
Baltic J. Modern Computing, Vol. 2 (2014), No. 4, pp. 199–214

Empirical Study of Particle Swarm Optimization
Mutation Operators

Vytautas Jančauskas

Institute of Mathematics and Informatics
Vilnius University
Akademijos g. 4

LT-08663 Vilnius, Lithuania

vytautas.jancauskas@mif.vu.lt

Abstract. Particle Swarm Optimization (PSO) is a global optimization algorithm for real valued
problems. One of the known positive traits of the algorithm is fast convergence. While this is
considered a good thing because it means the solutions are found faster it can lead to stagnation
at a local minimum. There are several strategies to circumvent this. One of them is the use of
mutation operators to increase diversity in the swarm. Mutation operators, sometimes called tur-
bulence or craziness operators, apply changes to solutions outside the scope of the PSO update
rules. Several different such operators are proposed in the literature mostly based on existing ap-
proaches in evolutionary algorithms. However, it is impossible to say which mutation operator
to use in which case and why. There is also some controversy whether mutation is necessary at
all. We use an algorithm that generates test functions with given properties - number of local
minima, dimensionality, global minimizer attraction region placement and attempt to explore the
relationship between function properties and mutation operator choice. An empirical study of the
operators proposed in literature is given with extensive experimental results. Recommendations
for choosing appropriate mutation operators are proposed.

1 Introduction

In this work we examine the use of mutation operators in Particle Swarm Optimization
(PSO) algorithms. PSO is an efficient global optimization algorithm in terms of con-
vergence speed, however it can get stuck in local minima easily. To remedy this several
solutions were proposed in the literature. One of them is the use of mutation operators
as found in evolutionary algorithms. The use of mutation operators was researched by
Andrews (2006), Higashi et al. (2003), Stacey et al. (2003), Esquivel et al. (2003) and
Ratnaweera et al. (2004). All of those studies use a small set of benchmark problems
to test relative performance of PSO without mutation and PSO with various mutation
operators applied. Also they use average value of the best solution over several runs to

200 Vytautas Jančauskas

measure the performance of algorithms in question. We feel that these are shortcom-
mings that should be addressed. First of all any set of benchmark problems is arbitrary.
The properties of commonly used test problems are usually fixed, except for the di-
mensionality. This can be a problem since it is not clear what properties of the problem
affect optimizer performance. We try to fix this by using an algorithm that generates
test problems with given properties. We use these generated test problems to measure
performance of PSO with various mutation operators. Also instead of using averaged
optimized function values to measure performance we used percentage of successful
runs. A run is deemed successful if during it the algorithm manages to locate global
minimum within specified precision. We feel that this better reflects the rationale be-
hind using mutation operators — namely to reduce the tendency of the algorithm to get
stuck in local minima.

In section 2 we give an introduction to basic concepts of PSO algorithms, a popular
variant is given as used in the experiments in this work. In section 3 we describe PSO
mutation operators and rationale behind their use. In section 4 the theory behind test
functions and an algorithm for generating them is given. In section 5 we describe how
the experiments performed in this work were prepared. In section 6 we present the
results and analysis of said results in light of work done by others. In section 7 we give
concluding remarks and present practical advice.

2 Particle Swarm Optimization

Particle Swarm Optimization is a global optimization metaheuristic designed for con-
tinuous problems. It was first proposed by Kennedy (1995) and Eberhart (1995). Even-
tually it was expanded in to a book by Kennedy et al. (2001). The idea is to have a
swarm of particles (points in multi-dimensional space) each having some other par-
ticles as neighbours and exchanging information to find optimal solutions. Particles
move in solution space of some function by adjusting their velocities to move towards
the best solutions they found so far and towards the best solutions found by their neigh-
bours. These two attractors are further randomly weighted to allow more diversity in the
search process. The idea behind this algorithm are observations from societies acting
in nature. For example one can imagine a flock of birds looking for food by flying to-
wards other birds who are signaling a potential food source as well as by remembering
where this particular bird itself has seen food before and scouting areas nearby. It can
also be viewed as modeling the way we ourselves solve problems - by imitating peo-
ple we know, who we see as particularly successful, but also by learning on our own.
Thus problem solving is being guided by our own experience and by the experiences of
people we know to have solved similar problems particularly well. The original algo-
rithm is not presented here since it is very rarely used today and we go straight to more
modern implementations.

