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Abstract: Application of the database normalization theory and the principle of orthogonal design 

allows us to reduce data redundancy in relational/SQL databases and hence avoid certain update 

anomalies and simplify development of database applications. The normalized systems theory for 

achieving modular and highly evolvable systems has similar goals in case of distributing the tasks 

of a system between its elements. We have suggested data-centric practices for finding the 

functional and data-centric subsystems of transactional information systems by identifying and 

analyzing the main business entity types and their life cycles. These subsystems and their 

interconnections constitute a large part of information systems’ business architectures. The 

specification of business architecture helps us to decompose the system development problem into 

more manageable subproblems. This paper studies whether the practices contribute towards 

creating normalized systems. We present a metamodel of the subsystems-related elements of 

data-centric practices and a metamodel of elements of normalized systems. 

Keywords: information system, business architecture, subsystems, normalized system, modular 

structure, combinatorial effects, entity type, evolvability. 

1. Introduction 

The business architecture of an information system (IS) describes its layered 

decomposition. It does this by specifying different types of subsystems (areas of 

competence, functional subsystems, and data-centric subsystems – registers) and their 

interconnections (Roost et al., 2001; Roost et al., 2004). It is a good basis for the 

development of the system in a piecemeal fashion and planning its entire development 

process. There could be many alternative decompositions of an information system. In 

(Eessaar, 2014b), we proposed data-centric practices for the specification of business 

architectures of transactional information systems based on the identification and 

analysis of the main business entity types (main entity types in short) and their life 

cycles. Based on these, we can quickly identify functional subsystems and registers as 

well as their interconnections that form a big part of the information systems’ business 

architectures. 

The business architectures should have high quality. How to evaluate the quality? 

For instance, one could use the model of good decomposition (Weber, 1997) [referred by 

Burton-Jones and Meso (2002)], which specifies five conditions required for a good 

decomposition. Although very useful, these criteria do not explicitly consider 
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evolvability that is an important characteristic of systems in our ever-changing world. 

One could use patterns of assigning responsibilities to classes and objects (General 

Responsibility Assignment Software Patterns, GRASP) (Larman, 2002) for the 

evaluation. It raises a question what of these patterns would be applicable in case of 

subsystems. 

We think that that the emerging normalized systems (NS) theory (Mannaert et al., 

2011) provides a suitable basis for evaluating the quality of information systems’ 

business architectures. The main goal of the paper is to study, whether the application of 

the data-centric practices produces business architectures that one can characterize as 

NS. NS theory is suitable for the task because it deals with investigating the behavior of 

evolving modular systems and on the other hand, one can use the data-centric practices 

to specify the modular structure of a certain type of information systems. To achieve the 

goal, we need a better understanding of NS theory. Hence, a subgoal of the paper is the 

creation of a metamodel of NS theory elements. Another subgoal is to demonstrate that it 

is possible to discuss business architectures in terms of the elements of NS. To make this 

kind of discussion possible, there must be a mapping between the elements of the two 

approaches. Therefore, we also have to present a metamodel of the elements of 

data-centric practices that are related to subsystems to facilitate understanding of the 

practices and the mapping. 

We organize the rest of the paper in the following way. First, we shortly explain the 

main principles and elements of both NS theory and relevant data-centric practices for 

specifying business architectures. In addition, we present their metamodels based on our 

current understanding of their elements. These are also contributions of the paper. We 

point that the practices represent a development approach of information systems that is 

again gaining attention. We refer to some related works about identifying and 

characterizing subsystems. Secondly, we discuss the quality of the resulting business 

architectures in terms of NS theory. Finally, we conclude and point to the future work 

with the topic. 

2. Information Systems’ Business Architectures 

The idea of using the main entity types (also known according to Sanz (2011) as 

significant entities, principal entities, subjects of process, real-world entities, essential 

business entities, and artifacts) and their life cycles as the basis of modeling processes is 

not new (Sanz, 2011; Ould, 1997). Recently, the interest towards entity-centric 

development approaches of information systems in general and business processes in 

particular has started to grow again due to the artifact-centric process management 

paradigm (Dumas, 2011). In (Eessaar, 2014b), we proposed data-centric practices for the 

development of transactional information systems that are inspired by this approach and 

by a methodological framework for Enterprise Information System (EIS) strategic 

analysis and development (Roost et al., 2001; Roost et al., 2004). Fig. 1, Fig. 2, and Fig. 

3 present a partial metamodel of the practices, concerning mainly decomposition of 

information systems into subsystems. Classes with the grey and white background depict 

business and information system concepts, respectively. 

