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Abstract. The search for minimal set of adjustable parameters through optimising a kinetic model 

of biochemical networks is needed in industrial biotechnology to increase the productivity of 

industrial organism strains while keeping low the chance of causing unwanted side effects of 

implemented changes. As the search for minimal set of adjustable parameters is of combinatorial 

nature, the search space becomes very large even at relatively small number of parameters. 

The presented approach of search space reduction is demonstrated on the example of kinetic model 

of yeast glycolysis. In parallel to the estimation of remaining range of optimisation potential the 

full search of combinations was combined with forward selection that allows reaching 91.4% of 

potential after optimising 625 parameter combinations. This result was reached by involving just 
seven out of fifteen adjustable parameters. 

Keywords:  Adjustable parameters, biochemical networks, design task, kinetic models, dynamic 

simulations, minimal set, optimisation potential. 

1. Introduction 

Information technologies have become one of the preconditions for the development of 

biotechnology; their application is determined by several reasons: storage and processing 

of large amounts of data, similarity analysis, data mining tasks and a variety of 

modelling applications. Modelling task is primarily to gather knowledge and convert 

them into such form it could be compared with experimental data, confirming or 

excluding any prior assumptions (Mauch, Buziol, Schmid, and Reuss, 2001). Models are 

also used for forecasting the impact of various changes in a system on the modelled 

process. This approach is widely used in metabolic engineering to search for changes in 

the system that are needed to improve its characteristics (Keasling, 2010; Sendín, Exler, 

and Banga, 2010). 

Cellular biochemical network optimisation is a complex and time consuming task, 

especially with an increase in model size and number of variable parameters 

(Kostromins, Mozga, and Stalidzans, 2012; Mozga and Stalidzans, 2011a, 2011b; 

Stalidzans, Kostromins, and Sulins, 2012; Nikolaev, 2010; Xu and Wang, 2014). 
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However, a number of regularities are valid for the cellular biochemical networks, 

enabling simplification of the task to be solved. The space of task solutions can also be 

limited by the information available in databases on different types of experiments. 

Therefore, in the course of optimisation a set of varied measures must be carried out, 

during which the numerical optimisation methods are just one of the instruments to be 

applied at the right time and amount needed. 

Optimisation procedure in general case must answer the following questions: what is the 

minimum number of variable parameters, which should be adjusted in biochemical 

system in order to obtain a viable organism that produces the maximum possible 

quantity of the product or provides the best ratio of product vs. quantity of consumed 

substrate - -Acosta, Regalado, 

and Torres, 1999; Sendín et al., 2010; Vital-Lopez, Armaou, Nikolaev, and Maranas, 

2006)? What is the best sequence of actions that could lead us to this solution 

-Acosta et al., 1999; Sendín et al., 2010)? Creation of such procedure would 

save a lot of time and resources, as well as improve the productivity of biotechnology 

companies - -Acosta et al., 1999).  

While the number of biochemical models and their size increases (Le Novère et al., 

2006; Smallbone, Simeonidis, Swainston, and Mendes, 2010), the model optimisation 

procedures continue to develop. Mostly the stochastic global optimisation methods are 

applied due to their universality as they can be applied independently on the peculiarities 

of a model in contrast to deterministic methods (Banga, 2008). The main drawbacks of 

global stochastic methods are the peculiarities of their convergence to the optimal 

solution: 1) reaching of optimal solution is not guaranteed (Banga, 2008; Mendes and 

Kell, 1998) and 2) the duration of optimisation is hard to estimate (Kostromins et al., 

2012; Mozga and Stalidzans, 2011a, 2011b; Nikolaev, 2010). Both mentioned 

drawbacks are addressed by performing parallel optimisation runs and analysing their 

consensus and stagnation states (Stalidzans et al., 2012; Sulins and Stalidzans, 2012; 

Sulins and Mednis, 2012). Parallel optimisation runs enable automation of optimisation 

(Bulipopa and Sulins, 2013; Sulins and Mednis, 2012) but it still requires intensive 

computation even if manual operations are minimised. 

The procedure covering the full cycle of biochemical network design from the choice of 

criterion through to the suggestions for industrial tests has been proposed earlier (Mozga 

and Stalidzans, 2011c). This study aims to improve the proposed procedure and 

demonstrate its application efficiency for yeast glycolysis model as a case study. 

2. Approach 

2.1. Optimisation procedure actions and their sequence 

The steady state optimisation procedure of biochemical network computer models 

enables effective use of resources during optimisation avoiding unnecessary activities or 

terminating the ongoing optimisation process if it is not useful. The basic principle of 

procedure is as follows: to obtain the maximum possible amount of information with 

every next step of the procedure with the least possible number of actions. 

