User support

22 Base station example + + + + +

23 Popular sensor API + ± + +

24 ADC API + + + + +

25 Remote access + + + + ±

Wireless Sensor Network Software Design Rules 101

– The event-driven nature: while event handlers impose less overhead compared to
sequential programming with blocking calls and polling, it is more complex for
programmers to design and keep in mind the state machine for split-phase operation
of the application.

– Modular component architecture: high degree of modularity and code reuse leads
to program logic distribution into many components. Each new functionality may
require modification in multiple locations, requiring deep knowledge of internal
system structure.

– nesC language peculiarities: confusion of interfaces and components, component
composition and nesting, specific requirements for variable definitions are exam-
ples of language aspects interfering with creativity of novice WSN programmers.

These limitations are in the system design level, and there is no quick fix available.
The most convenient alternative is to implement middleware on top of TinyOS for sim-
plified access to non-expert WSN programmers. TinyOS architecture is too specific and
complex to introduce groundbreaking improvements for readability while maintaining
backwards compatibility for existing applications.

Nevertheless, more than 100 groups around the world use TinyOS. It is also used
by multiple commercial products (SOWNet technologies, 2014; Zolertia, 2014).

The rest of unsatisfied design rules regard to missing features that can be imple-
mented as additions. And some of the functions are already implemented as exter-
nal tools and middleware on-top of TinyOS. For example, third party external stor-
age filesystem implementations do exist, such as TinyOS FAT16 support for SD cards
(Goavec-Merou, 2010); Deluge can be used for remote reprogramming (Hui and Culler,
2004).

8.2 Contiki

Contiki does not provide platform independent API for temperature, light, and sound
sensors (design rule#23 (popular sensor API)) and ADC access (design rule#24 (ADC
API)). The reason is Contiki’s mission - it is not dedicated specifically to sensor net-
works, rather to networked embedded device programming. Some of the platforms
(such as Apple II) may not have sensors or ADC available, therefore the API is not
explicitly enforced for all the platforms.

Portability to new platforms is partially effective (design rule#11 (rapid platform
definition)). MCU architecture code may be reused. However, large proportion of platform-
specific code in Contiki may actually be reused on multiple platforms with appropriate
restructuring.

Surprisingly, there is no base station application template included (design rule#22
(base station example)). Contiki-collect is provided as an alternative - a complete and
configurable sense-and-send network toolset for simple setup of simple sensor network
applications.

To conclude, Contiki is one of the best WSN operating systems conforming with
most of the proposed design rules.

102 Strazdins and Selavo

8.3 LiteOS

LiteOS provides fully threaded programming with blocking calls, and no event call-
back handling (design rule#18 (event-based scheduling)). No cooperative scheduler is
provided (design rule#16 (Cooperative scheduling)).

Networking stack is not included in the LiteOS distribution. However, multiple
demo applications are usable as templates for user-specific networking protocol cre-
ation. Several routing protocols are implemented as user-level threads. The following
communication rules are not satisfied: design rule#2 (powered motes), design rule#5
(CSMA MAC), design rule#6 (custom protocol API), design rule#7 (packet acknowl-
edgement) and design rule#8 (IPv6 support). LiteOS’ applicability is very limited due
to these inconsistencies.

LiteOS conforms to all user support rules, including interface for temperature, light
and acceleration sensor sampling(design rule#23) and remote access (design rule#25).
From service rules it lacks time synchronization support (design rule#21).

The source code is 8-bit AVR platform specific and significant changes are required
to port LiteOS to other platforms with other microcontrollers. Chip driver development
is relatively simple, as device drivers must implement only a predefined set of functions.
However, new platform specification is unclear (design rule#11 is not satisfied).

Compared to other WSN operating systems (TinyOS, Contiki and MansOS) LiteOS
is a constrained OS with limited usability for field experts and other programmers who
do not want to study or develop customized networking protocols.

8.4 Mantis

A TDMA-class MAC protocol supporting star network topology is included in the de-
fault configuration, without a CSMA MAC (design rule#5 is not satisfied). No uni-
fied networking API is used, therefore users must design inter-layer interfaces on de-
mand (design rule#6 is not satisfied). In addition, the following rules are not satis-
fied by the existing networking implementation: design rule#2 (powered motes), design
rule#7 (packet acknowledgement) and design rule#8 (IPv6 support). Networking pro-
tocol stack of Mantis is not thoroughly developed, and development of the OS itself has
stopped in recent years.

Platform- and chip-level code is mixed, there are no TelosB or MicaZ platforms,
rather MSP430 and AVR code, which is MCU or architecture specific. Separation of
MCU architectures, specific chips and platforms would improve portability (design
rule#11).

Only preemptive thread scheduling is supported by the OS which, similarly to
LiteOS, limits its efficiency for constrained application class. No cooperative schedul-
ing (design rule#16) or event-based scheduling (design rule#18) is provided.

Mantis is rich in supported API, services and examples, yet no time synchronization
is provided (design rule#21).

Mantis has a promising software base that would be extensible for a rich WSN OS.
Unfortunately, it’s development activity has stopped.

Wireless Sensor Network Software Design Rules 103

8.5 MansOS

MansOS is a wireless sensor network operating system developed with simplicity of
use and portability in mind. The authors have also participated in MansOS development
since it’s start in 2008. MansOS is still actively developed now. More MansOS details
in (Elsts et al., 2012).