The idea of decomposing information and software systems into subsystems to 

facilitate better comprehension, easier learning, development, maintenance, reuse, and 

evolution of the systems is of course not new. Parnas (1972) names advantages of the 

decomposition and advises how to reach to a good program decomposition. Bergland 
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(1981) reviews four program structuring methodologies. Wand and Weber (1990) 

formalize concepts subsystem and decomposition of information system. Wand and 

Weber (1990), Wand and Weber (1995), and Weber (1997) discuss the characteristics of 

good decomposition. However, both Bergland (1981) as well as Wand and Weber (1990) 

write about functional decomposition whereas framework for EIS strategic analysis and 

development and the data-centric practices foresee three different types of subsystems to 

separate concerns – areas of competence, functional subsystems, and registers. This 

distinction is also not new. For instance, these subsystem types correspond bijectively to 

the three aspects of the ArchiMate language for enterprise architecture (Berrisford and 

Lankhorst, 2009) – active structure, behavior, and passive structure, respectively.  
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Fig. 1. A part of the metamodel of the elements of data-centric practices 
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Fig. 2. A part of the metamodel of the elements of data-centric practices 
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Fig. 3. A part of the metamodel of the elements of data-centric practices 
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Berrisford and Lankhorst (2009) note that the aspects have been derived from the 

deep grammatical structure of natural languages in which sentences consist of subjects, 

verbs, and objects. 

Wand and Weber (1995) explain concepts surface structure and deep structure of 

information systems. By specifying the areas of competence of an information system, 

we describe its surface structure that determines how users see the system – what 

services (functionality) the information system should provide to different areas of 

competence to support their goals and what characteristics values the product and its 

user experience (see ISO/IEC 25010:2011) should have. It is possible that 

representatives of areas of competence themselves model how the system should appear 

to them (Roost et al., 2001). 

Functional subsystems and registers (data-centric subsystem) are elements of the 

deep structure of information systems and therefore, according to Wand and Weber 

(1995), manifest the meaning of the real-world system that the information system 

intends to support. They do it by reflecting processes and state of the real-world system, 

respectively. Elements of surface structure change frequently because human’s view of 

the world evolves and the views that information systems offer to humans must evolve 

accordingly. On the other hand, deep structure elements – functional subsystems and 

registers – are more stable and their meaning does not change, for instance, if the 

organizational structure or implementation technologies change. Wand and Weber 

(1995) note that “good deep structures provide inherent stability to information systems 

in the face of change” (p. 206). It shows, why the investigation of the goodness of the 

result of breaking the system up into subsystems is important. 

Sanchez and Mahoney (1996) point that modular design is possible in case of many 

different types of products, not only software systems. The idea of finding and using 

subsystems in general and the business architectures in particular is the manifestations of 

the divide and rule approach that is the most common way of dealing with the 

complexity (Green and Leisman, 2011). By finding the business architecture of an 

information system and creating it based on the architecture, we reduce the complexity 

of the system by breaking it into encapsulated units (subsystems) that are more 

manageable. By doing this, we reduce the number of connections within the system and 

modularize the system. Ideally, we would like to see that subsystems as modules have 

high internal connectivity and relatively low connectivity with other modules 

(subsystems) (Green and Leisman, 2011). Low connectivity (loose coupling) between 

subsystems allows us to develop the subsystems and change their internals relatively 

independently from other subsystems. This kind of architecture also supports extension 

of the system in terms of adding relatively easily new subsystems and reusing existing 

models and implementations of subsystems to extend the system. It has also effect to the 

structure of development organization. According to Sanchez and Mahoney (1996) 

loosely coupled modules that have standardized interfaces make possible loosely 

coupled product development organization where development takes place 

“autonomously and concurrently under the embedded coordination of a modular product 

architecture” (p. 68). Business architecture is an example of modular product 

architecture in the domain of information systems. 

The subsystems that we propose to find communicate with each other and form a 

layered communication network where each level consist of a different type of 

subsystems. Subsystems from one level invoke the services offered by the subsystems 

from the next lower level. Each service is accessible through an interface (Berrisford and 

Lankhorst, 2009). Areas of competence use functional subsystems through a user 
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interface. Functional subsystems use the data management services (database operations) 

provided by registers. These services have interface. Implementation of these services 

forms the Virtual Data Layer of the database (Burns, 2011). To summarize, areas of 

competence use data in registers with the mediation of functional subsystems.  

According to the data-centric practices, one has to identify the main entity types. 

Each of these will have a corresponding separate register and generally also a functional 

subsystem in the business architecture (the only exception is related to the management 

of state change events – see Sect. 4.1). The latter provides functionality to the users for 

managing data corresponding to the main entity type and its related (not main) entity 

types through its entire life cycle. In each such pair of subsystems, the functional 

subsystem manages data in the register (creates, reads, possibly updates and deletes data 

in it). Each functional subsystem has to read data from zero or more other registers to get 

data that enables its functionality. We suggest using the state-transition (life cycle) 

models of the main entity types for finding interactions between the subsystems, use 

cases that specify functional requirements to the functional subsystems, and services that 

the registers have to offer to functional subsystems to encapsulate data structures and 

data values of registers. Each use case should describe an elementary business process 

that helps some area of competence to achieve its goals. 

