
Baltic J. Modern Computing, Vol. 2 (2014), No. 3, 132-149

On Applying Normalized Systems Theory to the

Business Architectures of Information Systems

Erki EESSAAR

Department of Informatics, Tallinn University of Technology,

Akadeemia tee 15A, 12618 Tallinn, Estonia

Erki.Eessaar@ttu.ee

Abstract: Application of the database normalization theory and the principle of orthogonal design

allows us to reduce data redundancy in relational/SQL databases and hence avoid certain update

anomalies and simplify development of database applications. The normalized systems theory for

achieving modular and highly evolvable systems has similar goals in case of distributing the tasks

of a system between its elements. We have suggested data-centric practices for finding the

functional and data-centric subsystems of transactional information systems by identifying and

analyzing the main business entity types and their life cycles. These subsystems and their

interconnections constitute a large part of information systems’ business architectures. The

specification of business architecture helps us to decompose the system development problem into

more manageable subproblems. This paper studies whether the practices contribute towards

creating normalized systems. We present a metamodel of the subsystems-related elements of

data-centric practices and a metamodel of elements of normalized systems.

Keywords: information system, business architecture, subsystems, normalized system, modular

structure, combinatorial effects, entity type, evolvability.

1. Introduction

The business architecture of an information system (IS) describes its layered

decomposition. It does this by specifying different types of subsystems (areas of

competence, functional subsystems, and data-centric subsystems – registers) and their

interconnections (Roost et al., 2001; Roost et al., 2004). It is a good basis for the

development of the system in a piecemeal fashion and planning its entire development

process. There could be many alternative decompositions of an information system. In

(Eessaar, 2014b), we proposed data-centric practices for the specification of business

architectures of transactional information systems based on the identification and

analysis of the main business entity types (main entity types in short) and their life

cycles. Based on these, we can quickly identify functional subsystems and registers as

well as their interconnections that form a big part of the information systems’ business

architectures.

The business architectures should have high quality. How to evaluate the quality?

For instance, one could use the model of good decomposition (Weber, 1997) [referred by

Burton-Jones and Meso (2002)], which specifies five conditions required for a good

decomposition. Although very useful, these criteria do not explicitly consider

 Business Architectures of Information Systems as Normalized Systems 133

evolvability that is an important characteristic of systems in our ever-changing world.

One could use patterns of assigning responsibilities to classes and objects (General

Responsibility Assignment Software Patterns, GRASP) (Larman, 2002) for the

evaluation. It raises a question what of these patterns would be applicable in case of

subsystems.

We think that that the emerging normalized systems (NS) theory (Mannaert et al.,

2011) provides a suitable basis for evaluating the quality of information systems’

business architectures. The main goal of the paper is to study, whether the application of

the data-centric practices produces business architectures that one can characterize as

NS. NS theory is suitable for the task because it deals with investigating the behavior of

evolving modular systems and on the other hand, one can use the data-centric practices

to specify the modular structure of a certain type of information systems. To achieve the

goal, we need a better understanding of NS theory. Hence, a subgoal of the paper is the

creation of a metamodel of NS theory elements. Another subgoal is to demonstrate that it

is possible to discuss business architectures in terms of the elements of NS. To make this

kind of discussion possible, there must be a mapping between the elements of the two

approaches. Therefore, we also have to present a metamodel of the elements of

data-centric practices that are related to subsystems to facilitate understanding of the

practices and the mapping.

We organize the rest of the paper in the following way. First, we shortly explain the

main principles and elements of both NS theory and relevant data-centric practices for

specifying business architectures. In addition, we present their metamodels based on our

current understanding of their elements. These are also contributions of the paper. We

point that the practices represent a development approach of information systems that is

again gaining attention. We refer to some related works about identifying and

characterizing subsystems. Secondly, we discuss the quality of the resulting business

architectures in terms of NS theory. Finally, we conclude and point to the future work

with the topic.

2. Information Systems’ Business Architectures

The idea of using the main entity types (also known according to Sanz (2011) as

significant entities, principal entities, subjects of process, real-world entities, essential

business entities, and artifacts) and their life cycles as the basis of modeling processes is

not new (Sanz, 2011; Ould, 1997). Recently, the interest towards entity-centric

development approaches of information systems in general and business processes in

particular has started to grow again due to the artifact-centric process management

paradigm (Dumas, 2011). In (Eessaar, 2014b), we proposed data-centric practices for the

development of transactional information systems that are inspired by this approach and

by a methodological framework for Enterprise Information System (EIS) strategic

analysis and development (Roost et al., 2001; Roost et al., 2004). Fig. 1, Fig. 2, and Fig.

3 present a partial metamodel of the practices, concerning mainly decomposition of

information systems into subsystems. Classes with the grey and white background depict

business and information system concepts, respectively.

The idea of decomposing information and software systems into subsystems to

facilitate better comprehension, easier learning, development, maintenance, reuse, and

evolution of the systems is of course not new. Parnas (1972) names advantages of the

decomposition and advises how to reach to a good program decomposition. Bergland

134 Eessaar

(1981) reviews four program structuring methodologies. Wand and Weber (1990)

formalize concepts subsystem and decomposition of information system. Wand and

Weber (1990), Wand and Weber (1995), and Weber (1997) discuss the characteristics of

good decomposition. However, both Bergland (1981) as well as Wand and Weber (1990)

write about functional decomposition whereas framework for EIS strategic analysis and

development and the data-centric practices foresee three different types of subsystems to

separate concerns – areas of competence, functional subsystems, and registers. This

distinction is also not new. For instance, these subsystem types correspond bijectively to

the three aspects of the ArchiMate language for enterprise architecture (Berrisford and

Lankhorst, 2009) – active structure, behavior, and passive structure, respectively.