During it’s development, ideology and core components of MansOS have evolved
in multiple iterations. Therefore the existing version conforms to most of the design
rules proposed in this paper. There are some exceptions and space for improvement that
will be discussed here.

The authors of this paper introduced cooperative task scheduler (described in (Strazdins,
2014)) to MansOS as a result of design rule development (design rule#16). Previously
MansOS was supporting two scheduling techniques: direct event handling and preemp-
tive scheduler. Based on the findings in deployment survey development team decided
that cooperative scheduler is an important part of WSN OS. As a result of multiple
alternative evaluation, one of the authors decided to integrate ProtoThreads scheduler
from Contiki OS (Dunkels et al., 2006) - it has been proved to work stable already in
Contiki, therefore there was no need to reinvent the wheel. It is an example of how de-
sign rules improved WSN OS in practice - by substantiating importance of a particular
feature that was not implemented previously.

Two improvements are required in MansOS to reach full conformance to proposed
design rules. First, IPv6 support is required (design rule#8). While third-party IPv6 li-
braries can be used (Dunkels, 2003), such addition would interfere with the existing
networking protocol infrastructure. IPv6 should be fully integrated as an optional com-
ponent in the common protocol stack. Second, the preemptive scheduler is limited to
only one kernel thread at the moment while design rule#15 states that 5 kernel tasks
should be supported. This can be fixed by implementing a multi-threaded kernel, al-
though it might require some re-design of the whole OS. Otherwise, two problems may
arise. First, the tasks running in kernel context have equal priority, it is not possible to
assign higher priority to any of the tasks. Second, the kernel tasks are implicit without
possibility to create libraries of additional kernel tasks, that can be loaded and unloaded
as necessary.

In summary, MansOS demonstrates how design rules are applied both during OS
development phase and also in evaluation to detect potential problems and design nec-
essary improvements.

8.6 Arduino

This section discusses how Arduino conforms to proposed WSN software development
design rules and how Arduino can be modified to become a fully-functional WSN OS.

Core Arduino OS provides only basic MCU driver and a base for extensions. How-
ever, Arduino is a community-based project without strict borders of OS and third-party
software. It is a set of solutions and libraries that are combined during custom solution
development. Therefore here we examine the opportunities of core Arduino together
with libraries and extensions that are widely accepted. As the Arduino solution is based

104 Strazdins and Selavo

on engineer and enthusiast community (instead of WSN researchers) most of the refer-
ences in this section point to web sites instead of scientific articles. Nevertheless, these
sites do not have hypothesis and statements that have to be proved. Instead they contain
source code libraries and examples that can be simply verified empirically. Therefore
these sources are sufficiently reliable for this particular section.

Arduino core contradicts to all network rules as there is only a microcontroller on
the base board and USB is the only communication with a PC. However Zigbee/XBee-
802.15.4 modules are available providing networking options. Zigbee has a built-in
mesh capability. Networking rules are described here, using XBee Series 2 modules
with Zigbee stack (Arduino SA, 2014b). In addition, new versions of Arduino boards
with built-in communication do appear, such as Arduino Yun (SA, 2014) and Flutter
(Flutter Wireless, 2013).

The Zigbee networking protocol stack implements an 802.15.4-compatible (design
rule#12) mesh network topology, without sink-oriented data flow architecture (design
rule#1 is not satisfied). Powered motes are considered in Zigbee, called coordinator
(Faludi, 2010) (design rule#2 is satisfied (powered mote support)). Zigbee includes
CMSA-based MAC protocol and Ad hoc On-demand Distance Vector (AODV) routing
(Perkins and Royer, 1999) with reliable packet delivery (design rules #4, #5 and #7
are satisfied). IPv6 library from Contiki has been ported to Arduino (Baptiste Gaultier,
2013) (design rule#8 satisfied). However, the MAC and routing protocols are predefined
and cannot be customized by the user (design rule#6 not satisfied).

Arduino platform has space for improvement regarding portability. It is designed
only for AVR-based microcontrollers, TelosB platform (design rule#9) and MSP430-
family MCUs (design rule#13 (AVR and MSP430 support)) are not supported. Arduino
is not designed for other architectures, therefore its software is not ready for porting:
design rule#11 (rapid platform definition) is not satisfied. Nevertheless, driver develop-
ment (design rule#10) is facilitated with wide range of existing sensor and other chip
drivers, libraries and examples.

Task scheduling in Arduino is not optimal for WSNs. It uses a simple single-thread
polling approach. Protothread library (from Contiki) can be used on Arduino (Dunkels
et al., 2006), but it there is no ready-to-use Protothread port or tutorial available. All
task scheduling design rules are not satisfied. An advanced task scheduler is needed to
adapt Arduino for WSN needs.

Arduino supports wide range of services and interfaces using community-contributed
libraries, all service and user support design rules are satisfied. Examples include ex-
ternal memory and FAT file system (Greiman, 2013), time synchronization (Arduino
SA, 2011), ADC and wide range of sensors drivers (Arduino SA, 2014c). Remote re-
programming is possible by external tools requiring custom bootloader (CodeBender
team, 2014).

To summarize, Arduino needs addition of task scheduler, portability to low-power
hardware platforms and more flexibility for networking protocols.

8.7 Summary

The evaluation shows that popular WSN operating systems conform to majority of pro-
posed design rules. However, each OS has some specific aspects that can be improved.

