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Abstract. We describe a relational database semantic re-engineering technology and the tools that 

are available for its implementation. The semantic re-engineering technological process starts with 

creatinga conceptual data ontology together with its annotations for database schema and user 

interface mappings. The database schema mappings are implemented in RDB2OWL and D2RQ 

server thus creating a SPARQL-endpoint for “semantic” access to the relational database contents. 

The SPARQL endpoint can be explored by the user interface automatically generated by OBIS 

system, or ViziQuer tool may be used for custom SPARQL query generation in a graphical way. 

We report on successful application of the approach on the Latvian medical data with the ontology 

containing 172 OWL classes, 138 object properties, 814 data properties, and about 40 million data 

level RDF triples. 

Keywords. relational database re-engineering, OWL ontologies, database to ontology mappings, 

user interface generation 

1. Introduction 

The relational databases (RDB) are widely used as a main data storage platform in 

numerous state institutions and agencies, companies and research institutes. The RDB 

data are successfully accessed and modified via the client applications that are created by 

programmers and that foresee specific patterns of their usage. There are means of direct 

accessing of RDB also outside the defined patterns (e.g. for various statistical or other 

ad-hoc queries), using the standard SQL query language, however, this is a way too low 

level for a domain expert without specific IT knowledge. The semantic technologies, 

based on RDF (WEB, f), RDFS (WEB, e), SPARQL (WEB, i; WEB, j) and OWL 

(Motik et al., 2009) offer a much higher-level view on the contained data, thus 

increasing the hope of more direct participation of domain experts in the data exploration 
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and data management (see e.g. (WEB, h) for comparison of RDB/SQL, XML and 

RDF/SPARQL technologies). There is also an important possibility of using 

semantically structured data (i.e. the data in RDF/OWL format) on the web scale within 

the Semantic Web (Berners-Lee et al., 2001) and Linked Data (WEB, c) developments.  

We describe here a methodology and an integrated tool chain covering all steps of 

integrating relational database data into the semantic technology information landscape. 

The “embedding” of a relational database within a semantic data framework involves 

creation of a data ontology (usually, as an OWL ontology or RDFS schema) that 

contains a data structure description from the semantic perspective. While there exist 

approaches of automated creation of data ontology that corresponds to the given RDB 

schema (see e.g. (De Laborda and Conrad, 2006) and the W3C standard (Arenas et al., 

2012)), our focus is on explicit creation of data ontology in parallel with the RDB 

schema. Such data ontology with its conceptual-oriented design will be able to (i) reflect 

the hierarchical structure of the model using sub-class hierarchy, (ii) use conceptually 

named class and relation entities, and (iii) introduce semantic concepts and relations that 

are indirectly mapped to the elements of the concrete database schema. The relational 

databases (often legacy databases), as they are owned by different data holding subjects, 

most likely will need at least some semantic re-structuring before they can be fully 

exploited on the semantic level by domain experts that are not IT professionals. This 

approach of parallel data ontology creation has been advocated also in the vision-setting 

“Semantic Latvia” paper (Barzdins et al., 2006) and has been further elaborated in e.g. 

(Barzdins et al., 2008a; Barzdins et al., 2008b). 

A number of RDB-to-RDF/OWL mapping languages and tools exist that support 

defining and execution of indirect mappings between relational database and ontology 

formats. One can see e.g. D2RQ (WEB, b), Virtuoso RDF Graphs (Blakeley, 2007), 

Ultrawrap (Sequeda et al., 2009) and Spyder (WEB, k) among others. The W3C has 

established a R2RML standard (WEB, g) for the database-to-relational mappings that is 

supported by a large number of these tools. These notations and tools allow, given an 

RDB, to create a (real or virtual) RDF-format database that is able to communicate with 

its user in a form of SPARQL endpoint whose structure is not directly replicating the 

original RDB structure. While these approaches and tools are oriented towards well-

structured computer-readable mapping specifications, they pay less attention to the 

human readability and the human write-ability of the mapping definitions (e.g. a 

mapping definition can be lengthy, with repeating standard text fragments). Our 

approach here is to use RDB2OWL (Cerans and Bumans,  2011; Bumans and Cerans,  

2011) mapping language that offers a more compact form of database-to-ontology entity 

mapping specification that is well integrated within the data ontology structure (the 

RDB2OWL mapping specifications are placed within the data ontology annotations). 