Role Business process

1..* 1..*1..* 1..*

role participates in

Business goal

0..*
0..1

+subgoal

0..*
0..1

Main business entity type

1..* 1..*1..* 1..*

business process influences

Business

1

1..*

1

1..*

1

1..*

1

1..*

1

1..*

1

1..*

1

1..*

1

1..*

business has to
achieve Business rule

0..*

1..*

0..*

1..*

business rule
applies to

1

0..*

1

0..*

guide the operation

Fig. 1. A part of the metamodel of the elements of data-centric practices

Business goal

Actor

IS goal

0..*

0..1

+subgoal
0..*

0..1

1..*

1..*

1..*

1..* business goal is a basis

for the identification of

Area of competence
0..1

1

0..1

1

Role

1

1

1

1

Functional subsystem

1..*1..* 1..*1..*

ac uses the services of

Constraint
Information system (IS)

1..*

1

1..*

1

IS has to

achieve
1

1..*

1

1..*

1

1..*

1

1..*

Service

1..*

1..*

1..*

1..*

fs uses

Business rule

0..*
1

0..*
1

constraint is derived from

Business process

1..*
1..*

1..*
1..*

role participates in
1..*

1..*

1..*

1..*

Register

0..*

1..*

0..*

1..*

register

implements

1

1..*

1

1..*

1..*

1

1..*

1
register provides

Life cycle

1..*

0..1

1..*

0..1
lifec ycle is a basis for

the identification of

Main business entity type

1..*

0..*

1..*

0..* business rule

applies to

1..*

1..*

1..*

1..* business process influences

1

1

1

1 register

encapsulates

data 1

1

1

1

Fig. 2. A part of the metamodel of the elements of data-centric practices

Functional subsystemArea of competence Register

{Mandatory; Or}

External ac Internal ac

{Mandatory; Or}

Administrative fs Business fs

{Mandatory; Or}

Administrative r Business r

{Mandatory; Or}

IS goal

{In case of an hierarchy of subsystems all subsystems in
th hierarchy must belong to the same type - area of
competence, functional subsystem, or register}

Subsystem

1..* 1..*1..* 1..*

helps IS to achieve
0..*

0..1
0..*

+part
+whole

0..1

0..1

0..*0..*

0..1

+general

+special

Fig. 3. A part of the metamodel of the elements of data-centric practices

 Business Architectures of Information Systems as Normalized Systems 135

Berrisford and Lankhorst (2009) note that the aspects have been derived from the

deep grammatical structure of natural languages in which sentences consist of subjects,

verbs, and objects.

Wand and Weber (1995) explain concepts surface structure and deep structure of

information systems. By specifying the areas of competence of an information system,

we describe its surface structure that determines how users see the system – what

services (functionality) the information system should provide to different areas of

competence to support their goals and what characteristics values the product and its

user experience (see ISO/IEC 25010:2011) should have. It is possible that

representatives of areas of competence themselves model how the system should appear

to them (Roost et al., 2001).

Functional subsystems and registers (data-centric subsystem) are elements of the

deep structure of information systems and therefore, according to Wand and Weber

(1995), manifest the meaning of the real-world system that the information system

intends to support. They do it by reflecting processes and state of the real-world system,

respectively. Elements of surface structure change frequently because human’s view of

the world evolves and the views that information systems offer to humans must evolve

accordingly. On the other hand, deep structure elements – functional subsystems and

registers – are more stable and their meaning does not change, for instance, if the

organizational structure or implementation technologies change. Wand and Weber

(1995) note that “good deep structures provide inherent stability to information systems

in the face of change” (p. 206). It shows, why the investigation of the goodness of the

result of breaking the system up into subsystems is important.

Sanchez and Mahoney (1996) point that modular design is possible in case of many

different types of products, not only software systems. The idea of finding and using

subsystems in general and the business architectures in particular is the manifestations of

the divide and rule approach that is the most common way of dealing with the

complexity (Green and Leisman, 2011). By finding the business architecture of an

information system and creating it based on the architecture, we reduce the complexity

of the system by breaking it into encapsulated units (subsystems) that are more

manageable. By doing this, we reduce the number of connections within the system and

modularize the system. Ideally, we would like to see that subsystems as modules have

high internal connectivity and relatively low connectivity with other modules

(subsystems) (Green and Leisman, 2011). Low connectivity (loose coupling) between

subsystems allows us to develop the subsystems and change their internals relatively

independently from other subsystems. This kind of architecture also supports extension

of the system in terms of adding relatively easily new subsystems and reusing existing

models and implementations of subsystems to extend the system. It has also effect to the

structure of development organization. According to Sanchez and Mahoney (1996)

loosely coupled modules that have standardized interfaces make possible loosely

coupled product development organization where development takes place

“autonomously and concurrently under the embedded coordination of a modular product

architecture” (p. 68). Business architecture is an example of modular product

architecture in the domain of information systems.

The subsystems that we propose to find communicate with each other and form a

layered communication network where each level consist of a different type of

subsystems. Subsystems from one level invoke the services offered by the subsystems

from the next lower level. Each service is accessible through an interface (Berrisford and

Lankhorst, 2009). Areas of competence use functional subsystems through a user

136 Eessaar

interface. Functional subsystems use the data management services (database operations)

provided by registers. These services have interface. Implementation of these services

forms the Virtual Data Layer of the database (Burns, 2011). To summarize, areas of

competence use data in registers with the mediation of functional subsystems.

According to the data-centric practices, one has to identify the main entity types.

Each of these will have a corresponding separate register and generally also a functional

subsystem in the business architecture (the only exception is related to the management

of state change events – see Sect. 4.1). The latter provides functionality to the users for

managing data corresponding to the main entity type and its related (not main) entity

types through its entire life cycle. In each such pair of subsystems, the functional

subsystem manages data in the register (creates, reads, possibly updates and deletes data

in it). Each functional subsystem has to read data from zero or more other registers to get

data that enables its functionality. We suggest using the state-transition (life cycle)

models of the main entity types for finding interactions between the subsystems, use

cases that specify functional requirements to the functional subsystems, and services that

the registers have to offer to functional subsystems to encapsulate data structures and

data values of registers. Each use case should describe an elementary business process

that helps some area of competence to achieve its goals.

In general, for each state transition of a main entity type there will be a separate use

case of the functional subsystem and a separate service offered by the register for

recording the new state. It means that we will have reactions to the external or internal

events of the system that trigger the state transitions. The interactions between the life

cycles of different entity types give us information about what functional subsystems

manage data in each register. The idea of using the main entity types is, for instance,

similar to the Riva development method (Ould, 1997). Its essential business entities and

case management processes correspond well to the main entity types and functional

subsystems, in the data-centric practices. Hence, the approach of this paper should be

interesting for the evaluators of the entity-centric development approaches in general.