Wireless Sensor Network Software Design Rules 105

This paper can serve as a reference for OS developers substantiating importance of
particular design rules.

9 Use-case study: a wearable sensor network

This case study describes a research project on tactile ship bridge alarm system develop-
ment, performed jointly by Maritime Human Factors Laboratory at Aalesund University
College and Rolls Royce Marine, Norway. One of the authors has participated in the
project as one of the main software and hardware designers and developers. The au-
thor has implemented a device prototype. In the case study the author analyzes possible
improvements of the tactile alarm system that can be introduced by implementing the
proposed design rules.

The system consists of two parts (Figure 3). One part is implemented as an add-
on for the ship bridge system. It takes information about person location and actual
alarms, and generates tactile alarm signals to be sent to persons. The second part is a
system worn on the operators. It receives commands wirelessly and generates tactile
cue patterns for the actuators mounted on the person. After survey of different device
placement options, the author chose tactile belt as the most appropriate form for first
prototype. Its main advantages: close contact with the person, naturalness, ability to
disseminate cues 24 hours daily, as well as ability to give directional cues.

Although the main focus of the system is actuation, this system is a wireless sensor
network. In further revisions the system would contain sensor modality, such as posi-
tion and pose estimation. For deployment at least two belts are required for maritime
operators and optional belts for other crewmembers. Continuous connectivity would re-
quire a wireless base station and router infrastructure that is able to provide two-way
communication with the mobile, wearable.

A tactile belt prototype is show in Figure 4.
The prototype consists of:

– Bluetooth radio module acting as a bridge between the belts and external alarm
system. Bluetooth RFCOMM profile is used emulating virtual serial port.

– Four vibrator motors generating tactile cues placed uniformly along the belt.
– Arduino LilyPad MCU translating received commands into motor commands.
– Lithium Polymer battery as a power source.
– Power regulator module, translating unstable 3.7V battery voltage into stable 5.0V

voltage used by the system. The software functions in server/client mode where
ships alarm system (a custom Java application used as a stub in experiments) oper-
ates as a server that sends commands to clients tactile belts.

The following design rules are not satisfied in the prototype implementation:

– Multi-hop network support. Bluetooth RFCOMM is used, without routing.
– Custom MAC and routing protocol development interface. Provided neither by Ar-

duino, nor Bluetooth.
– IPv6 support. Bluetooth uses local addressing and IPv6 is not supported.
– TelosB platform is not supported. Arduino does not conform TelosB specification

neither by chip characteristics, nor energy efficiency.

106 Strazdins and Selavo

Fig. 3. Tactile ship bridge alarm system architecture - wearable sensor and actuator device
communicating with ship bridge automation system

Fig. 4. Tactile belt prototype - Vibrator motors, microcontroller, battery power source and wire-
less communication mounted on a stretchable material

Wireless Sensor Network Software Design Rules 107

– Portability is limited and no MSP430 support is available.
– No task scheduling techniques are used, no multitasking support.

The following problems have been identified in the prototype:

– Short network lifetime. Real deployments would require at least 7 days of au-
tonomous operation, not provided by the prototype.

– No multi-hop network support. One-hop network is usable in a single room. It
limits event forwarding to external persons, including bridge watch.

– No multitasking support. All processes (sensor sampling, packet reception, packet
transmission and motor handling) can be implemented in a single thread, however,
that would be complex and contradict with systems logic.

The authors analyze improvements that are suggested by the proposed design rules
in the remainder of this section.

9.1 Network lifetime extension

There are two modes of expected system operation:

– During intense operations, where tactile device might inform the operators of crit-
ical information, low latency is important (in millisecond range). Therefore 100%
radio duty-cycle is expected here.

– During other time (actually, most of time) crew members are in idle mode, when
nothing significant is happening. They must be warned in case of alarm, yet the
acceptable latency is much higher (might be several seconds).

Most energy is spent in radio listening mode. Customized MAC protocols (design
rule#6) that allow changing radio duty cycle can help to reduce energy consumption
significantly. For example, if the radio transmission is activated every 5 seconds for a
250ms period (it takes around 100ms to send a 46-byte packet (Amiri, 2010), 250ms is
enough for two-way communication), it results in a 20% duty cycle.

The current Bluetooth module does not allow control of MAC protocols. Therefore
more efficient radio module must be selected. In addition, the Arduino board with AVR
ATMega328 microcontroller is also not the best option in terms of energy efficiency it
consumes around 25mA in active mode, and additional 25mA for Bluetooth radio, the
total consumption of the platform is more than 50mA or less than 8 hours of operation
from a 400mAh battery.

Vibrator motor energy consumption cannot be accurately predicted without a par-
ticular scenario. The motors will be active in a very tiny fraction of time, the duty cycle
will be very low. Let us examine an example scenario where 4 motors are used, each of
them consumes 50mA of energy in active mode. The operators are active 8 hours daily
performing operations where alarms may be raised once every 5 minutes and the mo-
tors are active for 1 second on every alarm. That means a 96 seconds of active motors
during the 8 hour operation or 5.33mAh of total energy consumed. During the inactive
period of the day the probability of an alarm is low, let us approximate it to one alarm
every day. However, the motors will be active longer on each alarm, let us define the ac-
tivity period 60 seconds in this case the person must react and turn the alarm off in one

108 Strazdins and Selavo

minutes time. That leads to 60 seconds of motors in active mode or 3.33mAh of energy
consumed. Taken together, less than 9mAh of energy is consumed daily for the motor
operation or less than 0.375mAh of average consumption. Although this example uses
multiple assumed constants, it shows that the motor energy consumption in a realistic
scenario is insignificant, compared to consumption of the rest of the system.