The problem of global optimization is that of finding the global minimum of a real
valued function. For a function f : X → R the global minimum x∗ is such that f(x∗) ≤
f(x) for all x ∈ X . Here X ⊆ Rd and d is the dimensionality of the problem. Set X
is also refered to as the search space of the function. The method described here is not

Empirical Study of Particle Swarm Optimization Mutation Operators 201

able to find the actual global minimum but in practice it is sufficient to get close to it
within given precision.

Proposed by Clerc et al. (2002) it is a variant of the original PSO algorithm. It
guarantees convergence through the use of the constricting factor χ. It also has the
advantage of not having any parameters, except for φ1 and φ2 which represent the
influence of the personal best solution and the best solution of particles neighbours
on the trajectory of that particle. Both of these parameters are usually set to 2.05 as per
suggestion in the original paper. Moving the particle in solution space is done by adding
the velocity vector to the old position vector as given in (1) equation.

xi ← xi + vi (1)

Updating velocity involves taking current velocity and adjusting it so that it will
point the particle more in the direction of its personal best and the best of its most
successful neighbour. It is laid out in (2) formula.

vi ← χ (vi + ρ1 ⊗ (pi − xi) + ρ2 ⊗ (gi − xi)) (2)

where

ρk = U(0, φk), k ∈ {1, 2} (3)

χ =
2

φ− 2 +
√
φ2 − 4φ

(4)

and where φ = φ1 + φ2 with φ1 and φ2 set to 2.05, U(a, b) is a vector of random
numbers from the uniform distribution ranging from a to b in value, it has the same
dimensionality as particle positions and velocities. Here pi is the best personal solution
of particle i and gi is the solution found by a neighbour of particle i. Operator ⊗ stands
for element wise vector multiplication. Vectors ρk have the same dimensionality as
particle positions and velocities. Which particle is a neighbour of which other particle
is set in advance.

The canonical variant of the PSO algorithm is given in Algorithm 1 and can be
explained in plain words as follows: for each particle with index j from n particles in
the swarm, initialize the position vector xj to random values from the range specific to
function f and initialize the velocity vector to the zero vector, for k iterations (set by the
user) update the position vector according to formula (1) and update velocity according
to formula (2), recording best positions found for each particle.

Particle swarm topology is a graph that defines neighbourhood relationships be-
tween particles. In such a graph particles are represented as vertices and if two particles
share an edge they are called neighbours. Only neighbours directly exchange infor-
mation about their best solutions. As such swarm topology has a profound impact on
particle swarm performance as has been shown in studies by Kennedy (1999), Kennedy
et al. (2002) or many others. There are many popular swarm topologies, for example a
fully connected graph or a graph where particles are connected in to a ring. We used a
topology where particles are connected in a von Neumann neighbourhood (a two dimen-
sional rectangular lattice), since it was shown to give results better than other popular
simple topologies.

202 Vytautas Jančauskas

Algorithm 1 Canonical PSO algorithm.
1: for j ← 1 to n do
2: xj ← U(a, b)
3: vj ← 0
4: end for
5: for i← 1 to k do
6: for j ← 1 to n do
7: xj ← xj + vj
8: if f(xj) < f(pj) then
9: pj ← xj

10: end if
11: Update vj according to (2) formula
12: end for
13: end for

3 PSO Mutation Operators

It is generally accepted that PSO converges very fast. For example in a study done by
Vesterstrom et al. (2004), where they compare the performance of Differential Evolu-
tion, Particle Swarm Optimization and Evolutionary Algorithms they conclude that PSO
always converges the fastest of the examined algorithms. In practice this is a double-
edged sword - fast convergence is obviously attractive in an optimization algorithm,
however it is feared that it can lead the algorithm to stagnate after finding a local min-
imum. There are several strategies to slow down convergence and thus increase the
amount of time that the algorithm spends in the initial exploratory stage as opposed
to local search indicative of later stages of PSO operation. One solution is to use dif-
ferent swarm topologies since it was shown that using a different topology can affect
the swarm operation in terms of convergence speed and allow to adjust the trade-off
between exploration and exploitation. See for example a paper by Kennedy (1999) or
Kennedy et al. (2002). Another attempt at a solution is to change the velocity update for-
mula to use an inertia coefficient w that the speed it multiplied by during each iteration,
see for example work by Eberhart et al. (2000) or by Shi et al. (1998).