In general, for each state transition of a main entity type there will be a separate use 

case of the functional subsystem and a separate service offered by the register for 

recording the new state. It means that we will have reactions to the external or internal 

events of the system that trigger the state transitions. The interactions between the life 

cycles of different entity types give us information about what functional subsystems 

manage data in each register. The idea of using the main entity types is, for instance, 

similar to the Riva development method (Ould, 1997). Its essential business entities and 

case management processes correspond well to the main entity types and functional 

subsystems, in the data-centric practices. Hence, the approach of this paper should be 

interesting for the evaluators of the entity-centric development approaches in general. 

The approach of finding functional subsystems offered by the data-centric practices 

has the same basic premise than the functional decomposition methodology that is based 

on data structure design (Bergland, 1981) that “a correct model of the data structures can 

be transformed into a program that incorporates a correct model of the world” (p. 26). 

Bergland (1981) refers to different qualitative levels of cohesion that is the “glue” that 

holds each module (including subsystem) together. In our view, three highest levels of 

cohesion characterize the functional subsystems and registers that one identifies by using 

the data-centric practices. In case of functional subsystems and registers there must be 

cohesion of services, offered to the areas of competence and functional subsystems, 

respectively. Each such subsystem has communicational cohesion because it operates on 

common data grouped together to the same registers. Each such subsystem has 

sequential cohesion because its offered services correspond to the sequential steps of the 

life cycle of the same main entity type. Finally, each such subsystem has functional 

cohesion (the highest level of cohesion according to Bergland (1981)) because all its 

submodules contribute to performing one single function – manage data of a main entity 

type and its related (not main) entity types through its entire life cycle. 

Green and Leisman (2011) differentiate between whole-part and general-special 

relationships between modules. Same types of relationships between the subsystems are 

possible. Subsystems participating in such relationships must have the same type. One 

can indicate general-special relationship between subsystems (see Fig. 3) for complexity 

management purposes. Let us consider the data-modeling pattern Party (Fowler, 1997) 
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as the basis of an example. Piho (2011) notes that Party is an archetype pattern for 

modeling of an independent phenomenon of enterprises. Many information systems have 

to keep track of persons and locations (organizations and organization structure) and 

hence benefit from the use of Party pattern in the modeling process. In this pattern, 

Party is the supertype and Person as well as Organization are its subtypes. Next, we list 

possible combinations of registers that one could suggest in case of an information 

system that has to keep track of parties. According to the data-centric practices, there 

would be exactly the same functional subsystems to manage data in the registers. 

 Only register of parties that also contains data about persons and 

organizations. 

 Only register of persons and register of organizations. It means that we 

actually do not follow the Party pattern because there is no separate register 

that contains data common to all the parties (for instance, different types of 

addresses). The corresponding data structures are duplicated in the registers. 

 Register of parties that contains data common to all the parties as well as 

register of persons and register of organizations for recording 

subtype-specific data. In this case, one could define general-special 

relationships between register of parties and registers that correspond to the 

subtypes of Party that also means inheritance between the subsystems. We 

see a benefit of indicating such relationships between subsystems in reuse of 

specifications that have been created in case of the more general subsystem 

and do not have to be repeated in case of more special subsystems due to 

inheritance. Semantics of inheritance in case of subsystems needs further 

elaboration and in our everyday practice, we have not indicated this type of 

relationships. The subtypes of Party could themselves have subtypes (for 

instance, Worker as a subtype of Person). In the context of business 

architectures it could mean multi-level inheritance hierarchy of subsystems.  

Specifying containment (whole-part) relationships between the subsystems is also 

possible. However, in practice, we have not done that to avoid overly complicated 

specifications of subsystems. 

3. Normalized Systems Theory 

Information systems have to evolve over time because of changing business 

requirements, changing laws and regulations that influence the business as well as 

evolving technical platforms. Making changes in a system is not easy if its internal 

elements have low cohesion and high coupling and hence changes in one element cause 

many more changes in other elements. NS theory (Mannaert et al., 2011; De Bruyn and 

Mannaert, 2012; Verelst et al. 2013) is based on the observation that the presence of 

combinatorial effects influences the flexibility and evolvability of a system in a negative 

manner. The idea is that complexity of a change in a system should depend on the nature 

of the change itself and not from the size of the system. If there are combinatorial effects 

present in the system, then it means that the larger is the system, the more difficult it is to 

change it because the more changes has to be made in other elements of the system as 

the ripple effect. Hence, creating a system that conforms to NS theory should improve its 

maintainability. The theory formalizes knowledge about good program design 

(Bergland, 1981) that should result in a set of nested modules that one can connect in a 

hierarchy to form large programs. 
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An example of similarities between NS theory and the database normalization theory 

(Date, 2009) is that if there is a not fully normalized (not at least in the fifth normal 

form) base table (table in short), then the existence of certain intra-table dependencies 

between its columns leads to data redundancy and hence update anomalies. In this case, 

the more rows there are in the table, the more work is required in case of data updating 

operations (see Fig. 4). Therefore, the amount of work depends on the number of rows in 

the table. Failing to make all the required updates leads to inconsistent data. 