Selection of an energy-efficient wearable sensor-actuator node increases the lifetime
dramatically. Let us take a TelosB-compatible platform with MSP430F16113 microcon-
troller and CC2420 radio, such as TMote Sky, as an example. The whole platform con-
sumes 20-23mA during active radio transmission or reception. With a 20% duty-cycle
that would result in less than 5mA average consumption. It is tenfold increase in energy
efficiency compared to existing implementation. To conclude, a solution that supports
custom MAC protocols (design rule#6), TelosB-compatible platform (design rule#9)
and low duty-cycle (design rule#14), would lead to significant lifetime extension.

In addition, it is important to be able to experiment with multiple different plat-
forms and select the best alternatives based on empirical evidence. Rapid porting and
driver development (design rules #10 and 11) are important in that matter. To com-
ply with these rules, Arduino software should be replaced with a solution more ap-
propriate for porting to new platforms and providing wider set of supported platforms.
Contiki OS would be a good candidate: the solution can be incrementally ported to
Contiki OS keeping the same initial hardware and than changing hardware component-
by-component as necessary.

9.2 Multi-hop communication

To implement a deployable system, alarm dissemination is required also outside the
ship bridge room, and a 24-hour stable operation is required. Multi-hop communication
(design rule#4) between the alarm generation system and tactile wearable devices is
essential part of this requirement. The solution can be implemented in multiple differ-
ent ways: either the conventional ship automation systems network (TCP/IP or other) is
used to create a backbone network and connect tactile devices using gateway nodes at-
tached to each backbone network router, or a mesh network of wearable devices and cor-
responding sensor network routers (802.15.4) can be installed on the ship, connected to
the automation systems network using a single (or multiple redundant) gateway nodes.

9.3 Multitasking support

There are multiple logical tasks running concurrently on the wearable device: motor
control, data reception, data transmission and sensor sampling (no sensors attached at
the moment, but could be required in future deployments). Support of multi-tasking by
providing API for separate thread creation (design rule#15) is necessary due to different
aspects. First, it is correct to separate and encapsulate threads with different responsi-
bilities and resources. It is logically more correct and makes the code easier to maintain
and expand. Second, correct multi-tasking can improve the efficiency of the application
in terms of time-sharing threads wait when they have no operation to perform and start

3 http://www.ti.com/product/msp430f1611

Wireless Sensor Network Software Design Rules 109

running whenever the expected event has occurred. Fully accurate multitasking is not
achievable on a single-processor microcontroller, yet the idle-time can be minimized.

Selection of scheduling techniques depends on task characteristics. If some of them
are time-critical (MAC protocol) while others may be time-intensive (data processing),
preemptive scheduling is required (design rule#17). If there is no intensive data pro-
cessing, only command execution and sensor data reports, cooperative scheduler (de-
sign rule#16) is sufficient and will have less overhead on average. As the whole system
is event-driven, event-based scheduling with configuration on callback function (design
rule#18) would be very efficient in terms of system performance, yet it might be more
difficult for the programmers if the system grows more complicated during its evolution.

9.4 Use case summary

This section describes a wireless sensor network use case where one of the authors
created a prototype implementation of wearable wireless device. The authors identified
several problems, including short network lifetime, limited communication abilities and
problematic source code design and maintenance. Then we showed that following sev-
eral of the WSN design rules proposed in this paper can make significant improvements
and can solve the identified problems. To conclude, this use case showed that the de-
sign rules are applicable for WSN quality assurance as a diagnostics checklist and also
solution guide.

10 Conclusion

Central thesis of this work states that wireless sensor network software development
lack a unified methodology that provides network interoperability, higher source code
reusability and portability to other platforms. The goal of this paper is to provide uni-
fied WSN software development methodology in the form of a design rule set. To reach
the goal the authors analyze typical WSN deployments described in scientific literature
and infer common problems and requirements. Design rules are proposed on this de-
ployment survey. The applicability of these rules is evaluated in different aspects - the
authors show the impact of the rules for existing deployment and also operating system
evaluation. Considering wide variety of sensor network applications, it is not possible
to define design rules as theorems that can be formally proved. However, even in the
existing guideline form the design rules represent valuable knowledge for WSN re-
searchers and users. To the best of the authors’ knowledge, this work proposes the most
comprehensive and formalized set of design rules for WSN software development.

Future work includes design rule evaluation and adaption for particular WSN sub-
sets, such as body sensor networks or smart homes; as well as rule testing in external
projects by researchers other than the authors.

Acknowledgements

This work has been supported by the European Social Fund within the project ”Support
for Doctoral Studies at University of Latvia” and Latvian National Research Program

110 Strazdins and Selavo

Development of innovative multi-functional material, signal processing and informa-
tion technologies for competitive and research intensive products. Thank you for pro-
ductive teamwork to our former EDI colleagues: Artis Mednis, Atis Elsts, Reinholds
Zviedris, Georgijs Kanonirs, Krisjanis Nesenbergs and Modris Greitans. Thank you
also to Guntis Arnicans who improved the structure and focus of the work significantly
by constructive discussion.