The third approach is through the introduction of the mutation operator. A mutation
operator is used to modify particle positions or velocities outside the position and ve-
locity update rules. In all of the cases examined here mutation is applied after position
and velocity updates and only to particle positions. Each coordinate of each particle has
a certain probability of being mutated. The probability can be calculated from Equation
(5) if mutation rate is provided. Parameter rate means how many particle dimensions
will be mutated during each algorithm iteration. For example if rate = 1 one dimension
of one particle in the swarm will be mutated on average during each iteration.

probability =
rate

particles× dimensions
(5)

We examine five different mutation operators that are found in literature. The first
one given in Equation (6) simply reinitializes a single dimension of a particle to a uni-
formly distributed random value U(ad,bd) from the permissible range. It is used to test

Empirical Study of Particle Swarm Optimization Mutation Operators 203

whether it is useful to rely on the previous value xid or not, it is the only of the operators
that does not rely on it. It can be found, for example, in an overview of mutation oper-
ators by Andrews (2006). Here ad and bd are lower and upper bounds for dimension d
in the search space.

xid ← U(ad,bd) (6)

Another operator, also proposed by Andrews (2006) is based on the Gaussian dis-
tribution and given in Equation (7).

xid ← xid +N(σ, 0) (7)

Another operator based on the Gaussian distribution is given in Equation (8) and
can be found in a work by Higashi et al. (2003).

xid ← xid(1 +N(σ, 0)) (8)

A similar operator to the one given in Equation (7) is given in Equation (9), the only
difference is that this one is based on the Cauchy distribution. It is presented in a work
by Stacey et al. (2003). In the case of Cauchy distribution p.d.f. of the distribution is
given by f(x) = a

π
1

x2+a2 and a = 0.2.

xid ← xid + cauchy(a) (9)

A different kind of mutation operator proposed by Michalewitz (1996). It was pro-
posed for use in PSO by Esquivel et al. (2003). While the original operator changes it
behaviour with regards to algorithm iteration we used a static version to keep it in line
with the other operators. It is given in Equation (10), where flip is a random value in
the range (0, 1), generated before applying the operator.

xid ←

{
xid + (bd − xid)U(0,1) , if flip < 0.5

xid − (xid − ad)U(0,1) , if flip ≥ 0.5
(10)

Here a = σ = 0.1(bd − ad), where ad is the lower bound for coordinate d and
bd is the upper bound. Mutation operators are applied to particles position after the
particle has completed it’s position and velocity updates. This moves the particle to a
new, randomized position, possibly dependant on the particles previous position.

4 Test Function Generator

Usually global optimization algorithms like PSO are evaluated against a small set of
test functions. These functions serve as benchmarks against which relative worth of
algorithms is judged. While there is no agreed set of functions to be used most papers
usually use the same small set of functions. Examples of such functions can be found in
a paper by Ali et al. (2005), Floudas et al. (1999), Horst et al. (2002) or indeed a large
number of others. While having such a benchmark set is very convenient from the stand-
point of the algorithm developer it has several big disadvantages. First of all details of

204 Vytautas Jančauskas

test function implementation will leak in to the design of algorithms — namely research
will fine tune the algorithms (often subconsciously) to solve those particular problems.
Second any such set is always arbitrary. Why these test functions and not some others?
Things are further complicated by theoretical results like the No-Free Lunch Theorem
as can be found, for example, in the work of Wolpert et al. (1997). Third issue is that
properties of such functions, such as the number and locations of local minima, etc. are
often not known. We instead opted to use a method for generating test functions given
a set of properties those test functions should satisfy.