The approach of finding functional subsystems offered by the data-centric practices

has the same basic premise than the functional decomposition methodology that is based

on data structure design (Bergland, 1981) that “a correct model of the data structures can

be transformed into a program that incorporates a correct model of the world” (p. 26).

Bergland (1981) refers to different qualitative levels of cohesion that is the “glue” that

holds each module (including subsystem) together. In our view, three highest levels of

cohesion characterize the functional subsystems and registers that one identifies by using

the data-centric practices. In case of functional subsystems and registers there must be

cohesion of services, offered to the areas of competence and functional subsystems,

respectively. Each such subsystem has communicational cohesion because it operates on

common data grouped together to the same registers. Each such subsystem has

sequential cohesion because its offered services correspond to the sequential steps of the

life cycle of the same main entity type. Finally, each such subsystem has functional

cohesion (the highest level of cohesion according to Bergland (1981)) because all its

submodules contribute to performing one single function – manage data of a main entity

type and its related (not main) entity types through its entire life cycle.

Green and Leisman (2011) differentiate between whole-part and general-special

relationships between modules. Same types of relationships between the subsystems are

possible. Subsystems participating in such relationships must have the same type. One

can indicate general-special relationship between subsystems (see Fig. 3) for complexity

management purposes. Let us consider the data-modeling pattern Party (Fowler, 1997)

 Business Architectures of Information Systems as Normalized Systems 137

as the basis of an example. Piho (2011) notes that Party is an archetype pattern for

modeling of an independent phenomenon of enterprises. Many information systems have

to keep track of persons and locations (organizations and organization structure) and

hence benefit from the use of Party pattern in the modeling process. In this pattern,

Party is the supertype and Person as well as Organization are its subtypes. Next, we list

possible combinations of registers that one could suggest in case of an information

system that has to keep track of parties. According to the data-centric practices, there

would be exactly the same functional subsystems to manage data in the registers.

 Only register of parties that also contains data about persons and

organizations.

 Only register of persons and register of organizations. It means that we

actually do not follow the Party pattern because there is no separate register

that contains data common to all the parties (for instance, different types of

addresses). The corresponding data structures are duplicated in the registers.

 Register of parties that contains data common to all the parties as well as

register of persons and register of organizations for recording

subtype-specific data. In this case, one could define general-special

relationships between register of parties and registers that correspond to the

subtypes of Party that also means inheritance between the subsystems. We

see a benefit of indicating such relationships between subsystems in reuse of

specifications that have been created in case of the more general subsystem

and do not have to be repeated in case of more special subsystems due to

inheritance. Semantics of inheritance in case of subsystems needs further

elaboration and in our everyday practice, we have not indicated this type of

relationships. The subtypes of Party could themselves have subtypes (for

instance, Worker as a subtype of Person). In the context of business

architectures it could mean multi-level inheritance hierarchy of subsystems.

Specifying containment (whole-part) relationships between the subsystems is also

possible. However, in practice, we have not done that to avoid overly complicated

specifications of subsystems.

3. Normalized Systems Theory

Information systems have to evolve over time because of changing business

requirements, changing laws and regulations that influence the business as well as

evolving technical platforms. Making changes in a system is not easy if its internal

elements have low cohesion and high coupling and hence changes in one element cause

many more changes in other elements. NS theory (Mannaert et al., 2011; De Bruyn and

Mannaert, 2012; Verelst et al. 2013) is based on the observation that the presence of

combinatorial effects influences the flexibility and evolvability of a system in a negative

manner. The idea is that complexity of a change in a system should depend on the nature

of the change itself and not from the size of the system. If there are combinatorial effects

present in the system, then it means that the larger is the system, the more difficult it is to

change it because the more changes has to be made in other elements of the system as

the ripple effect. Hence, creating a system that conforms to NS theory should improve its

maintainability. The theory formalizes knowledge about good program design

(Bergland, 1981) that should result in a set of nested modules that one can connect in a

hierarchy to form large programs.

138 Eessaar

An example of similarities between NS theory and the database normalization theory

(Date, 2009) is that if there is a not fully normalized (not at least in the fifth normal

form) base table (table in short), then the existence of certain intra-table dependencies

between its columns leads to data redundancy and hence update anomalies. In this case,

the more rows there are in the table, the more work is required in case of data updating

operations (see Fig. 4). Therefore, the amount of work depends on the number of rows in

the table. Failing to make all the required updates leads to inconsistent data.

In Fig. 5, we present tables Car and Manufacturer that are in the fifth normal form.

We have eliminated the data redundancy of manufacturer names within the table

Cars_and_manufacturers by replacing the original table with its decomposition into two

of its projections. By doing this, we placed columns participating in the functional

dependency Manufacturer_ID → manufacturer_name into the separate table

Manufacturer. Now, if one wants to change the name of a manufacturer, then one has to

update only one row in table Manufacturer. Similarly, in Fig. 4, we illustrate

implementation of the same functionality (Task 1) in multiple times within the same

module. Changing the functionality requires extra effort. Failing to make all the required

changes leads to the inconsistent behavior of the system. To avoid that, one should

decompose the functionality into a separate module that is accessible to other modules

through an interface (see Fig. 5). In this case, the amount of work in updating the

functionality (Task 1) that does not change the interface does not depend on the size of

the system. Fig. 5 illustrates how submodular tasks have become actions at the modular

level to separate concerns. It conforms to a prescriptive design theorem of NS theory.

The application of both theories has a goal to avoid update anomalies (of data and

functionality, respectively) and produce a good representation of the real world. Both

require nonloss-decomposition (of tables and modules, respectively) in a multi-step

manner, and increase the number of tables and modules, respectively. An example of

differences is that application of the database normalization process will not eliminate all

the possible data redundancies within databases but the goal of NS theory is to create

systems with no combinatorial effects.

Fig. 4. An example of redundancy of data and functionality

 Business Architectures of Information Systems as Normalized Systems 139

Fig. 5. An example of reduced redundancy of data and functionality

Another difference is that the normalization theory helps us to reduce data

redundancy within a table but does not deal with the situations where data redundancy

exists across multiple tables. In this case applies another formally defined principle

called The Principle of Orthogonal Design (Date, 2009). On the other hand, the theorem

about separation of concerns looks the system under investigation as a whole, from very

coarse grained to very fine grained modules, and if some task is repeated within modules

or in multiple modules, suggests decomposing it into a separate module.