References

Amiri, M. (2010). Measurements of energy consumption and execution time of different opera-
tions on Tmote Sky sensor motes. Master’s thesis, Masaryk University.

Arduino SA (2011). Arduino Time Library. http://playground.arduino.cc/Code/time.
Arduino SA (2014a). Arduino. http://arduino.cc/.
Arduino SA (2014b). Arduino Wireless Shield with XBee Series 2 radios.

http://arduino.cc/en/Guide/ArduinoWirelessShieldS2.
Arduino SA (2014c). Interfacing with Hardware: Input.

http://playground.arduino.cc/Main/InterfacingWithHardware.
Arora, A., Dutta, P., Bapat, S., Kulathumani, V., Zhang, H., Naik, V., Mittal, V., Cao, H., Demir-

bas, M., Gouda, M., Choi, Y., Herman, T., Kulkarni, S., Arumugam, U., Nesterenko, M., Vora,
A., and Miyashita, M. (2004). A line in the sand: a wireless sensor network for target detection,
classification, and tracking. Computer Networks, 46(5):605 – 634. Military Communications
Systems and Technologies.

Aylward, R. and Paradiso, J. A. (2007). A compact, high-speed, wearable sensor network for
biomotion capture and interactive media. In Proceedings of the 6th international conference
on Information processing in sensor networks, IPSN ’07, pages 380–389, New York, NY,
USA. ACM.

Baptiste Gaultier (2013). Arduino uipv6 stack. https://github.com/telecombretagne/Arduino-
IPv6Stack/wiki.

Barrenetxea, G., Ingelrest, F., Schaefer, G., and Vetterli, M. (2008). The hitchhiker’s guide to
successful wireless sensor network deployments. In Proceedings of the 6th ACM conference
on Embedded network sensor systems, SenSys ’08, pages 43–56, New York, NY, USA. ACM.

Beutel, J. (2006). Metrics for Sensor Network Platforms. In Proc. ACM Workshop on Real-World
Wireless Sensor Networks (REALWSN’06), page 5.

Bhatti, S., Carlson, J., Dai, H., Deng, J., Rose, J., Sheth, A., Shucker, B., Gruenwald, C., Torg-
erson, A., and Han, R. (2005). Mantis os: An embedded multithreaded operating system for
wireless micro sensor platforms. Mobile Networks and Applications, 10(4):563–579.

Burke, J., Estrin, D., Hansen, M., Parker, A., Ramanathan, N., Reddy, S., and Srivastava, M.
(2006). Participatory Sensing. In Proc. of World Sensor Web Workshop (WSW’06), collocated
with SenSys’06, pages 1–5.

Butler, Z., Corke, P., Peterson, R., and Rus, D. (2004). Virtual fences for controlling cows. In
Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004 IEEE International Conference
on, volume 5, pages 4429–4436.

Cao, Q., Abdelzaher, T., Stankovic, J., and He, T. (2008). The liteos operating system: Towards
unix-like abstractions for wireless sensor networks. In Proceedings of the 7th international
conference on Information processing in sensor networks, IPSN ’08, pages 233–244, Wash-
ington, DC, USA. IEEE Computer Society.

Ceriotti, M., Corrà, M., D’Orazio, L., Doriguzzi, R., Facchin, D., Guna, S., Jesi, G., Cigno, R.,
Mottola, L., Murphy, A., et al. (2011). Is There Light at the Ends of the Tunnel? Wireless Sen-
sor Networks for Adaptive Lighting in Road Tunnels. In Proceedings of the 10th ACM/IEEE

Wireless Sensor Network Software Design Rules 111

International Conference on Information Processing in Sensor Networks (IPSN/SPOTS), pages
187–198.

Ceriotti, M., Mottola, L., Picco, G. P., Murphy, A. L., Guna, S., Corra, M., Pozzi, M., Zonta,
D., and Zanon, P. (2009). Monitoring heritage buildings with wireless sensor networks: The
torre aquila deployment. In Proceedings of the 2009 International Conference on Informa-
tion Processing in Sensor Networks, IPSN ’09, pages 277–288, Washington, DC, USA. IEEE
Computer Society.

Chebrolu, K., Raman, B., Mishra, N., Valiveti, P., and Kumar, R. (2008). Brimon: a sensor net-
work system for railway bridge monitoring. In Proceedings of the 6th international conference
on Mobile systems, applications, and services (MobiSys), pages 2–14.

CodeBender team (2014). codebender.
Detweiler, C., Doniec, M., Jiang, M., Schwager, M., Chen, R., and Rus, D. (2010). Adaptive

decentralized control of underwater sensor networks for modeling underwater phenomena. In
Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems, SenSys
’10, pages 253–266, New York, NY, USA. ACM.

Dunkels, A. (2003). Full tcp/ip for 8-bit architectures. In Proceedings of the 1st international
conference on Mobile systems, applications and services (MobiSys’03)., pages 85–98. ACM.

Dunkels, A., Gronvall, B., and Voigt, T. (2004). Contiki - A Lightweight and Flexible Operating
System for Tiny Networked Sensors. In Proc. of Annual IEEE Conference on Local Computer
Networks, pages 455–462, Los Alamitos, CA, USA. IEEE Computer Society.

Dunkels, A., Schmidt, O., Voigt, T., and Ali, M. (2006). Protothreads: Simplifying Event-Driven
Programming of Memory-Constrained Embedded Systems. In Proc. of SenSys’06, pages 29–
42.

