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Abstract. In this paper, we consider an optimization problem arising in multidimensional scaling
with city-block distances. The objective function of this problem has many local minimum points
and may be even non-differentiable at a minimum point. We reformulate the problem into a
problem with convex quadratic objective function, linear and complementarity constraints. In
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1 Introduction

In this section, we present a problem arising in multidimensional scaling with city-
block distances. Multidimensional scaling (MDS) is a data analysis method (Borg and
Groenen, 2005, Živadinović, 2011, Dzemyda et al., 2013). It was first introduced by
Torgerson (1952). In applying MDS, data are transformed into points in the one-, two-
or three-dimensional Cartesian coordinate system. These points are thought of as an
image of the given data. The image is then used to perform an analysis of the data. Let
us describe the method in detail.

First of all, let us perceive the data as a set of n (n > 2) particular objects. In
applying MDS, the first step is to measure relationships between objects. The relation-
ship between objects i and j is usually called dissimilarity and is denoted by δij . Here
we restrict our attention to the case where δij ∈ R and δij = δji > 0, δii = 0,
1 ≤ i < j ≤ n. Let ∆ = (δij)

n×n denotes a dissimilarity matrix. If the objects are
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vectors in a real vector space, dissimilarities between them might easily be measured
by applying any distance function, defined on that vector space.

The second step, in applying MDS, is to select a distance function, defined on vector
space Rm, wherem ∈ {1, 2, 3}. On this space, MDS will generate an image of the data.
The Minkowski distance of order p (p ≥ 1) is usually selected:

dp(xi, xj) =

(
m∑

k=1

|xki − xkj |p
)1/p

,

where xi = (x1i, . . . , xmi)
T , xj = (x1j , . . . , xmj)

T ∈ Rm.
The last and the most difficult step is to choose a loss function, defined on space

Rmn, and to minimize it on that space. Let us define a loss function as follows:

fp(x) =

n∑
i<j

(dp(xi, xj)− δij)2,

where x = (xT1 , . . . , x
T
n ) ∈ Rmn. Function fp is usually called a least-squares stress

function with Lp norm. If x∗ = (x∗1
T , . . . , x∗n

T ) ∈ Rmn is a minimizer of function
fp on Rmn, a set of points {x∗1, . . . , x∗n} ⊂ Rm is perceived as an image of the given
data. Note that function fp is invariant under a translation and mirroring. Therefore, we
usually introduce a set of constraints to center an image at the origin of m-dimensional
Cartesian coordinate system:

n∑
i=1

xki = 0, 1 ≤ k ≤ m.

Let us consider the minimization of function f1 (a least-squares stress function with
city-block distances):

minimize
x ∈ Rmn

n∑
i<j

(
m∑

k=1

|xki − xkj | − δij
)2

subject to
n∑

i=1

xki = 0, 1 ≤ k ≤ m.
(1)

Problem (1) is a difficult optimization problem. Objective function f1 may have many
local minimum points, it may be even non-differentiable at a minimum point (Žilinskas
and Žilinskas, 2007). There are some methods devoted to solve this problem: Hubert
et al., 1992, Groenen et al., 1999, Brusco, 2001, Leung and Lau, 2004, Žilinskas and
Žilinskas, 2009. The methods vary from heuristic to deterministic methods. In this pa-
per, we present a reformulation of problem (1) into an optimization problem with con-
vex quadratic objective function, linear and complementarity constraints. An algorithm
to find a local solution of the reformulated problem is proposed too. The algorithm
is based on the active-set method for convex quadratic programming (Fletcher, 2006,
Nocedal and Wright, 2006).
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2 Quadratic programming with complementarity constraints

Let us reformulate problem (1) into a certain optimization problem with convex quadratic
objective function, linear and complementarity constraints.

First of all, let X denotes a feasible set of problem (1). For every x ∈ X let us
define a vector-valued function d̃± : X → Rmn(n−1)

+ such that d̃±(x) = (d̃+112(x),

d̃−112(x), . . . , d̃+m12(x), d̃−m12(x), . . . , d̃+m(n−1)n(x), d̃−m(n−1)n(x))T and

d̃+kij(x) =

{
xki − xkj , xki > xkj ,
0, otherwise,

d̃−kij(x) =

{
−(xki − xkj), xki < xkj ,
0, otherwise.