The graphical OWL ontology editor OWLGrEd (Barzdins et al., 2010a; Barzdins et al., 

2010b) whose usage we recommend within the database semantic re-engineering process 

contains means for smooth integration of RDB2OWL annotations. 

 We offer an implementation of the RDB2OWL mappings via their translation into a 

more technical D2RQ mapping format that is further on handled by a D2RQ server 

either in the batch processing or on-the-fly query processing mode. 

The RDB semantic re-engineering tool chain further on involves a browser for the 

SPARQL endpoint reflecting the RDB structure; we offer here using OBIS tool 

(Zviedris et al., 2013) that has been meant initially for creating information systems 

powered with a SPARQL endpoint back-end and is re-used here for browsing of data 

stores corresponding to RDB data. We include in the RDB semantic re-engineering tool 
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chain also ViziQuer tool (Barzdins et al., 2008b; Zviedris et al., 2013; Zviedris  and 

Barzdins, 2011) providing a graphical interface of SPARQL query generation. 

Most of the tools considered here have been described in earlier papers. The 

contribution of this paper is to describe the OWLGrEd, RDB2OWL, OBIS and ViziQuer 

tools as parts of an integrated tool chain, oriented towards relational database semantic 

re-engineering task. The availability of implementation for the RDB2OWL mapping 

specification language and ViziQuer and OBIS tools at a level that is sufficient for 

practical data mapping examples also is novel in this paper. 

In the rest of the paper Section 2 reviews the OWLGrEd ontology editor together 

with its means for custom annotation specification; Section 3 describes RDB2OWL, 

together with principles of introducing inferred knowledge into mapped databases. 

Further on, Section 4 describes OBIS and Section 5 outlines ViziQuer. Finally, Section 6 

describes the re-engineering of the Latvian medical database (Barzdins et al., 2008b) and 

Section 7 concludes the paper. 

2. Data ontology creation: OWLGrEd 

The first step in database semantic re-engineering is to create an ontology that reflects, 

on a conceptual level, the data that are contained in the relational database. The data 

ontology creator may choose either to create the ontology corresponding to all data that 

are in the database, or just to cover a part of them – the data that are interesting or 

meaningful in the context of a given usage/application/demonstration. It could be 

possible to offer also conceptualizations of the given data set corresponding to the 

different viewpoints levels of detail that the users may want to use when looking at the 

data. The conceptual data ontology itself is defined in Web ontology language OWL 

(Motik et al., 2009) that is a nowadays widely accepted standard for data semantic 

representation. 

There is a variety of editors that allow defining OWL ontologies, including Protégé 

(WEB, d), TopBraid Composer (WEB, l), or even a structured text editor (since OWL 

ontologies do have a variety of ways of textual representation). We consider here the 

OWLGrEd
3
 ontology editor (Barzdins et al., 2010a; Barzdins et al., 2010b) that 

(i) allows rendering and editing ontologies in an intuitive yet compact 

graphical notation that combines UML (WEB, m; WEB, n) class diagram 

style graphics and textual OWL Manchester syntax (Horridge  and Peter, 

2012), and  

(ii) provides a plugin mechanism that can be used to add specific support for 

data connection and user interface generation annotation manipulation (cf. 

(Cerans et al., 2013)). 

Fig. 1 contains an example mini-University ontology presentation in standard 

OWLGrEd notation extended by means for enumerated class (classifier) denotation. 

OWLGrEd visualizes and allows editing of OWL classes as UML classes (e.g. 

Student, Person, Course), OWL object properties as roles on associations between the 

domain and range classes of the property (e.g. teaches, takes, enrolled) and OWL data 

properties as attributes of property domain classes. The UML notation is also re-used to 

model sub-class and inverse properties notions, as well as cardinality constraints. 

                                                 
3 http://owlgred.lumii.lv/ 
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There are more advanced OWL 2.0 constructs expressed in OWLGrEd using the 

textual OWL Manchester Syntax form, e.g. class expressions in axioms (e.g. for 

Professor class), sub-properties (e.g. studentName<personName), disjoint properties 

(e.g. teaches<>takes), property chains (e.g. takes> inverse(student) ocourse) and 

datatype facet restrictions (e.g. for properties salary and mark).  

 

 
Fig. 1. Example: the OWLGrEd notation for a mini-university ontology 

 

We refer the reader to (Barzdins et al., 2010a; Barzdins et al., 2010b) for a more 

detailed and thorough explanation of the OWLGrEd notation and editor functionality, 

just note here that OWLGrEd allows saving the created ontology in accordance to 

standard OWL ontology notations, as well as it is able to read a textual ontology notation 

and produce automatically a visual diagram for it. 