We used a system for generating global optimization test functions proposed by
Gaviano et al. (2011). It allows one to create three types of functions called ND-type, D-
type and D2-type. The functions have a lot of parameters that influence their properties
from the stand-point of global optimization. Those parameters are shared among all the
types and have similar meanings in all of them. The main difference between the types is
in their differentiability - ND-type functions are not differentiable in all of the argument
space, D-type functions are once differentiable everywhere and D2-type functions are
twice differentiable everywhere. Otherwise they are very similar. All of the parameters
have the same meaning for all function types. An example of a D-type function is given
in Figure 4.

f(x) =

{
Ci(x), x ∈ Si, i ∈ {2, . . . ,m},
g(x), x /∈ S2 ∪ . . . ∪ Sm.

(11)

In the Equation (11) Si is a “ball” (a hypersphere) defining the attraction region
of the i-th local minimizer. In case of a two-dimensional function it is the circle that
marks the area that the local minimizer occupies in solution space. See Figure 4 for an
example of such a function.

g(x) = ‖x− T ‖2 + t,x ∈ Ω (12)

Ci(x) =

(
2

ρ2i

〈x−Mi,T −M i〉
‖x−M i‖

− 2

ρ3i
Ai

)
‖x−M i‖+(

1− 4

ρi

〈x−M i,T −M i〉
‖x−M i‖

+
3

ρ2i
Ai

)
‖x−M i‖2 + fi (13)

Ai = ‖T −M i‖2 + t− fi (14)

The parameters are summarized in Table 1. Given the large number of them it is not
practical to always specify them by hand. Some kind of algorithm that would randomly
fill in values of these parameters with respect to certain requirements is desirable. For
example we may wish to simply specify number m of local minima and have that num-
ber of minima placed in random locations of our function. Gaviano (2011) et al. give
just such an algorithm. The algorithm let’s the user specify the values enumerated be-
low. It then proceeds to randomly generate a test function in accordance to these values.
In Algorithm 2 we give the pseudocode for this procedure as it was used in the experi-
ments in this article. Below we enumerate the parameters that this algorithm takes.

Empirical Study of Particle Swarm Optimization Mutation Operators 205

1. The number of problem dimensions N , N ≥ 2.
2. Number of local minima m, m ≥ 2, including the minimizer T of the main

paraboloid.
3. Value of the global minimum f2. It must be chosen in such a way that f2 < t.

This is done to prevent the creation of easy functions where the vertex of the main
paraboloid is the actual global minimum.

4. Radius of the attraction region of the global minimizer ρ2. It must satisfy 0 < ρ2 ≤
0.5r so that global minimizer attraction region does not overlap with the vertex of
the main paraboloid thus making it trivial to find.

5. Distance r from the global minimizer to the vertex of the main paraboloid. Must be
chosen to satisfy 0 < r < 0.5 min

1≤j≤N
|b(j) − a(j)| in order to make sure that M2

lies within Ω for all possible values of T .

Next let us summarize the operation of this procedure.

Line 1 Initialize the vertex of the main paraboloid randomly and so that it lies within Ω
we used Ω = [−1, 1]N . Note that here and elsewhereU (a,b) is a vector of uniformly
distributed random numbers each of which lies within (a, b) andU(a,b) is a similarly
defined scalar value.

Lines 2-5 Initialize the location of the global minimum. It is initialized in such a
way that it lies on the boundary of the sphere with radius ρ2 and centered at T .
Generalized spherical coordinates are used for this aim. Here φ1 ← U(0,π) and
φk ← U(0,2π) for 2 ≤ k ≤ N .

Lines 6-10 If some coordinate of the global minimum falls outside Ω this is used to
adjust them to fall within Ω.

Lines 11-13 Place local minima at random. However, while this is not made clear in the
pseudo-code an additional requirement has to be satisfied which is ‖M i−M2‖−
ρ2 > γ, γ > 0 where γ = ρ2 and the purpose of which is to make sure that local
minima don’t lie too close to the global minimum.

Lines 14-22 Here we set the radii of the local minima ρi, 3 ≤ i ≤ m. At first they are
set to half the distance to the closest other minimum. Then we try to enlarge the
radii also making sure they don’t overlap. And finally we multiply them by 0.99 so
that they do not touch.

Lines 23-26 Finally we set the values for local minima making sure that f2 < fi, 3 ≤
i ≤ m. Here Bi is the boundary of the sphere Si and ZBi

is the minimum of the
main paraboloid over Bi.