Dyo, V., Ellwood, S. A., Macdonald, D. W., Markham, A., Mascolo, C., Pásztor, B., Scellato,
S., Trigoni, N., Wohlers, R., and Yousef, K. (2010). Evolution and sustainability of a wildlife
monitoring sensor network. In Proceedings of the 8th ACM Conference on Embedded Net-
worked Sensor Systems, SenSys ’10, pages 127–140, New York, NY, USA. ACM.

Eisenman, S. B., Miluzzo, E., Lane, N. D., Peterson, R. A., Ahn, G.-S., and Campbell, A. T.
(2010). Bikenet: A mobile sensing system for cyclist experience mapping. ACM Trans. Sen.
Netw., 6:6:1–6:39.

Elsts, A., Strazdins, G., Vihrov, A., and Selavo, L. (2012). Design and implementation of mansos:
a wireless sensor network operating system. In Scientific Papers. University of Latvia.

Faludi, R. (2010). Building wireless sensor networks: with ZigBee, XBee, Arduino, and Process-
ing. O’reilly.

Finne, N., Eriksson, J., Dunkels, A., and Voigt, T. (2008). Experiences from two sensor network
deployments: self-monitoring and self-configuration keys to success. In Proceedings of the
6th international conference on Wired/wireless internet communications, WWIC’08, pages
189–200, Berlin, Heidelberg. Springer-Verlag.

Flutter Wireless (2013). Wireless ARM development board with over 1 km range.
http://www.flutterwireless.com/.

Franceschinis, M., Gioanola, L., Messere, M., Tomasi, R., Spirito, M., and Civera, P. (2009).
Wireless sensor networks for intelligent transportation systems. In Vehicular Technology Con-
ference, 2009. VTC Spring 2009. IEEE 69th, pages 1 –5.

Gao, T., Massey, T., Selavo, L., Crawford, D., rong Chen, B., Lorincz, K., Shnayder, V., Hauen-
stein, L., Dabiri, F., Jeng, J., Chanmugam, A., White, D., Sarrafzadeh, M., and Welsh, M.
(2007). The advanced health and disaster aid network: A light-weight wireless medical sys-
tem for triage. Biomedical Circuits and Systems, IEEE Transactions on, 1(3):203–216.

Goavec-Merou, G. (2010). SDCard and FAT16 file system implementation for TinyOS
http://www.trabucayre.com/page-tinyos.html. http://www.trabucayre.com/page-tinyos.html.

Greiman, B. (2013). sdfatlib: A FAT16/FAT32 Arduino library for SD/SDHC cards.
https://code.google.com/p/sdfatlib/.

112 Strazdins and Selavo

Hac, A. (2003). Wireless sensor Network Designs. John Wiley and Sons, Ltd.
Handziski, V., Kopke, A., Karl, H., and Wolisz, A. (2003). A common wireless sensor network

architecture? Technical report, Telecommunications Networks Group, Technische Universitat
Berlin.

Hartung, C., Han, R., Seielstad, C., and Holbrook, S. (2006). Firewxnet: a multi-tiered portable
wireless system for monitoring weather conditions in wildland fire environments. In Pro-
ceedings of the 4th international conference on Mobile systems, applications and services,
MobiSys ’06, pages 28–41, New York, NY, USA. ACM.

He, T., Krishnamurthy, S., Stankovic, J. A., Abdelzaher, T., Luo, L., Stoleru, R., Yan, T., Gu,
L., Hui, J., and Krogh, B. (2004). Energy-efficient surveillance system using wireless sensor
networks. In Proceedings of the 2nd international conference on Mobile systems, applications,
and services, MobiSys ’04, pages 270–283, New York, NY, USA. ACM.

Hill, J., Horton, M., Kling, R., and Krishnamurthy, L. (2004). The platforms enabling wireless
sensor networks. Commun. ACM, 47:41–46.

Hill, J. L. (2003). System architecture for wireless sensor networks. PhD thesis, University of
California.

Ho, L., Moh, M., Walker, Z., Hamada, T., and Su, C.-F. (2005). A prototype on rfid and sensor
networks for elder healthcare: progress report. In Proceedings of the 2005 ACM SIGCOMM
workshop on Experimental approaches to wireless network design and analysis, E-WIND ’05,
pages 70–75, New York, NY, USA. ACM.

Huang, R., Song, W.-Z., Xu, M., Peterson, N., Shirazi, B., and LaHusen, R. (2012). Real-world
sensor network for long-term volcano monitoring: Design and findings. IEEE Transactions on
Parallel and Distributed Systems, 23(2):321–329.

Hui, J. W. and Culler, D. (2004). The dynamic behavior of a data dissemination protocol for net-
work programming at scale. In Proceedings of the 2nd international conference on Embedded
networked sensor systems, SenSys ’04, pages 81–94, New York, NY, USA. ACM.

IEEE (2014). IEEE 802.15 WPAN Task Group 4 (TG4).
http://www.ieee802.org/15/pub/TG4.html.

Ince, N. F., Min, C.-H., Tewfik, A., and Vanderpool, D. (2008). Detection of early morning daily
activities with static home and wearable wireless sensors. EURASIP J. Adv. Signal Process,
2008.