In order to accommodate the use of OWLGrEd in the RDB semantic re-engineering 

process two custom annotation profiles have been created that include both the custom 

user fields and their support scripts: 

- DBExpr profile for database correspondence annotations (including code-

completion functionality), and 

- OBIS profile for user interface annotations. 

Each OWLGrEd annotation profile offers notational and editing services for 

assertions corresponding to specific annotation properties, still the created (exported) 

ontology will be in full conformance with OWL 2.0 syntax that foresees the possibility 

of user defined annotation properties
4
. So, for example, two of the annotations in the 

OBIS profile are obis:isEnumerated
5
 and obis:textPattern; the example in Fig. 1 shows 

the visual effects of the corresponding annotation assertions for the Nationality and 

FacultyLevel classes. The concrete ontology annotations that are available in the DBExpr 

                                                 
4The OWLGrEd editor contains also generic means for ontology annotation handling. 
5The prefix obis: corresponds to the namespace <http://obis.lumii.lv/2013/01/obis#>. 

{disjoint}

<<EnumClass>>

FacultyLevel
acadTitle:string

{disjoint}

OptionalCourse

{disjoint}

{complete}

Student
studentName:s tring{<personName}

studentNumber:string
Pattern:{studentName}

AcademicProgram
programName:string

Thing<<EnumClass>>

Nationality
nCode:string

nValue:string
Pattern:{nCode} - {nValue}

Course
courseName:string

courseCode:string

courseCredits:(integer [>0])

courseExtInfo:string
Pattern:{courseCode} (

{courseCredits}) - {courseName}

<<comment>>

"An example mini-

University ontology"

Person
personName:string

personID:string

nationality:Nationality

MandatoryCourse

Assistant
=Teacher and facultyLevel value Level_Assistant

AssocProfessor
=Teacher and facultyLevel value Level_AssocProfessor

Professor
=Teacher and facultyLevel value Level_Professor

Teacher
teacherName:s tring{<personName}

salary:(decimal [>0])

facultyLevel:FacultyLevel

Registration
datePaid:dateTime

dateCompleted:dateTime

mark:(integer[>= 0, <= 10])

student 1

takes {<>teaches}

teaches {<>takes}

includes

enrolled 1

course

1

inverse(teaches ) some
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and OBIS profiles are described, together with their semantics, in Section 3 and Section 

4, respectively. Note that the OBIS profile induces a semantic change into the OWLGrEd 

class attribute presentations by asserting the 0..1 default cardinality for all attributes 

whose cardinality is not explicitly specified (in OWLGrEd no implicit cardinality re-

strictions are imposed what, in effect, means 0..* default cardinality also for attributes). 

3. Database correspondence: RDB2OWL 

Regarding a conceptual-level OWL ontology as a “semantically re-engineered” view on 

a RDB data that are organized along the structure defined by its schema requires 

specifying a mapping between the database schema and the corresponding OWL 

ontology (or, RDF schema). Following the general discussion in the Introduction, we 

concentrate here on the RDB2OWL mapping specification language for describing the 

RDB-to-ontology correspondence. 

3.1. RDB2OWL mapping definition and implementation 

A RDB2OWL mapping maps ontology classes to database tables (or rowset-valued 

expressions), data properties to table columns (or column expressions) and object 

properties to table relations (e.g. foreign-to-primary key relations). What makes 

RDB2OWL distinctive among other RDB-to-RDF/OWL correspondence approaches is 

(i) the concrete expression language for mapping specification, as well as (ii) the 

principle of placing RDB2OWL mapping expressions within the annotations of classes, 

properties and individuals of the ontology. 

Fig. 2 contains an example database schema for a mini-University and Fig. 3 

contains a slight variation of the mini-University ontology from Fig. 1, together with the 

correspondence annotations in RDB2OWL notation. Visually, the Fig. 3 uses the 

OWLGrEd extension with the DBExpr profile, announced in Section 2; the DB 

correspondence annotations for classes, attributes and roles are placed within ‘{DB: 

<annotation_text>}’ notation. Semantically, rdb2owl:DBExpr
6
 annotation property is 

used for these annotations in the OWL notation. 