5 Experimental Procedure

Twelve experiments were performed overall. Each experiment corresponds to a set of
different set of test function generator parameters. The different parameter sets are given
by a Cartesian product {2, 6, 10} × {0.4, 0.6} × {1.0, 1.5} which results in a set of
triplets the first element of which is the number of local minima m, second element is
the radius of the global minimizer attraction region ρ2 and the third element is the dis-
tance from the global minimum to the vertex of the main paraboloid r. Each triplet was

206 Vytautas Jančauskas

Algorithm 2 Algorithm for parameter selection for D-type functions.
1: T ← U (−1,1)

2: for j ← 1, . . . , N − 1 do
3: M2j ← Tj + r cosφj

∏j−1
k=1 sinφk

4: end for
5: M2N ← TN + r

∏N−1
k=1 sinφk

6: for j ← 1, . . . , N do
7: if M2j /∈ Ω then
8: M2j ← 2Tj − xj
9: end if

10: end for
11: for i← 3, . . . ,m do
12: M i ← U (−1,1)

13: end for
14: for i← 3, . . . ,m do
15: ρi ← 0.5 min

2≤j≤m,j 6=i
‖Mi −Mj‖

16: end for
17: for i← 3, . . . ,m do

18: ρi ← max

(
ρi, min

2≤j≤m,j 6=i
(‖Mi −Mj‖ − ρj)

)
19: end for
20: for i← 3, . . . ,m do
21: ρi ← 0.99ρi
22: end for
23: for i← 3, . . . ,m do
24: γi ← min(U(ρi,2ρi), U(0,ZBi

−f2))

25: fi ← min{g(x) : x ∈ Bi} − γi
26: end for

1.0

0.5

0.0

0.5

1.0
0.5

0.0
0.5

0

1

2

3

4

Fig. 1. An example of a D-type function generated using the algorithmic procedure.

Empirical Study of Particle Swarm Optimization Mutation Operators 207

Parameter Meaning
N Dimensionality of the test function.
t Value of the function at the minimum of the main paraboloid.
T Location of the minimum of the main paraboloid.
fi Minimum value of the i-th local minimizer, where i ∈ (2, . . . , N)

and f1 = t.
M i Location of the i-th local minimizer.
ρi Attraction radius of the i-th local minimizer. The smaller this value

is the harder it will be to locate that local minimum.
Table 1. Test function parameters.

tested against different mutation rates. Mutation rate can take values 0.1, 0.5, 1.0, 2.0
and 5.0. For each triplet and mutation rate combination 100 runs of the PSO algorithm
were performed 1000 iterations each. During each run a new test function is generated
using the parameters in the triplet and using Algorithm 2 to generate a corresponding set
of test function parameters. After running the algorithm for 1000 iterations we attempt
to determine if the run was successful. A run is deemed successful if the best solution
found is within ρ2/2 distance from the location of global minimum, which means it is
in the attraction region of the global minimizer and thus we treat it as having found the
globally best solution. The swarm consisted of 25 particles. The only two parameters
of the PSO algorithm we used were set to φ1 = φ2 = 2.05. As particle swarm topology
von Neumann (a 5× 5 grid) neighbourhood was used.

After the results were obtained the percentage of successful runs was ploted against
mutation rate for each type of mutation operator.

6 Results

Results are given graphically in Figures 2-13. In each figure percentage of successful
runs is ploted against mutation rate. Each mutation operator is represented by a distinct
dashed line.

The first conclusion to be made from the plots is that mutation certainly seems
to improve PSO performance significantly, if performance of the algorithm is to be
measured as that algorithm being able to locate the global minimum. In all cases PSO
without mutation performed the worst of the bunch. The two operators based on the
Gaussian distribution also consistently performed worse than the rest. This can prob-
ably be explained by the sharply decaying “tails” of the Gaussian distribution that are
not enough to bring enough variation to discover the global minimum it is further from
the current attraction points of the swarm. Further, it can be seen that the lines in the
plots usually plot two groups of three. The first group is Uniform, Cauchy and Michale-
witz operators and the second group is Gaussian 1, Gaussian 2 and None operators.
The uniting thing among the members of the first group is that they are not limited to
values near the current value of the coordinate being mutated. While Cauchy operator
may seem similar to Gaussian operators Cauchy distribution has far fatter “tails” than
Gaussian and thus chances are that the mutated coordinate will end up further from it’s

208 Vytautas Jančauskas

 0

 5

 10

 15

 20

 25

 30

 35

0.1 0.5 1.0 2.0 5.0

S
u
c
c
e
s
s
fu

l
ru

n
s
 (

%
)

Mutation rate

None
Uniform
Cauchy

Gaussian 1
Gaussian 2
Michalewitz

Fig. 2. Percentage of successful runs vs. mutation rate for test functions generated with parame-
ters n = 10, f2 = −1.0, m = 2, ρ2 = 0.4 and r = 1.0.