In Fig. 5, we present tables Car and Manufacturer that are in the fifth normal form. 

We have eliminated the data redundancy of manufacturer names within the table 

Cars_and_manufacturers by replacing the original table with its decomposition into two 

of its projections. By doing this, we placed columns participating in the functional 

dependency Manufacturer_ID → manufacturer_name into the separate table 

Manufacturer. Now, if one wants to change the name of a manufacturer, then one has to 

update only one row in table Manufacturer. Similarly, in Fig. 4, we illustrate 

implementation of the same functionality (Task 1) in multiple times within the same 

module. Changing the functionality requires extra effort. Failing to make all the required 

changes leads to the inconsistent behavior of the system. To avoid that, one should 

decompose the functionality into a separate module that is accessible to other modules 

through an interface (see Fig. 5). In this case, the amount of work in updating the 

functionality (Task 1) that does not change the interface does not depend on the size of 

the system. Fig. 5 illustrates how submodular tasks have become actions at the modular 

level to separate concerns. It conforms to a prescriptive design theorem of NS theory. 

The application of both theories has a goal to avoid update anomalies (of data and 

functionality, respectively) and produce a good representation of the real world. Both 

require nonloss-decomposition (of tables and modules, respectively) in a multi-step 

manner, and increase the number of tables and modules, respectively. An example of 

differences is that application of the database normalization process will not eliminate all 

the possible data redundancies within databases but the goal of NS theory is to create 

systems with no combinatorial effects. 

 

 
Fig. 4. An example of redundancy of data and functionality 



 Business Architectures of Information Systems as Normalized Systems  139 

 

 
Fig. 5. An example of reduced redundancy of data and functionality 

Another difference is that the normalization theory helps us to reduce data 

redundancy within a table but does not deal with the situations where data redundancy 

exists across multiple tables. In this case applies another formally defined principle 

called The Principle of Orthogonal Design (Date, 2009). On the other hand, the theorem 

about separation of concerns looks the system under investigation as a whole, from very 

coarse grained to very fine grained modules, and if some task is repeated within modules 

or in multiple modules, suggests decomposing it into a separate module. 

NS theory defines constructs (primitives) that constitute such systems (see Fig. 6).  
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Fig. 6. A metamodel of the elements of NS theory 
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The constructs are general (data element, action element etc.), are not associated with 

specific software languages, platforms or paradigms, and represent roles that elements of 

systems from many different domains could have. For instance, there are examples of 

the use of NS theory in case of software systems (Mannaert et al., 2011), specifications 

of requirements (Verelst et al., 2013), and organizational structures (De Bruyn and 

Mannaert, 2012). Verelst et al. (2013) present examples of combinatorial effects that 

exist in the real world, outside the scope of computerized systems. 

Description of different types of systems in terms of generic elements makes it 

possible to better understand deep similarities of systems or their parts. The similarities 

may not be apparent at first glance because the systems belong to different domains or 

the parts have different granularity (for instance, subsystems vs. classes). 

A problem of the description of NS theory is the lack of clear distinction of types, 

values, and variables. For instance, Date (2006, 2009) clearly separates and defines these 

concepts. Therefore, it is difficult to understand whether data entity and data element are 

the same things (in the paper we assume they are) and whether they mean type, value, or 

variable. Another core concept is operator (Date, 2009) and to our understanding, this 

corresponds to action element. 

Each NS has to conform to four prescriptive design theorems that ensures the lack of 

combinatorial effects. Next, we list the informal descriptions of the theorems (Mannaert 

et al., 2011; De Bruyn and Mannaert, 2012). 

• Separation of Concerns, meaning that each change driver (external technology, 

task – they can evolve) in a system must be separated into a separate module. 

Fig. 5 illustrates implementation of each change driver (task) in a separate 

module. 

• Data Version Transparency, meaning that there could be multiple versions of 

data elements without affecting action elements producing or consuming these.  

• Action Version Transparency, meaning that it must be possible to modify action 

elements without affecting their calling elements. 

• Separation of States, meaning that system has to keep state after every action 

that belongs to a workflow. 

NS theory describes a set of anticipated changes in terms of the elements. One has to 

translate each change in the business requirements to a set of these changes. Next, we 

explain the elements of business architectures in terms of the elements of NS. 

4. A Discussion of Business Architectures of Information 

Systems in Terms of NS Theory 

Areas of competence can be external or internal to the organization and their modeling 

defines different views to the functionality and data (action and data elements) of the 

system that reflect different goals of the users of the system. In Eessaar (2014a), we 

claimed that concept Area of competence (see Fig. 3) has only corresponding concept 

User in NS metamodel. After more consideration, we think that concept Area of 

competence (see Fig. 3) has corresponding concepts User, Connector element, User 

connector element, and Protocol connector element in NS metamodel (see Fig. 6). 