Jarochowski, B., Shin, S., Ryu, D., and Kim, H. (2007). Ubiquitous rehabilitation center: An
implementation of a wireless sensor network based rehabilitation management system. In
Convergence Information Technology, 2007. International Conference on, pages 2349 –2358.

Jiang, X., Dawson-Haggerty, S., Dutta, P., and Culler, D. (2009). Design and implementation
of a high-fidelity ac metering network. In Proceedings of the 2009 International Conference
on Information Processing in Sensor Networks, IPSN ’09, pages 253–264, Washington, DC,
USA. IEEE Computer Society.

Kansal, A., Hsu, J., Zahedi, S., and Srivastava, M. B. (2007). Power management in energy
harvesting sensor networks. ACM Transactions on Embedded Computing Systems, Special
Section LCTES’05, 6.

Krishnamurthy, L., Adler, R., Buonadonna, P., Chhabra, J., Flanigan, M., Kushalnagar, N., Nach-
man, L., and Yarvis, M. (2005). Design and deployment of industrial sensor networks: expe-
riences from a semiconductor plant and the north sea. In Proceedings of the 3rd international
conference on Embedded networked sensor systems, SenSys ’05, pages 64–75, New York, NY,
USA. ACM.

Lai, T.-t. T., Chen, Y.-h. T., Huang, P., and Chu, H.-h. (2010). Pipeprobe: a mobile sensor droplet
for mapping hidden pipeline. In Proceedings of the 8th ACM Conference on Embedded Net-
worked Sensor Systems, SenSys ’10, pages 113–126, New York, NY, USA. ACM.

Wireless Sensor Network Software Design Rules 113

Langendoen, K., Baggio, A., and Visser, O. (2006). Murphy loves potatoes: Experiences from a
pilot sensor network deployment in precision agriculture. In Parallel and Distributed Process-
ing Symposium, 2006. IPDPS 2006. 20th International, pages 1–8. IEEE.

Levis, P., Madden, S., Polastre, J., Szewczyk, R., Whitehouse, K., Woo, A., Gay, D., Hill, J.,
Welsh, M., Brewer, E., et al. (2005). Tinyos: An operating system for sensor networks. Ambient
intelligence, 35.

Li, M. and Liu, Y. (2009). Underground coal mine monitoring with wireless sensor networks.
ACM Trans. Sen. Netw., 5:10:1–10:29.

Lifton, J., Feldmeier, M., Ono, Y., Lewis, C., and Paradiso, J. A. (2007). A platform for ubiquitous
sensor deployment in occupational and domestic environments. In Proceedings of the 6th
international conference on Information processing in sensor networks, IPSN ’07, pages 119–
127, New York, NY, USA. ACM.

Liu, L. and Ma, H. (2006). Wireless sensor network based mobile pet game. In Proceedings
of 5th ACM SIGCOMM workshop on Network and system support for games, NetGames ’06,
New York, NY, USA. ACM.

Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R., and Anderson, J. (2002). Wireless sensor
networks for habitat monitoring. In Proceedings of the 1st ACM international workshop on
Wireless sensor networks and applications, WSNA ’02, pages 88–97, New York, NY, USA.
ACM.

Malinowski, M., Moskwa, M., Feldmeier, M., Laibowitz, M., and Paradiso, J. A. (2007). Car-
gonet: a low-cost micropower sensor node exploiting quasi-passive wakeup for adaptive asy-
chronous monitoring of exceptional events. In Proceedings of the 5th international conference
on Embedded networked sensor systems, SenSys ’07, pages 145–159, New York, NY, USA.
ACM.

Mednis, A., Strazdins, G., Liepins, M., Gordjusins, A., and Selavo, L. (2010). RoadMic: Road
Surface Monitoring Using Vehicular Sensor Networks with Microphones. In Proc. of Net-
worked Digital Technologies, Part II: Second International Conference, NDT 2010, pages
417–429. Springer-Verlag GmbH.

Merrill, W., Newberg, F., Sohrabi, K., Kaiser, W., and Pottie, G. (2003). Collaborative Net-
working Requirements for Unattended Ground Sensor Systems. In Proc. of IEEE Aerospace
Conference.

Mhatre, V. and Rosenberg, C. (2004). Design guidelines for wireless sensor networks: commu-
nication, clustering and aggregation. Ad Hoc Networks, 2(1):45–63.

Mottola, L. and Picco, G. P. (2011). Programming wireless sensor networks: Fundamental con-
cepts and state of the art. ACM Computing Surveys, 43:19:1–19:51.

Mount, S., Gaura, E., Newman, R. M., Beresford, A. R., Dolan, S. R., and Allen, M. (2005).
Trove: a physical game running on an ad-hoc wireless sensor network. In Proceedings of the
2005 joint conference on Smart objects and ambient intelligence: innovative context-aware
services: usages and technologies, sOc-EUSAI ’05, pages 235–239, New York, NY, USA.
ACM.

Olariu, S. and Stojmenovic, I. (2006). Design guidelines for maximizing lifetime and avoiding
energy holes in sensor networks with uniform distribution and uniform reporting. In INFO-
COM 2006. 25th IEEE International Conference on Computer Communications. Proceedings,
pages 1–12.

Oppermann, F. J. and Peter, S. (2010). Inferring technical constraints of a wireless sensor network
application from end-user requirements. In Mobile Ad-hoc and Sensor Networks (MSN), 2010
Sixth International Conference on, pages 169–175. IEEE.