 0

 2

 4

 6

 8

 10

0.1 0.5 1.0 2.0 5.0

S
u
c
c
e
s
s
fu

l
ru

n
s
 (

%
)

Mutation rate

None
Uniform
Cauchy

Gaussian 1
Gaussian 2
Michalewitz

Fig. 3. Percentage of successful runs vs. mutation rate for test functions generated with parame-
ters n = 10, f2 = −1.0, m = 2, ρ2 = 0.4 and r = 1.5.

current position. This allows to explore the solution space better. There are no reasons
to suppose that global minimum will be near the current attraction regions of the parti-
cle swarm. As such it seems to as misguided to use operators that are dependent on the
current position such as Gaussian 1, Gaussian 2 or even Cauchy operators. Results seem
to support this and even though Cauchy gives results comparable to those of Uniform
and Michalewitz operators it is more complicated than them and it’s use does not seem
to justify. It is our recommendation thus to start with the simplest operator — Uniform
operator, since there does not seem to be enough justification to use the more compli-
cated ones. Obviously we cannot exclude the possibility that there may be functions

Empirical Study of Particle Swarm Optimization Mutation Operators 209

 0

 10

 20

 30

 40

 50

 60

 70

0.1 0.5 1.0 2.0 5.0

S
u
c
c
e
s
s
fu

l
ru

n
s
 (

%
)

Mutation rate

None
Uniform
Cauchy

Gaussian 1
Gaussian 2
Michalewitz

Fig. 4. Percentage of successful runs vs. mutation rate for test functions generated with parame-
ters n = 10, f2 = −1.0, m = 2, ρ2 = 0.6 and r = 1.0.

 0

 5

 10

 15

 20

0.1 0.5 1.0 2.0 5.0

S
u
c
c
e
s
s
fu

l
ru

n
s
 (

%
)

Mutation rate

None
Uniform
Cauchy

Gaussian 1
Gaussian 2
Michalewitz

Fig. 5. Percentage of successful runs vs. mutation rate for test functions generated with parame-
ters n = 10, f2 = −1.0, m = 2, ρ2 = 0.6 and r = 1.5.

that may benefit from them as per No-Free Lunch theorem as described, for example,
in a work by Wolpert et al. (1997).

Another issue that arises when using mutation operators is the question of the muta-
tion rate. What should the mutation rate value be? Should it be kept constant or should it
change with time? We have only examined constant mutation rates. From our results it
seems that fairly high values of mutation rate are beneficial. This is in contrast with rec-
ommendations from researchers like Andrews (2006) who recommends mutation rates
of just 0.5 to be used, mutation rate 1 is recommended by Higashi et al. (2003). In our
experience this is far too low. In many cases we found that mutation rates of 2 or 5 or
possibly going even higher could be justified. We feel that this disrepancy in the results

210 Vytautas Jančauskas

 0

 5

 10

 15

 20

 25

 30

0.1 0.5 1.0 2.0 5.0

S
u
c
c
e
s
s
fu

l
ru

n
s
 (

%
)

Mutation rate

None
Uniform
Cauchy

Gaussian 1
Gaussian 2
Michalewitz

Fig. 6. Percentage of successful runs vs. mutation rate for test functions generated with parame-
ters n = 10, f2 = −1.0, m = 6, ρ2 = 0.4 and r = 1.0.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

0.1 0.5 1.0 2.0 5.0

S
u
c
c
e
s
s
fu

l
ru

n
s
 (

%
)

Mutation rate

None
Uniform
Cauchy

Gaussian 1
Gaussian 2
Michalewitz

Fig. 7. Percentage of successful runs vs. mutation rate for test functions generated with parame-
ters n = 10, f2 = −1.0, m = 6, ρ2 = 0.4 and r = 1.5.