NS theory defines constructs (primitives) that constitute such systems (see Fig. 6).

Change driver

Protocol connector

External system

0..*

0..*

0..*

+user0..*
uses

{Mandatory; Or}

User connector

End user

0..*

0..*

0..*

0..*

uses

{Mandatory; Or}

Type

Technology environment

Construct
0..*

1
0..*

1
provides for

building modular
structures

Method

Data field

0..*

1

0..*

1

Parameter

Workflow element

Trigger element

Connector element

Task

0..1

0..1

+previous
version

0..1

0..1

0..1

0..*

+background

0..1

0..*

Software entity

1

0..*

1

0..*
0..*0..* 0..*0..*

import/use

0..*

1

+instantiation

0..*

1

Data element

0..*

1

0..*

1

0..*

0..*

0..*

+argument

0..*

has different arguments at
different invocations

1..*

1

1..*

1

0..*0..* 0..*
reference

0..*0..1

0..1

0..1

+previous
version

0..1

Action element

0..*

1

0..*

1

1..*

0..*

+step
1..*

0..*

0..*

0..*

0..*

+triggerer 0..*

triggers

0..1

0..*

0..1

consist of

0..*

0..*
0..*

0..*

calls

0..* 0..1

0..1

0..1

+previous
version

0..1

0..1

0..1

0..1

+invoker
0..1

invokes
0..1

0..1

0..1

0..1

1

1

1

1

1

1

1

1entity implements

0..*

0..1

+target
0..*

0..1

performs

User

Cross-cutting concernSupporting task
1

0..1
1

0..1
task implements

Functional task

Functional operation

0..1

1

0..1

1 task performs

Fig. 6. A metamodel of the elements of NS theory

140 Eessaar

The constructs are general (data element, action element etc.), are not associated with

specific software languages, platforms or paradigms, and represent roles that elements of

systems from many different domains could have. For instance, there are examples of

the use of NS theory in case of software systems (Mannaert et al., 2011), specifications

of requirements (Verelst et al., 2013), and organizational structures (De Bruyn and

Mannaert, 2012). Verelst et al. (2013) present examples of combinatorial effects that

exist in the real world, outside the scope of computerized systems.

Description of different types of systems in terms of generic elements makes it

possible to better understand deep similarities of systems or their parts. The similarities

may not be apparent at first glance because the systems belong to different domains or

the parts have different granularity (for instance, subsystems vs. classes).

A problem of the description of NS theory is the lack of clear distinction of types,

values, and variables. For instance, Date (2006, 2009) clearly separates and defines these

concepts. Therefore, it is difficult to understand whether data entity and data element are

the same things (in the paper we assume they are) and whether they mean type, value, or

variable. Another core concept is operator (Date, 2009) and to our understanding, this

corresponds to action element.

Each NS has to conform to four prescriptive design theorems that ensures the lack of

combinatorial effects. Next, we list the informal descriptions of the theorems (Mannaert

et al., 2011; De Bruyn and Mannaert, 2012).

• Separation of Concerns, meaning that each change driver (external technology,

task – they can evolve) in a system must be separated into a separate module.

Fig. 5 illustrates implementation of each change driver (task) in a separate

module.

• Data Version Transparency, meaning that there could be multiple versions of

data elements without affecting action elements producing or consuming these.

• Action Version Transparency, meaning that it must be possible to modify action

elements without affecting their calling elements.

• Separation of States, meaning that system has to keep state after every action

that belongs to a workflow.

NS theory describes a set of anticipated changes in terms of the elements. One has to

translate each change in the business requirements to a set of these changes. Next, we

explain the elements of business architectures in terms of the elements of NS.

4. A Discussion of Business Architectures of Information

Systems in Terms of NS Theory

Areas of competence can be external or internal to the organization and their modeling

defines different views to the functionality and data (action and data elements) of the

system that reflect different goals of the users of the system. In Eessaar (2014a), we

claimed that concept Area of competence (see Fig. 3) has only corresponding concept

User in NS metamodel. After more consideration, we think that concept Area of

competence (see Fig. 3) has corresponding concepts User, Connector element, User

connector element, and Protocol connector element in NS metamodel (see Fig. 6).

Representatives of areas of competence are users of the system. However, in case of

each area of competence (as a subsystem), someone (representatives of the areas of

competence, developers, or their combination) has to describe how the system should

appear to users that belong to it. In terms of NS elements it means that one must describe

 Business Architectures of Information Systems as Normalized Systems 141

a new Connector element. If the representatives of an area of competence would use the

system through a user interface that would be a part of this system, then in terms of NS

theory one has to define a User connector element. If the representatives of an area of

competence need from the present system some services through an external application,

then in terms of NS theory one has to define a Protocol connector element.

If we want to show in case of using the data-centric practices that the system

periodically triggers a use case, then we associate it with the special actor called Time. In

case of NS theory there is a Trigger element that can trigger Action elements. In terms of

specifying areas of competence, one can either define area of competence Time or

associate the use case with a human area of competence that really has the responsibility

to achieve the goals of the process and who would have to perform the process if there is

no automation (Crain, 2002).

Concept Functional subsystem (see Fig. 3) has corresponding concepts Workflow

element and Action element in NS metamodel (see Fig. 6). Mannaert et al. (2011) note

that concept workflow element is based on the concept of a state machine. Similarly, in

case of using the data-centric practices, each functional subsystem is a workflow that

corresponds to the life cycle of the main entity type based on that one proposed the

subsystem. For example, order management functional subsystem manages orders

through their entire life cycle (see Fig. 7). Each functional subsystem corresponds to a

main function of a system, and hence we think about them as coarse-grained action

elements. Each workflow element performs a number of action elements on a specific

target life cycle data element that is used to keep state (Mannaert et al., 2011). Each such

action element corresponds to one use case (see, for instance, action element Submit

order in Fig. 7). The life cycles of the main entity types determine the order of invoking

the action elements. Successful execution of these action elements may change the state

of a main entity and that will be captured in the system (in a register). It makes possible

new state changes of the entity and hence new executions of action elements.