(2)

Let us build a set Ỹ =

{(
x

d̃±(x)

)
∈ Rmn2

: x ∈ X
}

. Note that elements of every

vector in Ỹ satisfy the following conditions:∑n
l=1 xkl = 0, d̃+kij(x)− d̃−kij(x) = xki − xkj and
d̃+kij(x)d̃−kij(x) = 0, d̃+kij(x), d̃−kij(x) ≥ 0,

(3)

for all 1 ≤ i < j ≤ n, 1 ≤ k ≤ m.
Let d± = (d+112, d

−
112, . . . , d

+
m12, d

−
m12, . . ., d

+
m(n−1)n, d

−
m(n−1)n)T denotes a non-

negative vector from the space Rmn(n−1)
+ . Let us build another set

Y =


(
x
d±

)
∈ Rmn2

:

x ∈ X,
d+kij − d

−
kij = xki − xkj ,

d+kijd
−
kij = 0, d+kij , d

−
kij ≥ 0,

for all 1 ≤ i < j ≤ n, 1 ≤ k ≤ m

 (4)

and let us prove that Ỹ = Y. If ỹ =

(
x

d̃±(x)

)
∈ Ỹ with some x ∈ X, then it follows

from (3) that ỹ ∈ Y. Thus Ỹ ⊂ Y. On the other hand, if y =

(
x
d±

)
∈ Y, then

d+kij = xki − xkj ≥ 0, if d−kij = 0, and d−kij = −(xki − xkj) ≥ 0, if d+kij = 0. Thus,
vector d± satisfies equalities, defined by (2), and, consequently, d± = d̃±(x) with some
x ∈ X. Note that, if d̃±(xi) 6= d̃±(xj), then xi 6= xj for all xi, xj ∈ X. It means that set
Y is not larger that set Ỹ. Therefore, y ∈ Ỹ and Y ⊂ Ỹ. Hence, it follows that Ỹ = Y.

Next, for every element in Y let us define a function g : Y→ R such that

g

(
x
d±

)
=

n∑
i<j

(
m∑

k=1

(d+kij + d−kij)− δij

)2

. (5)

It is clear that g
(
x
d±

)
= f1(x) whenever

(
x
d±

)
∈ Y, because d+kij + d−kij = |xki −

xkj |.
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Finally, we can state that problem (1) is equivalent to the following optimization
problem with quadratic objective function, linear and complementarity constraints:

minimize
x ∈ Rmn,

d± ∈ Rmn(n−1)

n∑
i<j

(
m∑

k=1

(d+kij + d−kij)− δij
)2

subject to
n∑

i=1

xki = 0, 1 ≤ k ≤ m,

xki − xkj = d+kij − d
−
kij , 1 ≤ k ≤ m, 1 ≤ i < j ≤ n,

d+kijd
−
kij = 0, 1 ≤ k ≤ m, 1 ≤ i < j ≤ n,

d+kij , d
−
kij ≥ 0, 1 ≤ k ≤ m, 1 ≤ i < j ≤ n.

(6)

Let us write problem (6) into a matrix form. First of all, suppose that y = (x11, . . . ,

xm1, . . . , xmn, d
+
112, d

−
112, . . . , d

+
m12, d

−
m12, . . . , d

+
m(n−1)n, d

−
m(n−1)n)T ∈ Rmn2

and

step = mn(n − 1)/2. Let I(L)l =

L . . .
L

 ∈ Rl1l×l2l denotes a rectangular

block diagonal matrix, where L ∈ Rl1×l2 . For the sake of simplicity, let I l = I(1)l ∈
{0, 1}l×l denotes an identity matrix and Op×q ∈ {0}p×q denotes a zero matrix. Then
problem (6) may be rewritten as:

minimize
y ∈ Rmn2

1
2y

TAy − bT y

subject to cTi y = 0, i ∈ E = {1, . . . ,m+ step},
cTi y ≥ 0, i ∈ I = {m+ step+ 1, . . . ,m+ 3step},
y(mn+i)y(mn+1+i) = 0, i = 1, 3, 5, . . . , 2step− 1,

(7)

where:

• A =

(
Omn×mn Omn×2step

O2step×mn I(E)n(n−1)/2

)
∈ {0, 1}mn2×mn2

and E ∈ {1}2m×2m.