Representatives of areas of competence are users of the system. However, in case of 

each area of competence (as a subsystem), someone (representatives of the areas of 

competence, developers, or their combination) has to describe how the system should 

appear to users that belong to it. In terms of NS elements it means that one must describe 
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a new Connector element. If the representatives of an area of competence would use the 

system through a user interface that would be a part of this system, then in terms of NS 

theory one has to define a User connector element. If the representatives of an area of 

competence need from the present system some services through an external application, 

then in terms of NS theory one has to define a Protocol connector element. 

If we want to show in case of using the data-centric practices that the system 

periodically triggers a use case, then we associate it with the special actor called Time. In 

case of NS theory there is a Trigger element that can trigger Action elements. In terms of 

specifying areas of competence, one can either define area of competence Time or 

associate the use case with a human area of competence that really has the responsibility 

to achieve the goals of the process and who would have to perform the process if there is 

no automation (Crain, 2002). 

Concept Functional subsystem (see Fig. 3) has corresponding concepts Workflow 

element and Action element in NS metamodel (see Fig. 6). Mannaert et al. (2011) note 

that concept workflow element is based on the concept of a state machine. Similarly, in 

case of using the data-centric practices, each functional subsystem is a workflow that 

corresponds to the life cycle of the main entity type based on that one proposed the 

subsystem. For example, order management functional subsystem manages orders 

through their entire life cycle (see Fig. 7). Each functional subsystem corresponds to a 

main function of a system, and hence we think about them as coarse-grained action 

elements. Each workflow element performs a number of action elements on a specific 

target life cycle data element that is used to keep state (Mannaert et al., 2011). Each such 

action element corresponds to one use case (see, for instance, action element Submit 

order in Fig. 7). The life cycles of the main entity types determine the order of invoking 

the action elements. Successful execution of these action elements may change the state 

of a main entity and that will be captured in the system (in a register). It makes possible 

new state changes of the entity and hence new executions of action elements. 

A business processes could involve multiple business entity types and roles. One can 

model the workflows that span multiple functional subsystems, registers, and areas of 

competence by analyzing interactions between the life cycles of different main entity 

types where a state transition in one causes a state transition in another. 

Although the main task of registers is to record data, we cannot characterize registers 

as only data elements (entities) because “data entity only contains data (as in a structure 

or record) and does not have an interface” (Mannaert et al., 2011, p. 94). At the same 

time Mannaert et al. (2011) write that data elements have methods to enable data-version 

transparency. In our view methods are action elements that implement interface for 

accessing internal variables of objects that contain values. Hence, we find this 

description of data entities confusing. 

Each register does have an interface that is the union of the interfaces of its services. 

The quote from (Mannaert et al., 2011) in the previous paragraph describes data 

elements as variables (containers) that contain values. Similarly, we can describe the 

union of data structures of a register as a variable. By rewording the definition of 

database variable (Date, 2006) a register variable is a variable whose value at any given 

time is a register value. The type and hence the structure of a variable can evolve and it 

may have different values at different times. NS theory speaks about anticipated changes 

in the information systems and one of the changes is the creation of an additional data 

element (Mannaert et al., 2011). Here the talk is about variables. However, almost right 

after this sentence the paper states that another anticipated change is the creation of “an 

additional action entity having a specific data entity as input, or producing a specific data 
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entity as output” (Mannaert et al., 2011, p. 95). This describes data elements as types or 

values. Mannaert et al. (2011) also write “arguments and parameters must be 

encapsulated data entities” (p. 102). This is a confusing description because there is a 

logical difference between parameters and arguments (Date, 2009). Each parameter has a 

type (named set of values (Date, 2009)) that determines possible arguments that can 

correspond to the parameter. Arguments are actual operands that replaces parameters in 

invocations of operators (Date, 2006). Each argument must be of the same type as the 

parameter. Each argument is either a variable (if and only if the corresponding parameter 

is subject to update) or a value (Date, 2006). Mannaert et al. (2011) also write that data 

elements have methods. It also suggests that data elements are types or values. In this 

context, it is difficult to understand whether a data element (data entity) as described by 

NS theory is a variable, a type, or a value.  

Concept Register (see Fig. 3) has corresponding concepts Action element and Data 

element in NS metamodel (see Fig. 6). Each register is an action element that consist of 

other action elements that correspond to the services offered by the register (see Fig. 2). 

The services perform data management actions that encapsulate a data element that is 

also a part of each register. Data fields (see Fig. 6) correspond to individual data 

structures (for instance, base tables in case of SQL databases) in the database. The 

encapsulated data element is in this case the union of data structures for recording data 

that corresponds to a main entity type and its related (not main) entity types. Each 

service creates, reads, updates, or deletes data in one or more data structures. In case of 

registers, the background technology would usually be a database management system 

(DBMS). If one uses a SQL DBMS to implement registers, then one can implement 

action elements that correspond to services as procedures, functions, views, and 

materialized views (snapshots) in the background technology. These database objects are 

software entities that are created by instantiating the constructs of DBMS technology 

environment (see Fig. 6). 