 
Fig. 2. A mini-University RDB schema 

                                                 
6 rdb2owl:=<http://rdb2owl.lumii.lv/2012/1.0/rdb2owl#> 
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Fig. 3. Mini-university ontology with RDB2OWL annotations 

 

As it can be observed in Fig. 3, the DBExpr-annotations can be attached to: 

- ontology classes (e.g. {DB:XStudent}, {DB:Registration}),  

- attributes (e.g. {{DB: Name}}, {{DB:DatePaid}}) and  

- roles (e.g. {DB: ->} meaning a link between classes on the basis of foreign-to-

primary key correspondence between the tables these classes are based on, or 

{DB: =>Registration:(DatePaid is not null)->} that involves an intermediary 

table within the corresponding class table link together with a filter placed on the 

rows contained therein).  

The annotation [[Course]];Required=0 attached to the OptionalCourse class 

specifies a reference to the class-to-table correspondence, as described in the class 

Course, with an additional filter introduced on top of it. The annotation for the 

FacultyLevel class illustrates the possibility of creating explicit instance URI patterns for 

the class’ entities based on the data in DB table rows. More detailed description of 

RDB2OWL mapping construction is available in (Cerans and Bumans,  2011; Bumans 

and Cerans,  2011). 

The current implementation of RDB2OWL
7
 is via its mapping translation into the 

mapping definitions for D2RQ server (WEB, a) that is further on capable either to 

generate the dump of the source RDB in a form of RDF triples, or to offer a SPARQL 

endpoint for RDB access via SPARQL queries, using on-the-fly SPARQL-to-SQL 

rewriting. There is also available an experimental direct generation of SQL-to-RDF 

                                                 
7http://rdb2owl.lumii.lv/ 

Student
{DB: XStudent}

studentName:string{<personName}{{DB: Name}}

studentNumber:string{{DB: StudNumber}}
Pattern:{studentName}

Person
personName:string

personID:string{{DB: [[Student]].IDCode},{DB: [[Teacher]].IDCode}}

nationality:Nationality{{DB: [[Student]]->},{DB: [[Teacher]]->}}

Teacher
{DB: XTeacher}

teacherName:string{<personName}{{DB: Name}}

salary:(decimal [>0]){{DB: Salary}}

facultyLevel:FacultyLevel{{DB: ->}}

<<EnumClass>>

Nationality
{DB: Nationality}

nCode:string{{DB: Code}}

nValue:string{{DB: Value}}
Pattern:{nCode} - {nValue}

{disjoint}

<<EnumClass>>

FacultyLevel
{DB: Teacher_Level {uri=('Level_', Level_Code)}}

acadTitle:string{{DB: Level_Code}}

AssocProfessor
=Teacher and facultyLevel value Level_AssocProfessor

{DB: [[Teacher]];Level_Code='AssocProfessor'}

Assistant
=Teacher and facultyLevel value Level_Assistant

{DB: [[Teacher]];Level_Code='Assistant'}

Professor
=Teacher and facultyLevel value Level_Professor

{DB: [[Teacher]];Level_Code='Professor'}

{disjoint}
{complete}

{disjoint}

OptionalCourse
{DB: [[Course]]; Required=0}

AcademicProgram
{DB: XProgram}

programName:string{{DB: Name}}

Course
{DB: XCourse}

courseName:string{{DB: Name}}

courseCode:string{{DB: Code}}

courseCredits:(integer [>0]){{DB: Credits}}

courseExtInfo:string{{DB: buildExtInfo

(Code,Credits)}}
Pattern:{courseCode} ({courseCredits}) - 

{courseName}

Thing

MandatoryCourse
{DB: [[Course]]; Required=1}

DBExpr{rdb2owl}

Registration
{DB: Registration}

datePaid:dateTime{{DB: DatePaid}}

dateCompleted:dateTime{{DB: DateCompleted}}

mark:(integer[>= 0, <= 10]){{DB: MarkReceived}}

<<DBExpr>>

"DBRef(jdbc_driver='com.microsoft.sqlserver.jdbc.SQLServerDriver', 

connection_string='jdbc:sqlserver://127.0.0.1:1433;databaseName=

school2;user=sa;password=s')"

<<DBExpr>>

"buildExtInfo(@T,@N)=

concat(@T,' (',@N,')')"

includes{DB: =>}

student 1

{DB: ->}

course 1

{DB: ->}

takes {<>teaches}

{DB: =>Registration:

(DatePaid is not null)->}

enrolled 1

{DB: ->}

inverse(teaches ) some

teaches {<>takes}

{DB: =>}
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transformation, along the lines of (Bumans and Cerans, 2010). It is assumed that the 

RDF triples, generated either by D2RQs RDF dump or by the direct method, would be 

stored into a RDF triple store, such as e.g. Virtuoso (Blakeley, 2007) that would then 

provide a SPARQL endpoint for accessing these data. Note that, as most of RDB-to-

RDF/OWL mapping solutions, RDB2OWL both in the “offline” and “on-the-fly” modes 

offers read-only access to the source RDB data. This does not preclude, however, 

creating the data stored on other media that link to the RDF triples containing the 

exposed RDB data. 