A business processes could involve multiple business entity types and roles. One can

model the workflows that span multiple functional subsystems, registers, and areas of

competence by analyzing interactions between the life cycles of different main entity

types where a state transition in one causes a state transition in another.

Although the main task of registers is to record data, we cannot characterize registers

as only data elements (entities) because “data entity only contains data (as in a structure

or record) and does not have an interface” (Mannaert et al., 2011, p. 94). At the same

time Mannaert et al. (2011) write that data elements have methods to enable data-version

transparency. In our view methods are action elements that implement interface for

accessing internal variables of objects that contain values. Hence, we find this

description of data entities confusing.

Each register does have an interface that is the union of the interfaces of its services.

The quote from (Mannaert et al., 2011) in the previous paragraph describes data

elements as variables (containers) that contain values. Similarly, we can describe the

union of data structures of a register as a variable. By rewording the definition of

database variable (Date, 2006) a register variable is a variable whose value at any given

time is a register value. The type and hence the structure of a variable can evolve and it

may have different values at different times. NS theory speaks about anticipated changes

in the information systems and one of the changes is the creation of an additional data

element (Mannaert et al., 2011). Here the talk is about variables. However, almost right

after this sentence the paper states that another anticipated change is the creation of “an

additional action entity having a specific data entity as input, or producing a specific data

142 Eessaar

entity as output” (Mannaert et al., 2011, p. 95). This describes data elements as types or

values. Mannaert et al. (2011) also write “arguments and parameters must be

encapsulated data entities” (p. 102). This is a confusing description because there is a

logical difference between parameters and arguments (Date, 2009). Each parameter has a

type (named set of values (Date, 2009)) that determines possible arguments that can

correspond to the parameter. Arguments are actual operands that replaces parameters in

invocations of operators (Date, 2006). Each argument must be of the same type as the

parameter. Each argument is either a variable (if and only if the corresponding parameter

is subject to update) or a value (Date, 2006). Mannaert et al. (2011) also write that data

elements have methods. It also suggests that data elements are types or values. In this

context, it is difficult to understand whether a data element (data entity) as described by

NS theory is a variable, a type, or a value.

Concept Register (see Fig. 3) has corresponding concepts Action element and Data

element in NS metamodel (see Fig. 6). Each register is an action element that consist of

other action elements that correspond to the services offered by the register (see Fig. 2).

The services perform data management actions that encapsulate a data element that is

also a part of each register. Data fields (see Fig. 6) correspond to individual data

structures (for instance, base tables in case of SQL databases) in the database. The

encapsulated data element is in this case the union of data structures for recording data

that corresponds to a main entity type and its related (not main) entity types. Each

service creates, reads, updates, or deletes data in one or more data structures. In case of

registers, the background technology would usually be a database management system

(DBMS). If one uses a SQL DBMS to implement registers, then one can implement

action elements that correspond to services as procedures, functions, views, and

materialized views (snapshots) in the background technology. These database objects are

software entities that are created by instantiating the constructs of DBMS technology

environment (see Fig. 6).

Fig. 7 illustrates mappings between the elements of NS theory and some elements of

the data-centric practices by using an example. References to NS elements are denoted

with bold font. For the presentation purposes, we simplified the life cycle of orders.

Client area of competence

(user connector element)

Manager area of competence

(user connector element)

<<service>>

Create order

(action element)

<<use case>>

Submit order

(action element)

<<use case>>

Accept order

(action element)

<<use case>>

Ship order

(action element)

<<service>>

Mark order „Accepted“

(action element)

<<service>>

Mark order „Shipped“

(action element)

<<use service>>

Order management functional subsystem

(workflow element, action element)

<<temporal

sequence>>

<<temporal

sequence>>

Register of orders (action element)

Union of data structures of

register of orders

(data element)

Order

(data field)

Order_state_type

(data field)1

0..*

Archived

Submitted

Accepted

Manager

accepts

One year

has passed

Life cycle of

orders

Time (trigger element, user

connector element)

<<use case>>

Archive order

(action element)

<<service>>

Mark order „Archived“

(action element)Shipped

Manager fulfills

Fig. 7. An example of description of IS business architecture in terms of NS elements

 Business Architectures of Information Systems as Normalized Systems 143

4.1. Separation of Concerns

Each action element can contain only a single task according to the theorem about

separation of concerns (Mannaert et al., 2011). System evolution could cause the change

of each such task and therefore tasks are change drivers. Separation of concerns means

that one must separate each change driver into a separate action element. Fig 4. and

Fig. 5 illustrate changes in the structure of modules to achieve separation of concerns.

Mannaert et al. (2011) define the theorem at the submodular level but acknowledges, “It

is the designer’s decision to which level tasks are considered” (p. 94). In this paper, we

apply NS theory at the more coarse-grained level – to the elements of information

systems’ business architectures.

Mannaert et al. (2011) note that a practical manifestation of this theorem is the use of

multi-tier architectures. It is also the result of using the methodological framework for

EIS strategic analysis and development (Roost et al., 2001; Roost et al., 2004) in general

and the data-centric practices (Eessaar, 2014b) in particular. The resulting business

architectures have three tiers (areas of competence, functional subsystems, and

registers), and each tier has its own task.

In our view, each functional subsystem and register is a coarse-grained action

element. The use of data-centric practices results with the business architecture where

each register has the functional task to offer data management services (create, read,

possibly update and delete) related to a main entity type and its related (not main) entity

types. Hence, for instance, register of orders does not contain data about goods (another

main entity type) or services for managing data about goods. If it does, it would be a

clear violation of the theorem. It contains references to goods that is a part of each order.

The use of data-centric practices results with the business architecture where each

functional subsystem (as a workflow element that is also a coarse-grained action

element) has a functional task to offer to the users services that are related to the

management of data that corresponds to a main entity type and its related (not main)

entity types based on the life cycle of the main entity type. However, the life cycles of

different main entity types may interact, producing workflows spanning multiple

functional subsystems and registers. For instance, if paying the invoice of an order and

hence changing its state causes changing of the state of the order as well (invoice and

order are some of the main entity types of the domain in question), then there is a

dynamic relationship between the life cycles of Invoice and Order. Invoice management

functional subsystem manages data about invoices in register of invoices but it also has

to invoke a service offered by register of orders to register the new state of an order.