• b =


Omn×1

∆12

...
∆(n−1)n

 ∈ Rmn2

+ and ∆ij =

δij...
δij

 ∈ R2m
++, 1 ≤ i < j ≤ n.

• C = (c1 . . . cm+3step) =

 C1 C2 Omn×2step

O2step×m I

(
−1
1

)step

I2step

 ∈
{−1, 0, 1}mn2×(m+3step), where:

◦ C1 =

I
m

...
Im

 ∈ {0, 1}mn×m.
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◦ C2 =



Im Im . . . Im

−Im Im Im . . . Im

−Im −Im
−Im

. . . . . . · · ·
Im

−Im −Im −Im


∈

{−1, 0, 1}mn×step.
In order to better understand the structure of matricesA, C and vector b, let us show

an example. Suppose that n = 3, m = 2 and ∆ =
(

0 7 12
7 0 3
12 3 0

)
. In this case:

• A =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1



∈ {0, 1}18×18.

• b = ( 0 0 0 0 0 0 7 7 7 7 12 12 12 12 3 3 3 3 )
T ∈ R18.

• C =



1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 −1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 −1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1



∈ {−1, 0, 1}18×20.

Note that matrix A is singular and A = ((2m)−1/2A)T ((2m)−1/2A). Hence, ma-
trixA is positive semidefinite and the objective function is not-strictly convex quadratic
function.

3 Modified Active-Set (MAS)

Suppose thatm, n ∈ N (n > 2,m < 4) and ∆ = (δij) ∈ Rn×n (δij = δji > 0, δii = 0,
1 ≤ i < j ≤ n) are given quantities. In this section, we present an algorithm to find a
local minimizer of g on Y. Objective function g is defined by (5) and feasible set Y –
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by (4). The algorithm is based on the active-set method for linearly constrained convex
quadratic programming (Fletcher, 2006). In this method, a finite sequence of feasible
points is constructed such that objective values at these points are decreasing. Note that
in our case, feasible set Y is defined by both linear and complementarity constraints.
Therefore, we modified the active-set method so that points of the sequence would
satisfy both linear and complementarity constraints. Unfortunately, the modification
gives a local minimizer of quadratic function g on Y instead of a global. We called the
algorithm as “Modified Active-Set” (MAS). Pseudocode of MAS is presented below
(see Algorithm 1). The pseudocode is written by using the matrix form of problem (6).
Let us describe the main steps of MAS in detail. The number after word “line” or “lines”
indicates a line number in the pseudocode.

Initialization (lines 1–10). An initial feasible point y0 ∈ Y is selected (line 1) and
set W0 ⊂ {i ∈ E ∪ I : cTi y

0 = 0} is constructed (lines 2–9). A feasible point y0 ∈ Y
may be selected by using various techniques. One of the techniques is presented in the
next section. Set W0 contains indices of all equality constraints (line 2) and indices
of some inequality constraints (lines 3–9). Because of y0(mn+i)y

0
(mn+1+i) = 0 for all

i ∈ {1, 3, 5, . . . , 2step− 1}, it follows that

cT(m+step+i)y
0 = 0 and/or cT(m+step+1+i)y

0 = 0 (8)

for all i ∈ {1, 3, 5, . . . , 2step− 1}. If only one of two equalities (8) holds, either index
(m + step + i) or index (m + step + 1 + i) is added to set W0 (lines 4–6, 9). If both
of two equalities (8) hold, randomly selected index is added (lines 7–9). Note that W0,
constructed in this way, defines a set of linearly independent constraints.

Calculations (lines 11–37). A finite sequence of feasible points {y1, y2, . . . , yK =
y∗} ⊂ Y is constructed such that y∗ is a local minimizer of g on Y. Every element of the
sequence is defined by the following formula: yk+1 = yk +αkpk, k = 0, 1, . . . ,K−1.
Vector pk ∈ Rmn2

is called a step-direction and number αk ∈ [0, 1] is called a step-
length.