Fig. 7 illustrates mappings between the elements of NS theory and some elements of 

the data-centric practices by using an example. References to NS elements are denoted 

with bold font. For the presentation purposes, we simplified the life cycle of orders. 
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Fig. 7. An example of description of IS business architecture in terms of NS elements 
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4.1. Separation of Concerns 

Each action element can contain only a single task according to the theorem about 

separation of concerns (Mannaert et al., 2011). System evolution could cause the change 

of each such task and therefore tasks are change drivers. Separation of concerns means 

that one must separate each change driver into a separate action element. Fig 4. and 

Fig. 5 illustrate changes in the structure of modules to achieve separation of concerns. 

Mannaert et al. (2011) define the theorem at the submodular level but acknowledges, “It 

is the designer’s decision to which level tasks are considered” (p. 94). In this paper, we 

apply NS theory at the more coarse-grained level – to the elements of information 

systems’ business architectures. 

Mannaert et al. (2011) note that a practical manifestation of this theorem is the use of 

multi-tier architectures. It is also the result of using the methodological framework for 

EIS strategic analysis and development (Roost et al., 2001; Roost et al., 2004) in general 

and the data-centric practices (Eessaar, 2014b) in particular. The resulting business 

architectures have three tiers (areas of competence, functional subsystems, and 

registers), and each tier has its own task. 

In our view, each functional subsystem and register is a coarse-grained action 

element. The use of data-centric practices results with the business architecture where 

each register has the functional task to offer data management services (create, read, 

possibly update and delete) related to a main entity type and its related (not main) entity 

types. Hence, for instance, register of orders does not contain data about goods (another 

main entity type) or services for managing data about goods. If it does, it would be a 

clear violation of the theorem. It contains references to goods that is a part of each order.  

The use of data-centric practices results with the business architecture where each 

functional subsystem (as a workflow element that is also a coarse-grained action 

element) has a functional task to offer to the users services that are related to the 

management of data that corresponds to a main entity type and its related (not main) 

entity types based on the life cycle of the main entity type. However, the life cycles of 

different main entity types may interact, producing workflows spanning multiple 

functional subsystems and registers. For instance, if paying the invoice of an order and 

hence changing its state causes changing of the state of the order as well (invoice and 

order are some of the main entity types of the domain in question), then there is a 

dynamic relationship between the life cycles of Invoice and Order. Invoice management 

functional subsystem manages data about invoices in register of invoices but it also has 

to invoke a service offered by register of orders to register the new state of an order. 

Hence, the functional subsystem has multiple tasks that is not consistent with the 

theorem. If the life cycle of a main entity type does not interact in this way with the life 

cycles of other main entity types, then the corresponding functional subsystem has one 

task.  

A problem of the description of NS theory (Mannaert et al., 2011) is that it does not 

clearly define concept change driver. If the life cycle of an entity type E or requirements 

about what data the system must capture in case of E evolve, then it causes changes in 

the functional subsystem and register corresponding to E. However, it could also lead to 

the changes in other functional subsystems and registers due to the interaction of life 

cycles of different entity types. For instance, adding possibility to cancel orders causes 

the need to do something with the corresponding invoices. It could be that users of 

invoice management functional subsystem want a report of such invoices. A new 

requirement to present certain information on printed invoices may cause the need to 



144  Eessaar 

 

collect the information during the creation of orders and register the information in 

register of orders. Hence, we see that a subsystem might have a single task but multiple 

change drivers. 

We propose to have generally a separate use case/service for each state transition in 

the life cycles of the main entity types (see Fig. 7) in case of functional subsystems and 

registers, respectively. The result could be that these more fine-grained action elements 

contain only a single task and hence have only one change driver. For instance, we do 

not put the registration of all the possible state changes together into one use case or into 

one service of a register. However, a use case that has to change the state of main entities 

that have different types has multiple change drivers. Similarly, services that implement 

predefined queries that the system has to answer and need data from multiple registers 

have multiple change drivers. 

Next, we give examples of combinatorial effects that the data-centric approach of 

finding subsystems helps to avoid. The data-centric practices distinguish business and 

administrative functional subsystems and registers (Eessaar, 2014b). Examples of 

administrative functional subsystems and registers are subsystems for managing data 

about invoices, contracts, documents, classifiers, workers, rooms, and buildings. 