Hence, the functional subsystem has multiple tasks that is not consistent with the

theorem. If the life cycle of a main entity type does not interact in this way with the life

cycles of other main entity types, then the corresponding functional subsystem has one

task.

A problem of the description of NS theory (Mannaert et al., 2011) is that it does not

clearly define concept change driver. If the life cycle of an entity type E or requirements

about what data the system must capture in case of E evolve, then it causes changes in

the functional subsystem and register corresponding to E. However, it could also lead to

the changes in other functional subsystems and registers due to the interaction of life

cycles of different entity types. For instance, adding possibility to cancel orders causes

the need to do something with the corresponding invoices. It could be that users of

invoice management functional subsystem want a report of such invoices. A new

requirement to present certain information on printed invoices may cause the need to

144 Eessaar

collect the information during the creation of orders and register the information in

register of orders. Hence, we see that a subsystem might have a single task but multiple

change drivers.

We propose to have generally a separate use case/service for each state transition in

the life cycles of the main entity types (see Fig. 7) in case of functional subsystems and

registers, respectively. The result could be that these more fine-grained action elements

contain only a single task and hence have only one change driver. For instance, we do

not put the registration of all the possible state changes together into one use case or into

one service of a register. However, a use case that has to change the state of main entities

that have different types has multiple change drivers. Similarly, services that implement

predefined queries that the system has to answer and need data from multiple registers

have multiple change drivers.

Next, we give examples of combinatorial effects that the data-centric approach of

finding subsystems helps to avoid. The data-centric practices distinguish business and

administrative functional subsystems and registers (Eessaar, 2014b). Examples of

administrative functional subsystems and registers are subsystems for managing data

about invoices, contracts, documents, classifiers, workers, rooms, and buildings.

Whether these subsystems are administrative or not depends on the nature of the

organization that information system we specify. Fulfilling the administrative tasks

supports accomplishing the goals of the organization but these tasks (and goals that

correspond to these) are not the reason of its current operation. The tasks of

administrative functional subsystems and registers are similar to the supporting tasks

that require separate action elements (Mannaert et al., 2011). Combinatorial effects

appear if one distributes administrative tasks among the business related functional

subsystems and registers. For instance, if all or most of the registers contain data of some

classifiers and their corresponding functional subsystems allow users to manage data of

these classifiers, then changes in the general principles of classifier management (for

instance, decision is made to start the recording of textual descriptions of classifier

values) requires changes in many functional subsystems and registers. It is better to have

classifier management task in a separate subsystem and hence the data-centric practices

advise the specification of classifier management functional subsystem and register of

classifiers in the business architectures. Detailed modeling of the classifier management

subsystem will reveal separate use cases that describe management of different types of

classifiers. These use cases are also action elements (see Fig. 7). This is also an

implication of the separation of concerns theorem because “the more fine-grained the

identification of the tasks by a designer, the more tasks are separated from each other”

(Mannaert et al., 2011, p. 97).

The theorem about separation of concerns implies that implementation of

cross-cutting concerns, such as logging history of changes, constitute separate tasks.

These tasks must be implemented as separate action entities. If there is a need to keep

track of the history of the state changes of entities that belong to a main entity type, then

the data-centric practices require definition of an additional main entity type and

specification of a separate register based on that. For instance, if there is a need to keep

track of orders and also the history of state changes of orders, then the practices require

specification of the main entity types Order and Order event. One has to specify register

of orders and register of order events based on these main entity types. Order events that

would be recorded in register of order events correspond to the state transitions in the

model that describe the life cycle of orders (see Fig. 7). Functional subsystems that

manage state changes of orders (mainly order management functional subsystem but

 Business Architectures of Information Systems as Normalized Systems 145

maybe also other subsystems like invoice management functional subsystem) have to

invoke services of register of orders and register of order events.

The data-centric practices do not suggest general register of events for all the entity

types because its data size would quickly become too large that reduces performance of

the system. In addition, in case of different entity types there could be different

requirements to the data that system has to capture in case of a state change event.

The creation of a separate register instead of recording this data in register of orders

is a manifestation of the separation of concerns theorem, which requires that each action

element can only contain a single task. Now register of orders contains services and data

structures registering the current state of orders. Register of order events contains

services and data structures for registering state change events. However, for instance,

now order management functional subsystem as a high-level action element has to

manage data that corresponds to multiple main entity types (Order and Order event).

Hence, it has multiple tasks that violates the separation of concerns theorem. In addition,

we have now multiple registers where similar (not the same) logging functionality and

data structures are scattered. Because the registers of events implement a supporting task

that is a cross-cutting concern, it would be right to characterize these as administrative

registers.

We also note that according to the data-centric practices, one has to describe

constraints to data as a part of specification of registers. In addition, the data-centric

practices encourage enforcing constraints to data at the database level, as a part of

implementing registers. The constraints should be implemented by using the means

offered by the background technology (DBMS), preferably through a declarative

manner. It ensures that any action element that accesses the data cannot violate the

constraints. This is also a manifestation of the separation of concerns theorem. If we do

not repeat descriptions and implementations of the constraints in case of other types of

subsystems, then we have to do less work if we want to enforce new constraints, or

modify/remove existing constraints.

4.2. Data Version Transparency and Action Version Transparency

The theorem about data version transparency writes about “Data entities that are

received as input or produced as output by action entities” (Mannaert et al., 2011, p. 97).

This statement describes data elements (data entities) as values. In the context of

registers, we can speak about the value of a register that is held by the register variable.

Invoking an action element (a service offered by a register) that helps system to

encapsulate a data element (a part of the register) can change the value of the register

variable.

The data-centric practices require that, in general, for each state transition of a main

entity type there must be a separate service that is offered by the corresponding register

to keep the state (see also section 4.3). Depending on requirements there could also be

services that modify data about the main entities and their related entities without

changing the state (according to the life cycle) of the main entities. In addition, there

must be services that implement predefined queries that the system has to answer. These

queries correspond to the informational needs of areas of competence. The queries might

require data from multiple registers but for organizational purposes are assigned to one

of the registers. The interface of a register is the union of the interfaces of its services.