The sequence of effective optimisation actions in various biochemical processes can be 

described with steady state optimisation procedure of biochemical network computer 
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models (Mozga and Stalidzans, 2011c). The procedure generally consists of four stages: 

1) choice of criterion and model, 2) determination of the optimisation potential, 3) 

ranking variable parameter combinations by efficiency, and 4) analysing the application 

of solutions.  

Optimisation procedure describes actions that initially include choice of criterion and 

model; namely, choosing the reactions and conditions under which to complete 

optimisation. It results in modified numerical values of the optimisation parameters, 

which, through analysing the application of solutions, may be suggested for industrial 

testing. In the case when prolongation of optimisation actions could bear the loss 

because of too small improvement of the biotechnological process profitability, the 

ongoing optimisation is suspended and a different biochemical process is studied. 

Choice of criterion and model 

The first stage of the procedure intended for gaining overall knowledge of the process 

begins with the choice of criterion and model – what is the business task, what kind of 

biochemical process is chosen, which criteria have been set. Then the models are 

analysed for possible implementation with the set criteria by a modeller. This stage is 

based on the criterion set by industrialist according to the product they want to produce, 

and by making economic calculations establish what the minimum criterion increase is 

to achieve the desired business results (see Figure 1). 

 

Figure 1. Choice of criterion and model 

Determination of the optimisation potential 

The second stage of the procedure provides for the detailed knowledge of the selected 

model behaviour (see Figure 2). At the beginning of the stage in collaboration with 

biologists, all model parameters that can be modified at the current microbiological 

technology development stage are selected. Further optimisations will be carried out 

with the respective parameters. Then the optimisation process follows, during which a 
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number of tests are conducted to see if the chosen model with the specific modified 

reactions can achieve the minimum criterion increase established at the previous stage. 

In the case of positive response optimisation is continued, otherwise the model or 

criterion must be changed. 

 

Figure 2. Determination of the optimisation potential 

Ranking variable parameter combinations by efficiency 

The task of the third stage of the procedure is to find the most effective variable 

parameter combinations in a case of specific number of variable parameters. The 

efficiency is understood as the ability of variable parameters or their combinations to 

improve the optimisation criterion value. Greater increase in the optimisation criterion 

corresponds to a higher efficiency. It is assumed that implementation of variable 

parameter concentration changes in every reaction at genome level costs equally (in the 

procedure more precise sums can also be taken into account). At the same time it is clear 

that the effect of various reactions and their combinations on the optimisation criterion is 

very different. Therefore, the combination of variable parameters with the minimum 

possible number of variable parameters must be found, which could use most of the total 

potential of the researched process already set in step 2.7. “Determination of the 

optimisation potential of the chosen criterion” (see Figure 3). 
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Figure 3. Ranking variable parameter combinations by efficiency 

Analysing the application of solutions 

Analysing the application of the found solutions and experimental testing of the final 

obtained parameter results of the optimisation process into production is carried out in 

Stage 4 of the procedure (see Figure 4). During Stage 4 it is verified if the found solution 

not only shows the existence of a steady state, but also is sufficiently stable for 

implementation with the production facilities at a reasonable cost. In addition to this, it 

must be verified if the steady state parameters (concentration of substances, temperature, 

pH values, etc.) are feasible. 

Numerical optimisation during solving of the application example appears as the most 

time-consuming process with ambiguous results due to the fact that the numerical 

methods only converge to the global optimum, the value of which is unknown. Duration 

of the optimisation experiment can range from a few minutes up to 60-90 hours for a 

model with a few tens of reactions (Nikolaev, 2010). In practice it means that during 

optimisation it is not clear at what point to stop the optimisation process considering that 

the substantial improvement of the criterion value is not expected. Since there are many 

optimisation methods available, and each of them tend to have parameters which, if 

changed, affect their efficiency, the application of methods, the rate and stability of their 

convergence are very important factors influencing efficiency of the optimisation 

procedure. 
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Figure 4. Analysing the application of the found solutions 

 

2.2. Kinetic model of yeast glycolysis and optimisation settings 

Yeast glycolysis model (Hynne, Danø, and Sørensen, 2001) downloaded from 

Biomodels database (Le Novère et al., 2006) is used as a test model for optimisation. 

The model contains 2 compartments, 24 reactions and 25 metabolites. Objective function 

in all optimisation runs was

   

(1) 

 

 

Concentrations of enzymes catalysing 15 reactions ((Hexokinase), (Alcohol 

dehydrogenase), (ATP consumption), (Glycerol synthesis), (Phospho- fructokinase), 

(Glyceraldehyde 3-phosphate dehydrogenase), (Storage), (Triosephosphate isomerase), 

(Pyruvate kinase), (Glucose uptake), (Phosphoglucoisomerase), (Phosphoenolpyruvate 

synthesis), (Pyruvate decarboxylase), (Aldolase), and (Adenylate kinase)) were chosen as 

adjustable parameters. The initial values of variable enzyme concentration coefficients 

(VECC) were set at “1” to normalise the changes of enzyme concentrations.  