Whether these subsystems are administrative or not depends on the nature of the 

organization that information system we specify. Fulfilling the administrative tasks 

supports accomplishing the goals of the organization but these tasks (and goals that 

correspond to these) are not the reason of its current operation. The tasks of 

administrative functional subsystems and registers are similar to the supporting tasks 

that require separate action elements (Mannaert et al., 2011). Combinatorial effects 

appear if one distributes administrative tasks among the business related functional 

subsystems and registers. For instance, if all or most of the registers contain data of some 

classifiers and their corresponding functional subsystems allow users to manage data of 

these classifiers, then changes in the general principles of classifier management (for 

instance, decision is made to start the recording of textual descriptions of classifier 

values) requires changes in many functional subsystems and registers. It is better to have 

classifier management task in a separate subsystem and hence the data-centric practices 

advise the specification of classifier management functional subsystem and register of 

classifiers in the business architectures. Detailed modeling of the classifier management 

subsystem will reveal separate use cases that describe management of different types of 

classifiers. These use cases are also action elements (see Fig. 7). This is also an 

implication of the separation of concerns theorem because “the more fine-grained the 

identification of the tasks by a designer, the more tasks are separated from each other” 

(Mannaert et al., 2011, p. 97). 

The theorem about separation of concerns implies that implementation of 

cross-cutting concerns, such as logging history of changes, constitute separate tasks. 

These tasks must be implemented as separate action entities. If there is a need to keep 

track of the history of the state changes of entities that belong to a main entity type, then 

the data-centric practices require definition of an additional main entity type and 

specification of a separate register based on that. For instance, if there is a need to keep 

track of orders and also the history of state changes of orders, then the practices require 

specification of the main entity types Order and Order event. One has to specify register 

of orders and register of order events based on these main entity types. Order events that 

would be recorded in register of order events correspond to the state transitions in the 

model that describe the life cycle of orders (see Fig. 7). Functional subsystems that 

manage state changes of orders (mainly order management functional subsystem but 
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maybe also other subsystems like invoice management functional subsystem) have to 

invoke services of register of orders and register of order events.  

The data-centric practices do not suggest general register of events for all the entity 

types because its data size would quickly become too large that reduces performance of 

the system. In addition, in case of different entity types there could be different 

requirements to the data that system has to capture in case of a state change event. 

The creation of a separate register instead of recording this data in register of orders 

is a manifestation of the separation of concerns theorem, which requires that each action 

element can only contain a single task. Now register of orders contains services and data 

structures registering the current state of orders. Register of order events contains 

services and data structures for registering state change events. However, for instance, 

now order management functional subsystem as a high-level action element has to 

manage data that corresponds to multiple main entity types (Order and Order event). 

Hence, it has multiple tasks that violates the separation of concerns theorem. In addition, 

we have now multiple registers where similar (not the same) logging functionality and 

data structures are scattered. Because the registers of events implement a supporting task 

that is a cross-cutting concern, it would be right to characterize these as administrative 

registers. 

We also note that according to the data-centric practices, one has to describe 

constraints to data as a part of specification of registers. In addition, the data-centric 

practices encourage enforcing constraints to data at the database level, as a part of 

implementing registers. The constraints should be implemented by using the means 

offered by the background technology (DBMS), preferably through a declarative 

manner. It ensures that any action element that accesses the data cannot violate the 

constraints. This is also a manifestation of the separation of concerns theorem. If we do 

not repeat descriptions and implementations of the constraints in case of other types of 

subsystems, then we have to do less work if we want to enforce new constraints, or 

modify/remove existing constraints. 

4.2. Data Version Transparency and Action Version Transparency 

The theorem about data version transparency writes about “Data entities that are 

received as input or produced as output by action entities” (Mannaert et al., 2011, p. 97). 

This statement describes data elements (data entities) as values. In the context of 

registers, we can speak about the value of a register that is held by the register variable. 

Invoking an action element (a service offered by a register) that helps system to 

encapsulate a data element (a part of the register) can change the value of the register 

variable. 

The data-centric practices require that, in general, for each state transition of a main 

entity type there must be a separate service that is offered by the corresponding register 

to keep the state (see also section 4.3). Depending on requirements there could also be 

services that modify data about the main entities and their related entities without 

changing the state (according to the life cycle) of the main entities. In addition, there 

must be services that implement predefined queries that the system has to answer. These 

queries correspond to the informational needs of areas of competence. The queries might 

require data from multiple registers but for organizational purposes are assigned to one 

of the registers. The interface of a register is the union of the interfaces of its services.  

The practices do not explicitly state that the interfaces of registers have to conform to 

the theorems about version transparency but it would be advantageous due to the 
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resulting improved evolvability of the system. Much depends on the background 

technology – usually DBMS in case of registers. If one implements registers as one or 

more SQL databases, then the services provided by registers would be implemented by 

using views, materialized views (snapshots), procedures, and functions. Further 

refinement of services may lead to the creation of new action elements that implement 

tasks that are needed by multiple services. For instance, to achieve separation of 

concerns one may implement fundamental stored procedures (FSP) (Burns, 2011) that 

are used by other more high-level procedures. Each FSP “performs one type of update 

(add, change, or delete) on one or more rows of data in a single database table” (Burns, 

2011, p. 185). 