Step-direction pk is a global minimizer of function 1
2 (yk+p)TA(yk+p)−bT (yk+p)

on set {p ∈ Rmn2

: cTi (yk+p) = 0, i ∈Wk}. Note that Wk ⊂ {i ∈ E∪I : cTi y
k = 0}

contains indices of all equality and some inequality constraints which are active at point
yk ∈ Y. Therefore, step-direction pk is found by creating and solving the following
equality constrained quadratic program:

minimize
p ∈ Rmn2

1
2p

TAp+ (Ayk − b)T p

subject to cTi p = 0, i ∈Wk.
(9)

Matrix A is positive semidefinite and vector (Az − b) belongs to the range of matrix
A (column space of A) for all z ∈ Rmn2

. Therefore, the objective function is bounded
from bellow on its domain Rmn2

. Hence, problem (9) will always have a solution.
According to the first-order necessary optimality conditions (KKT conditions), if pk is
a solution of problem (9), then there is a Lagrange multiplier vector λk ∈ R|Wk| such
that the following system (KKT system) is satisfied:(

−A cWk

cTWk 0

)(
pk

λk

)
=

(
Ayk − b

0

)
. (10)
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Algorithm 1 Modified Active-Set (MAS)
Input: m, n ∈ N (n > 2, m < 4), ∆ = (δij) ∈ Rn×n (δii = 0, δij = δji > 0, 1 ≤ i, j ≤ n)
Output: y∗ = argminlocal{ 12y

TAy − bT y : cTE y = 0, cTI y ≥ 0 and y(mn+i)y(mn+1+i) = 0,
i = 1, 3, 5, . . . , 2step− 1}

1: y0 ← any feasible point
2: W0 ← E
3: for all i ∈ {1, 3, . . . , 2step− 1} do
4: j ← 0
5: if y0(mn+1+i) = 0 then
6: j ← 1
7: if y0(mn+i) = 0 then
8: j ← random number from set {0, 1}
9: W0 ←W0 ∪ {m+ step+ i+ j}

10: stop← 0; k ← 0
11: while stop 6= 1 do

12:
(
pk

λk

)
∈
{(

p
λ

)
∈ Rmn2+|Wk| :

(
−A cWk

cTWk 0

)(
p
λ

)
=

(
Ayk − b

0

)}
13: if pk 6= 0 then
14: Ĩ← {i ∈ I : i 6∈Wk and cTi p

k < 0}
15: αk ← min{1,min{−(cTi y

k)/(cTi p
k) : i ∈ Ĩ}}

16: if αk = −(cTi∗y
k)/(cTi∗p

k) ≤ 1 with some i∗ ∈ Ĩ then
17: Wk+1 ←Wk ∪ {i∗}
18: yk+1 ← yk + αkpk

19: else
20: λ← 0 ∈ Rm+3step; j ← 0
21: for all i ∈Wk do
22: j ← j + 1; λi ← λk

j

23: Ĩ← {i ∈Wk ∩ I : λi < 0}
24: next← 1
25: while next = 1 do
26: if Ĩ 6= ∅ then
27: i∗ ← argmin{λi : i ∈ Ĩ}
28: j ← 1
29: if (i∗ − (m+ step))%2 = 0 then
30: j ← −1

31: if (i∗ + j) ∈Wk then
32: Wk+1 ←Wk \ {i∗}; next← 0
33: else
34: Ĩ← Ĩ \ {i∗}
35: else
36: y∗ ← yk; next← 0; stop← 1

37: k ← k + 1

Because of KKT system (10) has at least one solution, we choose any of them (line 12).
Suppose that step-direction pk is not equal to zero (line 13). In this case, a new

feasible point yk+1 = yk +αkpk is constructed along this direction. Objective value at
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the new point is less than or equal to the value at point yk (Nocedal and Wright, 2006).
Step-length αk is defined by the following formula:

αk = min{1,min{−(cTi y
k)/(cTi p

k) : i 6∈Wk and cTi p
k < 0}}.

The definition of the step-length ensures that point yk+1 belongs to feasible set Y. If the
new point touches an inequality constraint that is not active at point yk (index of that
constraint does not belong to set Wk), index of that constraint is added to set Wk (lines
16–17).