3.2. Advanced ontology assertions in mapped databases 

OWL 2.0 ontology language admits a rich set of ontology specification features 

including restrictions and derived class specifications, as well as cardinalities and 

class/property disjointness assertions (most of these constructs are present in the 

ontology of Fig. 1, some less are also in Fig. 3).These advanced ontology axiom forms 

cannot be directly taken into account in the RDB-to-ontology mapping process and have 

to be accounted for separately. 

What a RDB2OWL mapping allows is direct RDF triple generation in the form of 

class assertions or data or object property assertions of concrete instances. The assertions 

(axiom forms) in the ontology that go beyond that could be used both/either: 

- to complement the created RDF triple set with the knowledge that can be inferred 

from them (this is the standard “open world” semantics for OWL; e.g. the 

subclass assertions in the ontology would be naturally viewed this way), and 

- to view them as integrity constraints that are expected to hold on the generated 

RDF triple set, extended with the inferred knowledge (the “closed world”, or 

integrity constraint semantics of OWL axioms, following (Tao et al., 2010); e.g. 

the cardinality constraints would naturally have this semantics
8
). 

As shown in (Cerans et al., 2012), it would be reasonable to split the set of all 

ontology axioms into the ones interpreted in accordance to the “open world”/”inference” 

semantics, and the ones considered just to have the “closed world”/”constraint” 

semantics by not participating in the inference process. Furthermore, such an ontology 

split can be reasonably defined in a generic way just on the basis of the ontology axiom 

structure, without regarding the specifics of the concrete ontology. 

A practical implementation of RDB2OWL mappings (this applies to RDB-to-

RDF/OWL mappings in any other language, as well) could provide the inferred 

knowledge from the mapped database only via the means of the triple store serving the 

created SPARQL endpoint with the database data, or via explicit extensions of the 

mapping implementation. The Virtuoso RDF Graphs (Blakeley, 2007) allow for a built-

in sub-class, sub-property and inverse properties inference. The D2RQ Server does not 

have any built-in inference capabilities, so to include these basic inferences also in on-

the-fly access of RDB from a SPARQL endpoint, these have been built into the D2RQ 

mapping file generation from RDB2OWL annotations. 

In the case of more advanced mappings, involving e.g. OWL class expressions, there 

is an option of building the RDB2OWL mapping in an extended way that covers direct 

introducing of facts that could, in principle, be introduced by an advanced reasoning 

                                                 
8Any assertion used for the inferred knowledge generation would automatically also hold as an 

integrity constraint on the model that includes this inferred knowledge 
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process. So, if there were a property chain assertion ‘>inverse(student) o course’ 

introduced for the object property takes introduced in Fig. 1 it could be simulated by the 

RDB2OWL assertion {DB: =>Registration->} in RDB2OWL (the current assertion 

{DB:=>Registration:(DatePaid is not null)->} in Fig. 3 specifies even a finer-grained 

integrity constraint). The equivalent class assertion ‘=Teacher and facultyLevel value 

Level_Professor’ for the Professor class can be simulated by the class map {DB: 

[[Teacher]]; Level_Code=’Professor’}. 

The RDB2OWL mapping process itself is not in a position to ensure validity of 

particular integrity constraints over the obtained RDF triple set, if their validity has not 

been built into the mapping specification, or in the inference process, associated with the 

mapping. Checking these constraints might be the task of the software exploring the 

created SPARQL endpoint and their (in-)validity at least in certain cases can be 

interpreted as (in-)validity of the original RDB data. 

4. Data exploring interface: OBIS 

There is a variety of tools that support SPARQL (WEB, i; WEB, j) standard and that can 

be used for the exploration of the RDF triple store that is created as a result of the 

RDB2OWL annotation implementation over a relational database. We consider here the 

OBIS
9
 tool (Zviedris et al., 2013) designated originally for generating RDF/SPARQL-

based information systems from the system data ontology. 