The practices do not explicitly state that the interfaces of registers have to conform to

the theorems about version transparency but it would be advantageous due to the

146 Eessaar

resulting improved evolvability of the system. Much depends on the background

technology – usually DBMS in case of registers. If one implements registers as one or

more SQL databases, then the services provided by registers would be implemented by

using views, materialized views (snapshots), procedures, and functions. Further

refinement of services may lead to the creation of new action elements that implement

tasks that are needed by multiple services. For instance, to achieve separation of

concerns one may implement fundamental stored procedures (FSP) (Burns, 2011) that

are used by other more high-level procedures. Each FSP “performs one type of update

(add, change, or delete) on one or more rows of data in a single database table” (Burns,

2011, p. 185).

Data version transparency means in the context of registers that it must be possible to

make changes in the data structures of registers without affecting action elements that

use these structures. In case of our approach, it is not entirely possible. Depending on the

nature of the changes, one may have to change the internals of action elements that

implement the services of the registers but does not have to change the action elements

that use the services. Changes in the internals of data modification services are limited

with the register that data structures have been modified. There could be multiple

registers where one has to change internals of data reading services because registers

may provide services that have to read data from multiple registers. However, there

could also be changes of data structures that one cannot hide behind the services of

registers. This kind of changes cause changes of the interface of the register and

propagate to the action elements that use the services.

Action version transparency means that there could be multiple versions of action

elements (services). One could use overloading of functions/procedures and use different

schemas for different versions of database objects for achieving this state of affairs.

4.3. Separation of States

Invocation of use case action elements that constitute a functional subsystem

corresponds to a stateful workflow that is a practical manifestation of the theorem.

Action elements that correspond to use cases call action elements that correspond to the

services provided by registers. Each calling is triggered by an external or internal event.

Each successful calling of an action element that has the task to perform a data

modification operation, results with state keeping in the register – it creates, updates, or

deletes data about some entities and/or relationships. In addition, the registers contain

explicit information about the current state of main entities with the help of state

classifiers (see data fields Order and Order_state_type in Fig. 7 as an example). If a use

case action element initiates a state transition that is consistent with the life cycle of the

corresponding main entity type, then the action succeeds and data about the new state is

captured in the register.

The practices do not require the use of asynchronous communication as suggested in

(Mannaert et al., 2011). One should combine invocations of services into transactions

that is a manifestation of the theorem (Mannaert et al., 2011).

5. Conclusions and Future Work

The paper focused on improving understanding of normalized systems (NS) theory and

using it for the evaluation of business architectures that one has created with the help of

 Business Architectures of Information Systems as Normalized Systems 147

data-centric practices by identifying and analyzing the main entity types and their life

cycles. The use of the practices leads us to the identification of functional subsystems

and registers (coarse-grained modular structures). In the resulting business architecture

each functional subsystem supports one type of entities going through their associated

life cycle. It may change the state of other types of entities due to the interacting life

cycles of entity types and capture the history of state changes. The current state

(according to the life cycle) of the entities and other required data about the entities and

their relationships are recorded in the corresponding registers. Both the data-centric

practices and NS theory prescribe a modular structure of systems. The resulting business

architectures violate in some places some of the prescriptive design theorems of NS

theory. For instance, some of the functional subsystems have multiple tasks and multiple

change drivers. The use of practices reduces combinatorial effects between subsystems

but does not eliminate these and therefore the result is not a NS. Mannaert et al. (2011)

note that more fine-grained tasks means bigger separation of tasks from each other. In

this paper, we applied NS theory to coarse-grained modules (subsystems) and hence it is

probably natural that we do not have a total separation of concerns in case of these. The

use of the practices lays the groundwork for the design and implementation of a system

as a NS but much depends on the selection of platforms and the design of more

fine-grained elements of the system.

We observed that one could describe the elements of business architectures in terms

of the elements of NS. Using this kind of abstraction to describe the theory was a good

exercise that helped us to think about the theory. We also noticed that the description of

NS theory does not distinguish understandably enough core concepts type, value, and

variable. It is also vague in terms of what is a change driver. As the result it is difficult

to comprehend the details of the theory. We should also not forget that maintainability

that one can improve by following NS theory is only one of the quality characteristics of

systems and that creating a NS does not automatically guarantee high quality of the

system in terms of other characteristics. Hence, using NS theory cannot be the only mean

for evaluating the quality of the system.

Future work could include elaboration of the presented metamodels. For validating

NS theory as well as data-centric practices one could perform their ontological analysis

in order to find possible ontological discrepancies: construct overload, construct

redundancy, construct excess, and construct deficit.

Another line of research would be to investigate how application of NS theory

influences different quality characteristics of different quality models (described by the

ISO/IEC 25010:2011 standard). For instance, it would be interesting to know how it

influences performance efficiency of the system as well as usability of the system and its

specifications.

It would be interesting to more closely compare NS theory and approaches for

reducing data redundancy and investigate whether the knowledge from the database field

could be applied in the context of NS theory.

As was mentioned before, description of different types of systems in terms of

general elements makes it possible to search deep similarities between the systems.

Yet another line of research would be investigation how much the use of the anchor

modeling approach (Rönnbäck et al., 2010) would increase the normalization level of

systems and whether the use of the approach is feasible in case of data-centric

transactional information systems.

Finally, it would be interesting to find out to what extent the existing systems follow

the principles of NS theory.

148 Eessaar

References

Bergland, G. D. (1981). A Guided Tour of Program Design Methodologies. Computer 14, 13–37.

Berrisford, G., Lankhorst, M. (2009). Using ArchiMate with an Architecture Method. A

conversation. Via Nova Architectura 6.

Burns, L. (2011). Building the Agile Database. How to Build Successful Application Using Agile

Without Sacrificing Data Management. Technics Publication, New Jersey.

Burton-Jones, A., Meso, P. (2002). How Good Are These UML diagrams? An Empirical Test of

the Wand and Weber Good Decomposition Model. In: Proceedings of ICIS, International

Conference on Information Systems (15-18 Dec. 2002, Barcelona, Spain). Paper 10.

Crain, A. (2002). Dear Dr. Use Case: Is the Clock an Actor? Rational Edge June 2002, available at

http://www.ibm.com/developerworks/rational/library/content/RationalEdge/jun02/DrUseCas

eJun02.pdf.