Next, suppose that step-direction pk is equal to zero (line 19). In this case, we verify
if point yk is a solution of problem (6) or not. It is done by checking the KKT dual
feasibility condition. In other words, on set Wk we select indices of those inequality
constraints which have negative Lagrange multipliers (lines 20–23). Let Ĩ denotes a set
of these selected indices. If set Ĩ is empty, then Lagrange multipliers, corresponding
to inequality constraints, active at yk, are equal to zero or positive. Hence, point yk

is a solution of problem (6) and calculations are stopped. If Ĩ is not empty, set Wk

contains at least one index of inequality constraint with negative Lagrange multiplier.
In this case, a regular active-set method from set Wk removes an index of inequality
constraint with the most negative Lagrange multiplier (lines 27, 32). Note that we are
considering an optimization problem with a number of complementarity constraints
y(mn+i)y(mn+1+i) = 0, i = 1, 3, . . . , 2step − 1. Each complementarity constraint i
corresponds to one (or both) of these equalities:

cT(m+step+i)y = 0, cT(m+step+1+i)y = 0.

Thus, one (or both) of indices (m + step + i) or (m + step + 1 + i) belongs to set
Wk, because yk ∈ Y. If both of these indices would be removed from set Wk, at
the next iteration it might be the following situation (but not necessarily): pk+1

(mn+i) 6=
0, pk+1

(mn+1+i) 6= 0 and αk+1 > 0. It is clear that then yk+1
(mn+i)y

k+1
(mn+1+i) 6= 0 and

yk+1 6∈ Y. If after some number of iterations one of the above indices will appear on
set Wl with some l > k, there is no guarantee that complementarity constraint i will
be satisfied again. Hence, in order to preserve all complementarity constraints at every
iteration, we forbid the removal of an index that does not have a pair on set Wk (lines
28–34). If the removal of index (m + step + i) or (m + step + 1 + i) is forbidden,
the index is eliminated from set Ĩ (line 34). Then the analysis of Ĩ is continued until Ĩ
becomes empty (a local solution is found) or the removal is allowed (lines 31–32).

4 Numerical investigation of MAS

We implemented algorithm “Modified Active-Set” (MAS) and performed a numerical
investigation of the algorithm. In this section, we give a few details on the implemen-
tation of MAS. Namely, we describe how 1) the selection of an initial feasible point
y0 ∈ Y and 2) the solution of KKT systems (10) were implemented. The main purpose
of the numerical investigation was to evaluate relative errors in different solutions of
problem (1). If x∗ ∈ X is a solution of problem (10), then the relative error in x∗ we
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denote by symbol E∗ and define it by the following formula:

E∗ = E(x∗) =

√
f1(x∗)∑n
i<j δ

2
ij

.

The relative error evaluates the quality of a solution. The closer E∗ is to zero, the better
solution (image) is found. Results of the investigation are compared with corresponding
results, obtained by using algorithm SMOOTH (Groenen et al., 1999).

In applying algorithm MAS, an initial feasible point y0 ∈ Y has to be selected.
The selection was implemented by using an algorithm, presented in Algorithm 2. In
this algorithm, a mn-vector of uniformly distributed random numbers between u and
v (u, v ∈ R) is picked (lines 1–3 of Algorithm 2). Then, based on this mn-vector,
point y0 ∈ Rmn2

is constructed such that the following equalities and inequalities are
satisfied:

n∑
i=1

y0(k+(i−1)m) = 0 (11a)

y0(k+(i−1)m) − y
0
(k+(j−1)m) = y0l(k,i,j) − y

0
(l(k,i,j)+1) (11b)

y0l(k,i,j)y
0
(l(k,i,j)+1) = 0 (11c)

y0l(k,i,j), y
0
(l(k,i,j)+1) ≥ 0 (11d)

where l(k, i, j) = mn+2k−1+2m(j−i+(2n−i)(i−1)/2−1) and 1 ≤ i < j ≤ n,
1 ≤ k ≤ m. Steps of Algorithm 2, defined in lines 4–7, ensures that point y0 satisfies

Algorithm 2 A point selection on set Y
Input: m, n ∈ N (n > 2, m < 4)
Output: y ∈ Y
1: z ← 0 ∈ Rmn