Fig. 4 and Fig. 5 present example screen shots from an OBIS application that is 

generated automatically from the mini-University ontology of Fig. 1 and whose data are 

served by a SPARQL endpoint containing the RDF triple data corresponding to the 

source database contents. Fig. 4 presents a class table view of the class Student, 

including the columns corresponding both to the Student class itself and to its superclass 

Person. Fig. 5 shows details for an instance of the Student class, including its data 

properties and links to other instances via direct and inverse object properties. 

 
Fig. 4. OBIS user interface for mini-University system: class table view. 

                                                 
9 http://obis.lumii.lv/ 
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Fig. 5. OBIS user interface for mini-University system: class details view. 

 

Technically, OBIS can work with a SPARQL endpoint that is served by OpenLink 

Virtuoso RDF triple store, or by the D2RQ server.  

In the Virtuoso triple store scenario the OBIS application requires a link to the 

server, an application name and the data ontology; it is up to the user to load the RDB 

corresponding RDF data into Virtuoso using its interface (the RDF triple data can be 

generated e.g. by the rdf-dump facility of the D2RQ server, as described in Section 3). 

The D2RQ server scenario furthermore requires a D2RQ mapping file for the application 

generation and there is no need to load the data manually into the RDF triple store since 

the D2RQ server connects directly to the RDB using the mapping file. 

The generated OBIS application backbone is the named class and object and data 

property structure specified within the ontology. The application structure takes into 

account the cardinality restrictions placed on object properties within the ontology, as 

well as data type information for the respective data properties. 

In addition to the data browsing capabilities of OBIS in terms of the class and object 

property structure of the ontology, OBIS provides also via its report mechanism an 

integrated SPARQL endpoint to support both the integrity constraint checking and ad 

hoc query evaluation. 

Regarding the OBIS visual interface note that the student list form in Fig. 4 contains 

the attributes (data properties) for the class Student itself, as well as for its superclass 

Person. Furthermore, the object property nationality is textually represented in this table 

as well, using the obis:textPattern notation attached to the Nationality class in the data 

ontology. 

For classes with larger number of data and object properties it would be important 

also to have a specific order of columns/fields for a class table/form in OBIS. Since 
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OWL itself does not have a notion of ordering between data and object properties, the 

attribute order information is recorded in OWLGrEd/OBIS ontology editor into an 

annotation obis:defaultOrder for the direct attributes of any class (without any explicit 

participation of the user), and the OBIS system is ready to interpret these annotations for 

the user interface configuration. There is also an option of defining explicit column order 

for a data component corresponding to a specific class using the obis:view annotation, 

however, creation of such annotation would require a manual information entry in the 

ontology editor. 

The OBIS application creation technology, as well as OBIS application meta-model 

has been described in (Zviedris et al., 2013); we note here that this application structure 

allows for both adding further configuration annotations in the input data ontologies, as 

well as introduce manual configuration/fine tuning of applications after the initial 

application generation completion. 

5. SPARQL query generation: ViziQuer 

One of important business information system’s aspects is data overview. An overview 

is based on a specific data query that usually incorporates data from more than one data 

ontology class. 

Such data queries are usually written by an IT specialist that translates it from natural 

language to a specific query language. As part of our proposed approach we create a 

diagrammatic query language with the support tool ViziQuer (Barzdins et al., 2008b; 

Zviedris et al., 2013; Zviedris and Barzdins, 2011) to make at least part of data queries 

easy-to-formulate for non-IT specialists. 

We introduce as simple query example in Fig. 6. The query is depicted via the 

ViziQuer diagrammatic query language and we want to select all student names and ID’s 

that takes a course that is thought by a professor. Also it contains the SPARQL notation 

that is generated from the query for execution on a SPARQL endpoint. 

 

 
 

PREFIX : <http://lumii.lv/ontologies/UnivExample.owl#> 

SELECT ?studentName ?studentID ?courseName ?teacherName  WHERE 

{ ?Student a :Student.   ?Student :takes ?Course. 

?Course a :Course.     ?Professor :teaches ?Course. 

?Professor a :Professor. ?Student :studentName ?studentName.  

?Student :studentID ?studentID.  

?Course :courseName ?courseName.  