Data version transparency means in the context of registers that it must be possible to 

make changes in the data structures of registers without affecting action elements that 

use these structures. In case of our approach, it is not entirely possible. Depending on the 

nature of the changes, one may have to change the internals of action elements that 

implement the services of the registers but does not have to change the action elements 

that use the services. Changes in the internals of data modification services are limited 

with the register that data structures have been modified. There could be multiple 

registers where one has to change internals of data reading services because registers 

may provide services that have to read data from multiple registers. However, there 

could also be changes of data structures that one cannot hide behind the services of 

registers. This kind of changes cause changes of the interface of the register and 

propagate to the action elements that use the services. 

Action version transparency means that there could be multiple versions of action 

elements (services). One could use overloading of functions/procedures and use different 

schemas for different versions of database objects for achieving this state of affairs. 

4.3. Separation of States 

Invocation of use case action elements that constitute a functional subsystem 

corresponds to a stateful workflow that is a practical manifestation of the theorem. 

Action elements that correspond to use cases call action elements that correspond to the 

services provided by registers. Each calling is triggered by an external or internal event. 

Each successful calling of an action element that has the task to perform a data 

modification operation, results with state keeping in the register – it creates, updates, or 

deletes data about some entities and/or relationships. In addition, the registers contain 

explicit information about the current state of main entities with the help of state 

classifiers (see data fields Order and Order_state_type in Fig. 7 as an example). If a use 

case action element initiates a state transition that is consistent with the life cycle of the 

corresponding main entity type, then the action succeeds and data about the new state is 

captured in the register.  

The practices do not require the use of asynchronous communication as suggested in 

(Mannaert et al., 2011). One should combine invocations of services into transactions 

that is a manifestation of the theorem (Mannaert et al., 2011). 

5. Conclusions and Future Work 

The paper focused on improving understanding of normalized systems (NS) theory and 

using it for the evaluation of business architectures that one has created with the help of 
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data-centric practices by identifying and analyzing the main entity types and their life 

cycles. The use of the practices leads us to the identification of functional subsystems 

and registers (coarse-grained modular structures). In the resulting business architecture 

each functional subsystem supports one type of entities going through their associated 

life cycle. It may change the state of other types of entities due to the interacting life 

cycles of entity types and capture the history of state changes. The current state 

(according to the life cycle) of the entities and other required data about the entities and 

their relationships are recorded in the corresponding registers. Both the data-centric 

practices and NS theory prescribe a modular structure of systems. The resulting business 

architectures violate in some places some of the prescriptive design theorems of NS 

theory. For instance, some of the functional subsystems have multiple tasks and multiple 

change drivers. The use of practices reduces combinatorial effects between subsystems 

but does not eliminate these and therefore the result is not a NS. Mannaert et al. (2011) 

note that more fine-grained tasks means bigger separation of tasks from each other. In 

this paper, we applied NS theory to coarse-grained modules (subsystems) and hence it is 

probably natural that we do not have a total separation of concerns in case of these. The 

use of the practices lays the groundwork for the design and implementation of a system 

as a NS but much depends on the selection of platforms and the design of more 

fine-grained elements of the system.  

We observed that one could describe the elements of business architectures in terms 

of the elements of NS. Using this kind of abstraction to describe the theory was a good 

exercise that helped us to think about the theory. We also noticed that the description of 

NS theory does not distinguish understandably enough core concepts type, value, and 

variable. It is also vague in terms of what is a change driver. As the result it is difficult 

to comprehend the details of the theory. We should also not forget that maintainability 

that one can improve by following NS theory is only one of the quality characteristics of 

systems and that creating a NS does not automatically guarantee high quality of the 

system in terms of other characteristics. Hence, using NS theory cannot be the only mean 

for evaluating the quality of the system. 

Future work could include elaboration of the presented metamodels. For validating 

NS theory as well as data-centric practices one could perform their ontological analysis 

in order to find possible ontological discrepancies: construct overload, construct 

redundancy, construct excess, and construct deficit.  

Another line of research would be to investigate how application of NS theory 

influences different quality characteristics of different quality models (described by the 

ISO/IEC 25010:2011 standard). For instance, it would be interesting to know how it 

influences performance efficiency of the system as well as usability of the system and its 

specifications.  

It would be interesting to more closely compare NS theory and approaches for 

reducing data redundancy and investigate whether the knowledge from the database field 

could be applied in the context of NS theory.  

As was mentioned before, description of different types of systems in terms of 

general elements makes it possible to search deep similarities between the systems.  

Yet another line of research would be investigation how much the use of the anchor 

modeling approach (Rönnbäck et al., 2010) would increase the normalization level of 

systems and whether the use of the approach is feasible in case of data-centric 

transactional information systems.  

Finally, it would be interesting to find out to what extent the existing systems follow 

the principles of NS theory. 
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