2: for i = 1,mn do
3: zi ← random number uniformly distributed over the interval [u, v] ⊂ R
4: for k = 1,m do
5: s← 1

n

∑n
j=1 z(k+(j−1)m)

6: for i = 1, n do
7: y(k+(i−1)m) ← z(k+(i−1)m) − s
8: l← mn+ 1
9: for i = 1, (n− 1) do

10: for j = (i+ 1), n do
11: for k = 1,m do
12: s← y(k+(i−1)m) − y(k+(j−1)m)

13: if s < 0 then
14: yl ← 0; y(l+1) ← −s
15: else
16: yl ← s; y(l+1) ← 0

17: l← l + 2
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equalities (11a). Steps, defined in lines 8–17, ensures that point y0 satisfies equalities
and inequalities (11b)–(11d). Thus, in this way constructed point y0 belongs to feasible
set Y.

The solution of every KKT system (10) was implemented by using the null-space
method (Fletcher and Johnson, 1997). In applying the method, first of all, we have to
select a basis matrix of the null-space of cWk . In our case, the basis matrix was selected
by using a QR decomposition of cWk : cWk = QR, where Q ∈ Rmn2×mn2

, R ∈
Rmn2×|Wk|. It is not hard to check that, ifQ = (Q1 Q2), whereQ1 ∈ Rmn2×|Wk|,Q2 ∈
Rmn2×(mn2−|Wk|), then QT

2 cWk = 0, i.e., matrix Q2 is a basis matrix of the null-space
of cWk . If set Wk was updated by adding or removing an index, a basis matrix of the
null-space of cWk+1 was obtained from factors Q and R by using a particular updating
technique (Hammarling and Lucas, 2008). When the basis matrix is selected, a reduced
KKT system (to find a step-direction pk) and another system of linear equations (to find
a vector of Lagrange multipliers λk) are constructed. The reduced KKT system was
solved by using a LAPACK (version 3.5.0) subroutine for linear least squares problems.
Another system was solved by using a LAPACK subroutine for regular systems of linear
equations.

Results of the numerical investigation of MAS are presented in Table 1. Numerical
experiments were conducted on a computer with Intel(R) Core(TM)2 Duo processor,
running at 2.40 GHz. Algorithm MAS was implemented by using Fortran 95 and com-
piled with gfortran (version 4.8.2) on XUbuntu 14.04 (64-bit, kernel version 3.13.0-24-
generic). The investigation was performed as follows:
1. Data sets were selected from Žilinskas (2006, 2007). Let us remember that a dis-

similarity matrix is one of the most important input data for any algorithm for
multidimensional scaling. We selected a set of dissimilarity matrices, obtained by
measuring relationships between certain objects in geometry (cube, regs, simp) and
in pharmacology (hwa12, hwa21, ruusk, uhlen). In addition, a well known dissimi-
larity matrix, obtained by measuring dissimilarities between some soft drinks, was
selected too (cola).

2. For every selected data set, a set of 30 values of E∗ was generated by using al-
gorithm SMOOTH. Average time, required to find 1 value of E∗, is presented in
column t(s) of Table 1. In order to find 1 value of E∗, SMOOTH generated a set of
10 solutions of problem (1) (column #x∗). Relative error E∗ was calculated in the
solution with the smallest objective value.

3. By using the same data, another set of 30 values of E∗ was generated by using
algorithm MAS. In this case, to find 1 value of E∗, the average time t(s), received
by using SMOOTH, was used, i.e., MAS had been generating solutions of problem
(1), until the time limit was reached. Again, relative error E∗ was calculated in the
solution with the smallest objective value.
The smallest and the biggest values of the sets of E∗ are presented in corresponding

columns of Table 1. The mean and the standard deviation (std) are presented too. Note
that in almost all cases, MAS generated more solutions of problem (1) than SMOOTH
during the same time. However, the mean and standard deviation of relative errors are
much bigger by using MAS. It means that MAS is very sensitive to the choice of an
initial feasible point.
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Table 1: Results of numerical investigation of algorithm MAS and corresponding results, obtained
by using algorithm SMOOTH.