?Professor :teacherName ?teacherName. } 

Fig. 6. A ViziQuer notation for a SPARQL query 

 

Select all students taking 
a course taught by a 
professor

Course
 

Add to results 

   this Course

courseName

Professor
 

Add to results 

   this Professor

teacherName

What are Student
studentName
studentID

takes
teaches
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During our research we have found out that diagrammatic query language should 

have at least some features that would bring data querying and non-IT specialist more 

closer as nowadays most queries is formulated by an IT specialist. 

First aspect is central element in query formulation. We call it central class element. 

This element is central point for query construction and query reading process. We can 

see this in Fig. 6, where the central query element is the student class. The class is 

depicted in different color and shape as other classes. 

Second aspect is that we try to use explicit words in diagrammatic graphic that the 

query is easier to read. Central class has additional prefix “What are”, while other classes 

has specific sections “Add to results” that implicates that those data elements should be 

added to central class data. 

Central idea behind this query language notation is that easy-to-read becomes into 

easy-to-write language. One can mention the paper (Juel, 1988) that describes research 

that children that are better readers later become better writers. 

It is possible to formulate also more advanced queries that contain aggregation 

functions, e.g. one depicted in Fig. 7 that describes students and their courses, as well 

as their total taken credit points and taken course code lists.   

 
 

PREFIX : <http://lumii.lv/ontologies/UnivExample.owl#> 

SELECT  ?studentName ?studentID ?courseName ?courseCredits 

(SUM (?courseCreditsA) as ?SUM_of_courseCreditsA)  

(GROUP_CONCAT (?courseCode) as ?GROUP_CONCAT_of_courseCode)WHERE { 

?Student a :Student.           ?Student :takes ?CourseA. 

?CourseA a :Course.            ?Registration :student ?Student. 

?Registration a :Registration. ?Registration :course ?Course. 

?Course a :Course.             ?Student :studentName ?studentName.  

?Student :studentID ?studentID.  

?CourseA :courseCredits ?courseCreditsA.  

?CourseA :courseCode ?courseCode.   ?Course :courseName ?courseName.  

?Course :courseCredits ?courseCredits. } 

GROUP BY  ?studentName ?studentID ?courseName ?courseCredits 

 

 

Fig. 7. An aggregate query example in ViziQuer, together with results from sample database, 

exported to a spreadsheet (note that Eve takes only the Programming Basics course) 

 

What are Student
studentName
studentID

CourseA
 

Add to results 

   this CourseA

SUM of courseCreditsA
GROUP_CONCAT of 
courseCodeRegistration

Course
 

Add to results 

   this Course

courseName
courseCredits

student

takes

course
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Still it is not yet possible to formulate fully graphically more advanced queries that 

require sub query constructions. For example, if we want to calculate for a student credit 

point that he takes and credit points that he have paid for as it requires two different sub 

queries for each calculation as each aggregation should be done in separate sub query. 

The SPARQL queries that are generated by ViziQuer or some other tool or that are 

handwritten can be executed in the OBIS environment that provides both further 

exploring within the browser framework of the instances found in the query result and 

export of the query results to a spreadsheet for further analysis (cf. Fig.7). 

Alternatively, there are also SPARQL endpoints provided by the Virtuoso or D2RQ 

server environments. Execution of the SPARQL queries within the OBIS environment, 

however, allows for more direct integration of the query results within the data browsing 

framework provided by OBIS. 

Writing SPARQL queries manually or using some other tool for the query generation 

would be an alternative to the usage of the ViziQuer tool within the database semantic 

reengineering tool chain. Our observation is that the technical-oriented textual SPARQL 

syntax would most likely make direct creating of SPARQL queries of limited use for 

non-IT specialists. The ViziQuer tool provides a graphical environment for SPARQL 

query composition by selecting the classes involved in the query as nodes (one of the 

query classes has to be marked as the query’s main class) and specifying the class’ links 

and attributes reflecting the instance connections and returned results for the query; it is 

expected that the ViziQuer query composition would be an activity much more friendlier 

to non-IT specialists than textual SPARQL query composition.  

6. A medical database example 

The semantic re-engineering of the Latvian medical data bases had been designed and 

reported in (Barzdins et al., 2008b), as well as implemented already in 2008, well before 

established technologies of OWLGrEd, RDB2OWL and OBIS (an early version of 

ViziQuer have been described in (Barzdins et al., 2008b)). This implementation used a 

graphical ontology notation that has been manually mapped into OWL, as well as using 

manual work for the concrete database-to-ontology mapping creation. 