Date, C.J. (2006). The Relational Database Dictionary. A comprehensive glossary of relational

terms and concepts, with illustrated examples. O’Reilly.

Date, C.J. (2009). SQL and Relational Theory. How to Write Accurate SQL Code. O'Reilly.

De Bruyn, P., Mannaert, H. (2012). Towards Applying Normalized Systems Concepts to

Modularity and the Systems Engineering Process. In: Kaindl, H., Koszalka, L., Mannaert,

H., Jäntti, M., Dini, P., Skala, V. (Eds.), Proceedings of ICONS, Seventh International

Conference on Systems (29 Feb. – 5 Mar. 2012, Saint Gilles, Reunion), IARIA, 59–66.

Dumas, M. (2011). On the Convergence of Data and Process Engineering. In: Eder, J., Bieliková,

M., Tjoa, A.M. (Eds.), Proceedings of ADBIS, 15th East-European Conference on Advances

in Databases and Information Systems (20-23 Sept. 2011, Vienna, Austria), LNCS 6909,

Springer, Berlin Heidelberg, 19–26.

Eessaar, E. (2014a). Specifying Business Architecture as a Step Towards Achieving Normalized

Systems. In: Haav, H.-M., Kalja, A., Robal, T. (Eds.), Proceedings of Baltic DB&IS, 11th

International Baltic Conference on DB and IS (8-11 June, 2014, Tallinn, Estonia), Tallinn

University of Technology Press, 425–432.

Eessaar, E. (2014b). A Set of Practices for the Development of Data-Centric Information Systems.

In: Escalona, M.J. et al. (Eds.), Proceedings of ISD, 22nd International Conference on

Information Systems Development (2-4 Sept. 2013, Sevilla, Spain), Springer (in press),

DOI: 10.1007/978-3-319-07215-9_6.

Fowler, M. (1997). Analysis Patterns: Reusable Object Models. Addison-Wesley, Menlo Park,

Calif.

Green, D.G., Leishman,T. (2011). Computing and complexity – networks, nature and virtual

worlds. In Hooker, C.A., Gabbay, D.M, Thagard, P., Woods, J. (Eds.): Philosophy of

Complex Systems, Vol. 10 (Handbook of the Philosophy of Science), North Holland, 137–

162.

ISO/IEC 25010:2011 Systems and software engineering -- Systems and software Quality

Requirements and Evaluation (SQuaRE) -- System and software quality models, first ed.:

2011-03-01.

Larman, C. (2002). Applying UML and Patterns: an Introduction to Object-Oriented Analysis and

Design and the Unified Process. 2nd ed. Prentice Hall, Upper Saddle River, NJ.

Mannaert, H., Verelst, J., Ven, K. (2011). Towards evolvable software architectures based on

systems theoretic stability. Softw. – Pract. and Exp. 42, 89–116.

Ould, A.M. (1997). Designing a re-engineering proof process architecture. Business Proc. Man. J.

3, 232–247.

Parnas, D.L. (1972). On the Criteria To Be Used in Decomposing Systems Into Modules.

Communic. of the ACM 15, 1053–1058.

Piho, G. (2011). Archetypes Based Techniques for Development of Domains, Requirements and

Software. Towards LIMS Software Factory. PhD thesis, Tallinn University of Technology,

Tallinn, Estonia.

Roost, M., Kuusik, R., Veskioja, T. (2001). A Role-Based Framework for Information System

Self-Development. In: Russo, N.L., Fitzgerald, B., DeGross, J.I. (Eds.), Proceedings of IFIP

 Business Architectures of Information Systems as Normalized Systems 149

TC8/WG8.2 Working Conference (27-29 July 2001, Boise, Idaho, USA), Kluwer Academic

Publisher, Norwell, MA, USA, 95–105.

Roost, M., Kuusik, R., Rava, K., Veskioja, T. (2004). Enterprise Information System Strategic

Analysis and Development: Forming Information System Development Space For

Enterprise. In: Okatan, A. (Ed.), Proceedings of ICCI, International Conference on

Computational Intelligence (17-19 Dec. 2004, Istanbul, Turkey), Turkey, 215–219.

Rönnbäck, L., Regardt, O., Bergholtz, M., Johannesson, P., Wohed, P. (2010). Anchor Modeling

—Agile Information Modeling in Evolving Data Environments. Data & Knowl. Eng. 69,

1229–1253.

Sanchez, R., Mahoney, J.T. (1996). Modularity, flexibility, and knowledge management in product

and organization design. Strat. Man. Journal 17, 63–76.

Sanz, J.L.C. (2011). Entity-Centric Operations Modeling for Business Process Management – A

Multidisciplinary Review of the State-of-the-Art. In: Gao, J., Lu, X., Younas, M., Zhu, H.

(Eds.), Proceedings of SOSE, 6th IEEE International Symposium on Service Oriented

System Engineering (12-14 Dec. 2011, Irvine, CA, USA), IEEE, Piscataway, NJ, 152–163.

Verelst, J., Silva, A.R., Mannaert, H., Ferreira, D.A., Huysmans, P. (2013). Identifying

Combinatorial Effects in Requirements Engineering. In: Proper, H.A., Aveiro, D., Gaaloul,

K. (Eds.), Proceedings of EEWC, Third Enterprise Engineering Working Conference (13-14

May 2013, Luxembourg), LNBIP 146, Springer, Berlin Heidelberg, 88–102.

Wand, Y., Weber, R. (1990). An Ontological Model of an Information System. IEEE Trans. on

Software Eng. 16, 1282–1292.

Wand, Y., Weber, R. (1995). On the deep structure of information systems. Inf. Syst. Journal 5,

203–223.

Weber, R. (1997). Ontological Foundations of Information Systems. Coopers & Lybrand and

Accounting Association of Australia and New Zealand, Melbourne.

Authors’ Information

E. Eessaar, dr., is a full-time Associate Professor at the Department of Informatics in

Tallinn University of Technology. He teaches courses about database design and

database development. He is the author or a co-author of about 40 research papers and

the author of one book in the field of databases and information systems development.

Research interests: data models, model- and pattern-driven development and evolution

of information systems (including databases) with the help of domain-specific

languages, metamodeling, metadata, and software measures.

Received September 9, 2014, accepted September 10, 2014.

