
Baltic J. Modern Computing, Vol. 2 (2014), No. 4, 260-271

Overview of Software Tools for Obtaining UML

Class Diagrams and Sequence Diagrams from

Source Code within TFM4MDA

Viktoria OVCHINNIKOVA, Erika ASNINA

Riga Technical University, Meza iela 1 k-3, Riga, LV-1048, Latvia

{viktorija.ovcinnikova, erika.asnina}@rtu.lv

Abstract. Topological Functioning Modeling for Model Driven Architecture (TFM4MDA) is an

approach for software development starting from formal domain models. We plan to enhance

TFM4MDA with reverse engineering principles in order to decrease a number of errors during

software migration to other platforms or integration with other systems. TFM4MDA foresees the

preliminary analysis of the target software system’s structure and behavior at the high-level of

abstraction. Since we plan to work with legacy systems, the reverse engineering can be used for

obtaining the structure and behavior of the software system from source code. For better

integration with TFM4MDA the system structure and behavior should be represented by Unified

Modeling Language (UML) class diagrams and sequence diagrams, correspondingly. This paper

presents an overview of the selected tools that supports reverse engineering and the Eclipse

platform. The goal is to check what elements of the UML sequence and class diagrams can be

obtained by them. The tool owners’ documentation and tool tests were used for getting and

analyzing this information.

Keywords. Topological functioning model, model driven architecture, reverse engineering

1. Introduction

Reverse engineering can help when a software system needs to be migrated or integrated

to other new and usable platforms. Reverse engineering provides the representation of

the structure and the behavior of the system at the higher level of abstraction than code

does that facilitates analysis, understanding and programming processes. The process of

understanding the software system is time-consuming, because it is difficult to

understand the source code quickly without any skeleton (model) of the software system.

In our work, the use of reverse engineering is necessary for supporting the migration

or integration of the existing functionality of legacy software systems to new

technological platforms and other software systems. It can be more suitable, because the

migrated software system can work faster, can occupy less memory and can be more

protected from viruses and other risks. Reverse engineering will be used within the

software development approach called Topological Functioning Modeling for Model

Driven Architecture (TFM4MDA). As mentioned in (Ovchinnikova and Asnina, 2014),

a formal mathematical model, Topological Functioning Model (TFM), gives an

opportunity to analyze and model both the solution and problem domains, as well as to

 Software Tools for Obtaining UML Diagrams from Code within TFM4MDA 261

develop and transform problem domain artifacts (e.g., business and knowledge models,

as well as diagrams at the high level of abstraction) into solution domain artifacts (e.g.,

software implementation specifications and business processes).

The goal of the research is to make a deeper overview of eight selected reverse

engineering tools from (Ovchinnikova and Asnina, 2014) in order to determine those,

which can be used in further research work. In order to satisfy this goal, we check

provision of elements of the UML class and sequence diagrams by these tools. In other

words, we make a comparison between elements of the UML sequence and class

diagrams from Object Management Group (OMG) UML specification (WEB, g) and

those elements that are supported by tools using information from tool owners’ websites.

Additionally, some of tools were installed and tested for getting more precise

information.

The paper is structured as follows. Section II discusses the TFM within Model

Driven Architecture (MDA) and legacy system integration and migration within

TFM4MDA. As well, Section II describes reverse engineering and its techniques in

brief. Section III overviews the selected tools and provides information about the UML

class and sequence diagram elements supported by these tools. In Section IV related

work are presented. Section V states conclusions.

2. Reverse Engineering from Source Code to TFM

2.1. Topological Functioning Model within MDA

Model Driven Architecture (MDA) is a framework for improving interoperability,

portability and reusability through architectural separation of concerns in specifications

(Favre, 2012). It uses models for defining the complete lifecycle of a real world system;

requirement specifications, architecture and design descriptions and code are considered

as models. MDA models describe an examined system at various levels of abstraction. It

distinguishes (Favre, 2012):

 Computation Independent Model (CIM) that describes a system implementation

independent from digital computation (business models, domain models, e.g.,

specified by UML). It should be traceable to PIM;

 Platform Independent Model (PIM) that describes a software implementation

independent from platform specific details (analysis and logical models). It

should be traceable to PSM and backward to CIM;

 Platform Specific Model (PSM) that describes a software implementation from

platform specific viewpoints. It should be traceable to ISM and backward to

PIM;

 Implementation Specific Model (ISM) that describes all the information that is

needed for constructing an executable software system. It should be traceable to

code and backward to PSM.

In its turn, the TFM is a model that specifies static and dynamic characteristics of the

system. It is based on algebraic topology and system theory, and can be displayed as a

mathematical digraph (Osis and Asnina, 2011b). The TFM has topological and

functioning properties. Topological properties have the mathematical background. They

262 Ovchinnikova and Asnina

specify causal relationships among objects, i.e., specify cause-and-effect dependencies

between system functional characteristics, and are based on properties of topological

spaces. The topological properties include the following concepts: neighborhood,

connectedness, continuous mapping and closure (Osis and Asnina, 2011b). Functioning

properties are based on the principles of system theory and include the following

concepts: inputs and outputs, cause-and-effect relations, and cycle structure (Osis and

Asnina, 2011b).

A TFM is represented as a topological space (X, Q) in the form of a directed graph,

where X is a finite set of functional features of the system under consideration, and Q is

a topology among functional features of set X (Osis and Asnina, 2011c). The functional

feature characterizes the system that is needed for system’s goal achievements. It is a

unique 7-tuple <A - action, R - result, O - object, PrCond - preconditions, PostCond -

postoconditions, Pr - provider, Ex - executor>. All of these elements and topological

structure are described in detail in (Osis and Asnina, 2011c).