COPASI (Hoops et al., 2006), build 30, is used as optimisation tool. Global stochastic 

optimization method “particle swarm” was applied with following method parameters: 
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Iteration Limit: 2000; Swarm Size: 50; Std. Deviation: 1e-06; Random Number 

Generator: 1; Seed: 0. The values of adjustable parameters were allowed to change 

within a wide range from -99% (VECC=0.01) up to 1,000% (VECC=10) from their 

initial values. “Steady state” subtask of optimisation was chosen. 

3. Results and discussion 

After changing all 15 enzyme concentrations by using the optimisation procedure, there 

is an increase in ethanol productivity from 0.80 mmol/min to 2.27 mmol/min and an 

improvement of product yield of substrate unit from 0.97 to 1.97, and a reduction of the 

following side products: glycerol from 0.085 mmol/min to 0.007 mmol/min, 

acetaldehyde from 0.065 mmol/min to 0.005 mmol/min, and cyanide from 0.020 

mmol/min to 0.002 mmol/min. 

The result of applying method for evaluating the remaining range of the optimisation 

potential can be assessed also in Figure 5: optimisation was stopped at seven variable 

enzyme concentration coefficients (VECC) in a combination as the remaining range of 

optimisation potential was not sufficient for gaining economic benefit in 

biotechnological production process.  

The ranking of combinations was started from one VECC per combination. All 575 

combinations of parameters of up to three in combination were optimised to find out the 

best combinations per one, two and three parameters in combination. That gave about 

35% of possible objective function value increase (see Figure 5). Due to the large 

increase of the number of combinations for four VECC in combination the full search 

(optimisation of all combinations) was replaced by forward selection looking just for the 

best VECC among remaining VECC to be added to the combination. This way the 

procedure was continued until 91.4% of the optimisation potential of all VECC was 

reached with only seven parameters per combination (see Figure 5). Only 50 

combinations of VECC were optimised giving 55% increase of total utilised potential 

from four to seven VECC in the combination of adjustable parameters.  

That is reached by optimising just 625 combinations out of 16,383 combinations if full 

search of up to seven VECC per combination would be applied (see Figure 5). 

As a result, it was confirmed that it is not worth analysing 16,384 combinations (a case 

of searching all combinations), thus considerably reducing the amount of necessary 

computational resources and time. 

The coefficients for changing enzyme concentrations in seven reactions allowing for 

changes in the range 0.01 to 11.0 are developed for the baker's yeast (Saccharomyces 

cerevisiae) glycolysis model created by Hynne after the execution of the optimisation 

procedure (Hynne et al., 2001). Adjustable reactions and their coefficients (in 

parentheses) are as follows: Glucose Uptake (11.0), Hexokinase (2.73), 

Phosphofructokinase (2.02), Pyruvate Decarboxylase (5.93), Alcohol Dehydrogenase 

(11.0), Storage (0.01), and ATP consumption (11.0). The model predicts that after 

introducing changes the Ethanol Flow increases from 0.80 to 2.05 mmol/min, but 

Glucose Uptake increases from 0.83 to 1.12 mmol/min, and the following side products 
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Figure 5. Application of method for evaluating the remaining range of the optimisation 

potential for reducing the number of combinations to be analysed 

are reduced: glycerol from 0.085 mmol/min to 0.028 mmol/min, acetaldehyde from 

0.065 mmol/min to 0.021 mmol/min, and cyanide from 0.020 mmol/min to 0.007 

mmol/min. In the result, both the product yield of substrate unit is improved from 0.97 to 

1.83, and ethanol yield is increased 2.6 times. 

4. Conclusions 

The proposed procedure is formalising the optimisation process of steady state of kinetic 

biochemical network models avoiding limitations of the intuitively suggested 

manipulations by different specialists. The proposed approach avoids scanning all the 

solution space keeping overview of the limitation of best possible solution determined in 

optimisation run when changes of all the adjustable parameters are enabled. 

Combination of full parameter search with forward selection gives great reduction of the 

searched solution space and may be applied in case of time constraints. Otherwise, full 

search of parameter space is advised until the predetermined objective function value is 

reached. In both cases the reduction of solution space in the case study is at least by half. 

The application of procedure suggests that after introducing the proposed changes in 

enzyme concentrations the Ethanol Flow increases from 0.80 to 2.05 mmol/min, but 
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Glucose Uptake increases from 0.83 to 1.12 mmol/min, and the following side products 

are reduced: glycerol from 0.085 mmol/min to 0.028 mmol/min, acetaldehyde from 

0.065 mmol/min to 0.021 mmol/min, and cyanide from 0.020 mmol/min to 0.007 

mmol/min. In the result, both the product yield of substrate unit is improved from 0.97 to 

1.83, and ethanol yield is increased 2.6 times. 
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