The technology chain for the RDB semantic re-engineering, involving OWLGrEd, 

RDB2OWL, OBIS and ViziQuer provides means for creating a maintainable solution of 

the Latvian medicine database semantic re-engineering that is able to accommodate not 

only new or updated database contents, but also the data structure changes. In essence, 

all the essential data regarding the semantic re-engineering solution specification are 

placed within the annotated conceptual data ontology from which both the process of 

RDB-to-RDF data mapping and the data browsing interface generation are controlled 

(note that the initial 2008 RDB semantic re-engineering technology stack did not include 

the data browsing interface). 

The current state of the technology allows for RDB-to-RDF mapping specification in 

RDB2OWL as well as its implementation to generate the RDF triples using the D2RQ 

rdf-dump facility for the full medicine data set consisting of 6 registries, 106 tables, 1353 

columns and about 3 million rows; around 40M triples are generated without the basic 

inference option and about 48M triples with the basic inference option turned on. The 

use of OBIS browser on the medicine system has been enabled by the introduction of 

JENA database back-end support for the browsing application configuration 
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management that has enabled browsing of larger sized data ontologies. Fig.8 shows an 

example screen shot from the OBIS application with the Latvian medical database. 

  

 

Fig. 8. A Latvian medical database browsing screen shot in OBIS 

The ViziQuer tool has been also successfully tested on this application. Fig.9 and 

Fig.10 show a simple query of injury mechanisms together with the counts of respective 

injury instances related to these mechanisms. We use the facility of OBIS to show the 

reports corresponding to SPARQL queries that are generated by ViziQuer. 

 

Fig. 9. A ViziQuer query over the medical example 

 

What are 
TraumasMehanisms

tmTrMehPaplKods
tmTrMehPaplNos
tmTrMehPaplLimenis

Trauma
 

Add to results 

   this Trauma

COUNT of 
trPacientaMedKartesNr

trPamatmehanisms
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PREFIX : 

<http://www.lumii.lv/ontologies/2008/med_registries_01.owl#> 

SELECT  ?tmTrMehPaplKods ?tmTrMehPaplNos ?tmTrMehPaplLimenis 

(COUNT (?trPacientaMedKartesNr) as 

?COUNT_of_trPacientaMedKartesNr)  WHERE { 

?TraumasMehanisms a :TraumasMehanisms. 

?Trauma :trPamatmehanisms ?TraumasMehanisms. 

?Trauma a :Trauma. 

?TraumasMehanisms :tmTrMehPaplKods ?tmTrMehPaplKods.  

?TraumasMehanisms :tmTrMehPaplNos ?tmTrMehPaplNos.  

?TraumasMehanisms :tmTrMehPaplLimenis ?tmTrMehPaplLimenis.  

?Trauma :trPacientaMedKartesNr ?trPacientaMedKartesNr.  

} 

GROUP BY  ?tmTrMehPaplKods ?tmTrMehPaplNos ?tmTrMehPaplLimenis 

 

 

Fig. 10. SPARQL notation and top 10 result rows for the Fig.9 query 

7. Conclusions 

There is an integrated technology tool chain available for relational database semantic 

reengineering, consisting of OWL ontology editor OWLGrEd, RDB-to-RDF/OWL 

mapping language and tool RDB2OWL, followed by an ontology-aware SPARQL 

endpoint browser OBIS and ad hoc query tool ViziQuer. The tools are based on the open 

OWL, RDF and SPARQL standards, so usage of other tools for similar tasks can be 

possible instead of any particular tool from the offered tool chain. 

The presented RDB semantic re-engineering process that involves creation of data 

ontology and mapping of the RDB schema onto it, followed by the obtained SPARQL 

endpoint exploration via ontology-aware browser and custom SPARQL queries, outlines 

the feasibility of OWL ontology usage for data modeling. We observe the need to 

consider the “closed world” or integrity constraint semantics of OWL constructs in 

parallel with its standard “open world” semantics in defining ontologies as conceptual-

level models of data coming from existing databases. 
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The full size Latvian medical data example implementation in the offered technology 

tool chain shows its maturity for practically sized databases and corresponding data 

ontologies. There is a further work in enhancing and fine-tuning the applications to make 

them more accessible and enjoyable by domain experts that are not IT-professionals; this 

is an important step to increase the usability of the technology as well as to make a 

contribution towards spreading the semantic and database access technologies beyond 

the circles of IT-professionals. 
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