is the result of the different performance metric used. Most researchers use average
value of the lowest result obtained during each run to measure swarm performance over
some test function. This works well if the goal to measure how well does local search
works. However it does not work so well if we want to know if the global minimum of
a multi-modal function was detected. Higher values of mutation rate will tend to reduce
local search performance because it prevents the swarm from converging as easily. As
such if the average value method of measuring performance is used it will tend to favor
lower mutation rates on many test functions, especially unimodal ones. We feel that
finding the global minimum is a more important goal. Fine tuning of the solution once
the global minimum was detected can be performed by simply switching mutation of

Empirical Study of Particle Swarm Optimization Mutation Operators 211

 0

 10

 20

 30

 40

 50

 60

 70

0.1 0.5 1.0 2.0 5.0

S
u
c
c
e
s
s
fu

l
ru

n
s
 (

%
)

Mutation rate

None
Uniform
Cauchy

Gaussian 1
Gaussian 2
Michalewitz

Fig. 8. Percentage of successful runs vs. mutation rate for test functions generated with parame-
ters n = 10, f2 = −1.0, m = 6, ρ2 = 0.6 and r = 1.0.

 0

 5

 10

 15

 20

0.1 0.5 1.0 2.0 5.0

S
u
c
c
e
s
s
fu

l
ru

n
s
 (

%
)

Mutation rate

None
Uniform
Cauchy

Gaussian 1
Gaussian 2
Michalewitz

Fig. 9. Percentage of successful runs vs. mutation rate for test functions generated with parame-
ters n = 10, f2 = −1.0, m = 6, ρ2 = 0.6 and r = 1.5.

completely. Another solution is to start with a high mutation value and decrease it with
time.

7 Conclusions

In this work we have empirically evaluated the performance of several mutation oper-
ators when applied to PSO algorithm. We did this by using the algorithm to optimize
several test functions that were generated using different parameters. Results were ana-
lyzed and following conclusions can be offered:

212 Vytautas Jančauskas

 0

 5

 10

 15

 20

 25

 30

 35

0.1 0.5 1.0 2.0 5.0

S
u
c
c
e
s
s
fu

l
ru

n
s
 (

%
)

Mutation rate

None
Uniform
Cauchy

Gaussian 1
Gaussian 2
Michalewitz

Fig. 10. Percentage of successful runs vs. mutation rate for test functions generated with param-
eters n = 10, f2 = −1.0, m = 10, ρ2 = 0.4 and r = 1.0.

 0

 2

 4

 6

 8

 10

 12

 14

0.1 0.5 1.0 2.0 5.0

S
u
c
c
e
s
s
fu

l
ru

n
s
 (

%
)

Mutation rate

None
Uniform
Cauchy

Gaussian 1
Gaussian 2
Michalewitz

Fig. 11. Percentage of successful runs vs. mutation rate for test functions generated with param-
eters n = 10, f2 = −1.0, m = 10, ρ2 = 0.4 and r = 1.5.

1. Using mutation operators significantly improves the performance of PSO algo-
rithm.

2. Mutation rates that are higher than those usually reported in literature should be
examined. Namely we got best results with mutation rates 2 − 5 in most of the
cases.

3. There is little need to use elaborate mutation operators based on Cauchy or Gaus-
sian distributions. A simple reinitialization of the coordinate using a random uni-
formly distributed number in the acceptable interval is sufficient and indeed usually
outperforms more elaborate operators.

Empirical Study of Particle Swarm Optimization Mutation Operators 213

 10

 20

 30

 40

 50

 60

 70

0.1 0.5 1.0 2.0 5.0

S
u
c
c
e
s
s
fu

l
ru

n
s
 (

%
)

Mutation rate

None
Uniform
Cauchy

Gaussian 1
Gaussian 2
Michalewitz

Fig. 12. Percentage of successful runs vs. mutation rate for test functions generated with param-
eters n = 10, f2 = −1.0, m = 10, ρ2 = 0.6 and r = 1.0.