Perkins, C. E. and Royer, E. M. (1999). Ad-hoc on-demand distance vector routing. In Second
IEEE Workshop on Mobile Computing Systems and Applications (WMCSA’99)., pages 90–
100. IEEE.

114 Strazdins and Selavo

Romer, K. and Mattern, F. (2004). The design space of wireless sensor networks. Wireless
Communications, IEEE, 11(6):54–61.

SA, A. (2014). Arduino Yún.
Santos, V., Bartolomeu, P., Fonseca, J., and Mota, A. (2007). B-live - a home automation system

for disabled and elderly people. In Industrial Embedded Systems, 2007. SIES ’07. International
Symposium on, pages 333 –336.

Selavo, L., Wood, A., Cao, Q., Sookoor, T., Liu, H., Srinivasan, A., Wu, Y., Kang, W., Stankovic,
J., Young, D., and Porter, J. (2007). Luster: wireless sensor network for environmental re-
search. In Proceedings of the 5th international conference on Embedded networked sensor
systems, SenSys ’07, pages 103–116, New York, NY, USA. ACM.

Sharp, C., Schaffert, S., Woo, A., Sastry, N., Karlof, C., Sastry, S., and Culler, D. (2005). Design
and implementation of a sensor network system for vehicle tracking and autonomous intercep-
tion. In Wireless Sensor Networks, 2005. Proceeedings of the Second European Workshop on,
pages 93 – 107.

Simon, G., Maróti, M., Lédeczi, A., Balogh, G., Kusy, B., Nádas, A., Pap, G., Sallai, J., and
Frampton, K. (2004). Sensor network-based countersniper system. In Proceedings of the 2nd
international conference on Embedded networked sensor systems, SenSys ’04, pages 1–12,
New York, NY, USA. ACM.

Song, H., Zhu, S., and Cao, G. (2008). Svats: A sensor-network-based vehicle anti-theft system.
In INFOCOM 2008. The 27th Conference on Computer Communications. IEEE, pages 2128
–2136.

SOWNet technologies (2014). G-Node. http://www.sownet.nl/index.php/en/products/gnode.
Stojmenovic, I., Nayak, A., and Kuruvila, J. (2005). Design guidelines for routing protocols in

ad hoc and sensor networks with a realistic physical layer. Communications Magazine, IEEE,
43(3):101–106.

Strazdins, G. (2014). Wireless Sensor Network Software Design Rules. PhD thesis, University of
Latvia.

Strazdins, G., Elsts, A., and Selavo, L. (2010). MansOS: Easy to Use, Portable and Resource
Efficient Operating System For Networked Embedded Devices. In Proceedings of the 8th
ACM Conference on Embedded Networked Sensor Systems, SenSys ’10, pages 427–428, New
York, NY, USA. ACM.

Suh, C., Ko, Y.-B., Lee, C.-H., and Kim, H.-J. (2006). The Design and Implementation of Smart
Sensor-based Home Networks. In Proc. of the International Symposium on Ubiquitous Com-
puting Systems (UCS’06), page 10.

Thorstensen, B., Syversen, T., Bjørnvold, T.-A., and Walseth, T. (2004). Electronic shepherd - a
low-cost, low-bandwidth, wireless network system. In Proceedings of the 2nd international
conference on Mobile systems, applications, and services, MobiSys ’04, pages 245–255, New
York, NY, USA. ACM.

Tilak, S., Abu-Ghazaleh, N. B., and Heinzelman, W. (2002). A taxonomy of wireless micro-
sensor network models. ACM SIGMOBILE Mobile Computing and Communications Review,
6(2):28–36.

Werner-Allen, G., Lorincz, K., Johnson, J., Lees, J., and Welsh, M. (2006). Fidelity and yield
in a volcano monitoring sensor network. In Proceedings of the 7th symposium on Operating
systems design and implementation, OSDI ’06, pages 381–396, Berkeley, CA, USA. USENIX
Association.

Wilson, J., Bhargava, V., Redfern, A., and Wright, P. (2007). A wireless sensor network and inci-
dent command interface for urban firefighting. In Mobile and Ubiquitous Systems: Networking
Services, 2007. MobiQuitous 2007. Fourth Annual International Conference on, pages 1 –7.

Wittenburg, G., Terfloth, K., Villafuerte, F. L., Naumowicz, T., Ritter, H., and Schiller, J. (2007).
Fence monitoring: experimental evaluation of a use case for wireless sensor networks. In

Wireless Sensor Network Software Design Rules 115

Proceedings of the 4th European conference on Wireless sensor networks, EWSN’07, pages
163–178, Berlin, Heidelberg. Springer-Verlag.

Wood, A., Virone, G., Doan, T., Cao, Q., Selavo, L., Wu, Y., Fang, L., He, Z., Lin, S., and
Stankovic, J. (2006). Alarm-net: Wireless sensor networks for assisted-living and residential
monitoring. Technical report, University of Virginia Computer Science Department.

Zhang, P., Sadler, C. M., Lyon, S. A., and Martonosi, M. (2004). Hardware design experiences in
zebranet. In Proceedings of the 2nd international conference on Embedded networked sensor
systems, SenSys ’04, pages 227–238, New York, NY, USA. ACM.

Zolertia (2014). Z1 Platform. http://www.zolertia.com/ti.

Received June 27, 2014, accepted June 30, 2014.