Data set m n min E∗ max E∗ mean E∗ std E∗ t(s) #x∗ Algorithm

cola 1 10
0.3645 0.3645 0.3645 0.0000 0.318 10 SMOOTH
0.3656 0.3959 0.3762 0.0075 0.319 414 MAS

cola 2 10
0.1679 0.1694 0.1694 0.0003 1.692 10 SMOOTH
0.1729 0.2089 0.1837 0.0078 1.702 100 MAS

cube 3 4
0.0001 0.0012 0.0009 0.0002 0.519 10 SMOOTH
0.0000 0.0000 0.0000 0.0000 0.519 975 MAS

cube 3 8
0.0012 0.0013 0.0013 0.0000 1.449 10 SMOOTH
0.0000 0.0000 0.0000 0.0000 1.463 62 MAS

hwa12 1 9
0.0109 0.0109 0.0109 0.0000 0.074 10 SMOOTH
0.0107 0.0107 0.0107 0.0000 0.075 55 MAS

hwa12 2 9
0.0108 0.0110 0.0110 0.0001 0.655 10 SMOOTH
0.0000 0.0027 0.0001 0.0005 0.713 40 MAS

hwa21 1 12
0.1790 0.1790 0.1790 0.0000 0.211 10 SMOOTH
0.1790 0.1871 0.1821 0.0023 0.214 48 MAS

regs 1 13
0.5311 0.5311 0.5311 0.0000 0.857 10 SMOOTH
0.5311 0.5311 0.5311 0.0000 0.858 379 MAS

regs 2 9
0.2991 0.2991 0.2991 0.0000 1.382 10 SMOOTH
0.2991 0.3031 0.2996 0.0011 1.387 184 MAS

regs 3 7
0.0945 0.0945 0.0945 0.0000 1.566 10 SMOOTH
0.0945 0.0945 0.0945 0.0000 1.571 134 MAS

ruusk 1 8
0.2975 0.2975 0.2975 0.0000 0.201 10 SMOOTH
0.2975 0.3292 0.3112 0.0087 0.201 480 MAS

ruusk 2 8
0.1096 0.1096 0.1096 0.0000 1.130 10 SMOOTH
0.1097 0.1306 0.1198 0.0055 1.133 172 MAS

ruusk 2 20
0.0524 0.0555 0.0546 0.0010 4.074 10 SMOOTH
0.0523 0.1322 0.0850 0.0232 4.962 3 MAS

ruusk 3 8
0.0189 0.0254 0.0214 0.0018 2.386 10 SMOOTH
0.0188 0.0411 0.0289 0.0066 2.402 86 MAS

simp 1 13
0.5279 0.5281 0.5279 0.0000 1.203 10 SMOOTH
0.5279 0.5279 0.5279 0.0000 1.205 314 MAS

simp 2 9
0.2759 0.2759 0.2759 0.0000 0.972 10 SMOOTH
0.2759 0.2808 0.2760 0.0009 0.977 88 MAS

simp 3 7
0.0015 0.0016 0.0016 0.0000 1.673 10 SMOOTH
0.0000 0.0000 0.0000 0.0000 1.679 150 MAS

uhlen 1 12
0.2112 0.2112 0.2112 0.0000 0.199 10 SMOOTH
0.2112 0.2251 0.2151 0.0036 0.201 52 MAS

uhlen 2 12
0.0825 0.0909 0.0874 0.0023 2.407 10 SMOOTH
0.0840 0.1248 0.1033 0.0105 2.440 37 MAS

5 Conclusions

In this paper, we considered the minimization of a least-squares stress function with
city-block distances. We reformulated the problem into an optimization problem with
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convex quadratic objective function, linear and complementarity constraints. Moreover,
we presented an algorithm to solve the reformulated problem by using the active-set
method with some modifications. This algorithm allowed us to find a local minimizer
of the stress function with city-block distances.
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Žilinskas J. (2006) Multidimensional scaling in protein and pharmacological sciences. Computer

Aided Methods in Optimal Design and Operations, Series on Computers and Operations
Research. 7, 139-148.
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Žilinskas A., Žilinskas J. (2009) Branch and bound algorithm for multidimensional scaling with
city-block metric. Journal of Global Optimization. 43(2-3), 357-372.
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