 0

 5

 10

 15

 20

0.1 0.5 1.0 2.0 5.0

S
u
c
c
e
s
s
fu

l
ru

n
s
 (

%
)

Mutation rate

None
Uniform
Cauchy

Gaussian 1
Gaussian 2
Michalewitz

Fig. 13. Percentage of successful runs vs. mutation rate for test functions generated with param-
eters n = 10, f2 = −1.0, m = 10, ρ2 = 0.6 and r = 1.5.

Acknowledgements

This research is supported by the Research Council of Lithuania under Grant No. MIP-
063/2012.

References

Ali, M. M., Khompatraporn, C., Zabinsky, B. Z. (2005). A numerical evaluation of several
stochastic algorithms on selected continuous global optimization test problems. Journal of
Global Optimization 31(4), 635–672.

214 Vytautas Jančauskas

Andrews, S. P. (2006). An investigation into mutation operators for particle swarm optimization.
In IEEE Congress on Evolutionary Computation, 2006, 1044–1051.

Clerc, M., Kennedy, J. (2002). The particle swarm - explosion, stability, and convergence in
a multidimensional complex space. IEEE Transactions on Evolutionary Computation 6(1),
58–73.

Eberhart, C. R., Shi, Y. (2000). Comparing inertia weights and constriction factors in particle
swarm optimization. In Proceedings of the 2000 Congress on Evolutionary Computation,
84–88.

Eberhart, C. R., Kennedy, J. (1995). A new optimizer using particle swarm theory. In Proceedings
of the Sixth International Symposium on Micro Machine and Human Science, 39–43.

Esquivel, C. A., Coello Coello, C. A. (2003). On the use of particle swarm optimization with
multimodal functions. In The 2003 Congress on Evolutionary Computation, 1130–1136.

Floudas A. C., Pardalos M. P, Adjiman S. C., Esposito R. W., Gumus H. Z., Harding S. T.,
Klepeis L. J., Meyer A. C., and Schweiger A. C. (1999). Handbook of test problems in local
and global optimization.

Gaviano, M., Kvasov, E. D., Lera, D., Sergeyev, D. Y. (2011). Software for generation of classes
of test functions with known local and global minima for global optimization. ACM Trans-
actions on Mathematical Software (TOMS), 469–480.

Higashi, N., Iba, H. (2003). Particle swarm optimization with gaussian mutation. In Proceedings
of the 2003 IEEE Swarm Intelligence Symposiom, 72–79.

Horst, R., Pardalos, M. P., Romeijn, H. E. (2002). Handbook of global optimization.
Eberhart, C. R., Kennedy, J. (1995). Particle swarm optimization. Proceedings of IEEE Interna-

tional Conference on Neural Networks, 1942 – 1948.
Kennedy, J. (1999). Small worlds and mega-minds: effects of neighborhood topology on particle

swarm performance. In Proceedings of the 1999 Congress on Evolutionary Computation.
Kennedy, J., Mendes, R. (2002). Population structure and particle swarm performance. In Pro-

ceedings of the 2002 Congress on Evolutionary Computation, 1671–1676.
Kennedy, J., Eberhart, C. R. (2001). Swarm intelligence. Morgan Kaufmann.
Michalewicz, Z. (1996). Genetic algorithms + data structures = evolution programs. Springer.
Ratnaweera A., Halgamuge K. S., Watson C. H. (2004). Self-organizing hierarchical particle

swarm optimizer with time-varying acceleration coefficients. IEEE Transactions on Evolu-
tionary Computation, 240–255.

Shi, Y., Eberhart, C. R. (1998). Parameter selection in particle swarm optimization. In Evolu-
tionary Programming VII, 591–600.

Stacey, A., Jancic, M., Grundy, I. (2003). Particle swarm optimization with mutation. In The
2003 Congress on Evolutionary Computation, 1425–1430.

Vesterstrom, J., Thomsen, R. (2004). A comparative study of differential evolution, particle
swarm optimization, and evolutionary algorithms on numerical benchmark problems. In
Congress on Evolutionary Computation, 2004., 1980–1987.

Wolpert, H. D., Macready, G. W. (1997). No free lunch theorems for optimization. IEEE Trans-
actions on Evolutionary Computation, 67–82.

Received June 18, 2014 , revised October 8, 2014, accepted October 8, 2014