The TFM within MDA is being used at the computation independent level. The CIM

may contain three main parts, namely, a knowledge model, a business model, and

business requirements for the system (Asnina and Osis, 2011). The knowledge model

provides the experts’ visions of the enterprise operation with focus on its organizational

structure and business specificity. The business model is focused on the business goals

and business scope such as resources, facts, rules and so on. The business requirements

are requirements to the software system set by business people. The TFM specifies

system functioning from the computation independent viewpoint and can serve as a

formal CIM (Osis and Asnina, 2008), (Asnina and Osis, 2011). The knowledge model

describes a problem domain (a “source” model), usually in the textual form. The

business requirements describe a solution domain (a “target” model), specifying system

requirements, which are dictated by business. The business model represents a part of

the knowledge model and is a source of the business requirements to the system.

Therefore, it represents both the problem and solution domains. The TFM represents the

problem domain in a redesigned view. Requirements to the system are mapped to the

TFM and verified. At the same time, new functionality that enhances the problem

domain is determined. As a result, the TFM of the solution domain is constructed. When

knowledge, business processes, system structure and system/software requirements are

defined, use case diagrams can be created from the TFM of the solution domain (Osis et.

al., 2008a), (Osis et. al., 2008b), (Osis et. al., 2007). The use case diagram can represent

the TMF partially or fully (as necessary) and are specified by using corresponding UML

diagrams and textual use case specifications.

2.2. Legacy System Migration and Integration within TFM4MDA

Let us explain the main motivation of the research started in (Ovchinnikova and Asnina,

2014). Fig. 1 illustrates our research in the context of MDA and TFM4MDA. In MDA,

the conformity between code and a domain model (CIM) is grounded on the fact that

code is produced on the base of transformations from CIM to PIM to PSM to code (Fig.

1, the left side). Business process logic and business structure implemented in code can

be backward traced to PSM to PIM to CIM, by abstracting from platform specific and

application specific details. MDA suggests using UML diagrams for specification of

CIMs, PIMs and PSMs.

 Software Tools for Obtaining UML Diagrams from Code within TFM4MDA 263

Knowledge of the

system “as is”

TFM “as is” TFM “to be”

Requirements for

the System

Structural

Diagrams

Behavioral

Diagrams

Platform Specific

Structural Diagrams
Platform Specific

Object Interaction Diagrams

Software Code

repOf
inConformity

With
Continuously

mapped

inConformity

With

inConformity

With

inConformity

With

inConformity

With

inConformity

With
inConformity

With

CIM

PIM

PSM

Code

Application

Specific

Details

Platform

Specific

Details

inConformity

With

inConformity

With

inConformity

With

inConformity

With

inConformity

With

Knowledge of the

system “as is”

TFM “as is”

Requirements for

the System

Platform Specific

Structural Diagrams

Platform Specific

Object Interaction Diagrams

(Legacy) Software Code

repOf
inConformity

With
Continuously

mapped

Reverse

Engineering
Reverse

Engineering

TFM of the

legacy system
Í

To define conformity of elements and their relations to

the TFM constructs we need to find out:

· How complete is knowledge on structure and behavior

of legacy system in obtained models?

· Which RE techniques are more mature?

· Which RE techniques are more supported by tools?

MDA TFM4MDA RE within TFM4MDA

TFM “to

be”

Fig. 1. Conformity between models in MDA, TFM4MDA and in case of legacy systems

In case of TFM4MDA, the CIM is represented by two pairs – the knowledge model

and topological functioning model (TFM) of the system “as is” that represent the

problem domain, and the requirements model and TFM of the system “to be” that

represent the solution domain. The conformance of the solution domain to the problem

domain is supported by continuous mapping between two TFMs (Fig. 1, the middle

part). The continuous mapping is a mathematical mechanism that allows providing

conformity between two topological spaces. Other models, PIMs and PSMs are specified

by UML diagrams.

The question is how to guarantee this conformance within the TFM4MDA, when we

need to migrate or integrate the legacy software system on the new technological

platforms. The weak part here could be knowledge about functionality of the legacy

system (Fig. 1, the right part). The TFM of the system “as is” will include this

functionality completely. The TFM of the system “to be” will contain it completely of

partially. Thus, it is worth to have a TFM of the structure and behavior of the legacy

system in order to fasten the system analysis and to make preliminary verification of the

integrated “target” system.

Reverse engineering techniques and tools can help to solve this weakness. They

allow obtaining platform specific models (PSMs) from source code. The next step

should be getting the TFM of the legacy system on the base of these PSMs. However,

we have a lack of information about quality of the obtained PSMs, and their suitability

for establishing conformity of PSM elements and their relations to the TFM constructs.

2.3. Reverse Engineering and its Techniques

Reverse engineering helps in understanding software behavior and structure by

representing it at the high level of abstraction. It gives a chance to see incompleteness

which can be done writing the source code or to compare a created domain model with

its primary version (Ovchinnikova and Asnina, 2014).

Reverse engineering combines techniques from modeling of business processes,

objects, data, and components. Converting source code to a domain model (UML

diagrams) it represents elements which are necessary to describe a domain such as an

264 Ovchinnikova and Asnina

entity, its attributes, responsibilities, and relationships (it depends on a domain model

type). Then the domain model described by UML diagrams can be manually (it is not

automated) reverted to the necessary business models (Ovchinnikova and Asnina, 2014).

Traditional reverse techniques from source code to domain models are the following

(Ovchinnikova and Asnina, 2014):

 static analysis – getting the static information that describes the structure of

software;

 dynamic analysis – getting the dynamic information that describes how

software behavior is organized.

The reverse engineering process can be enriched by static and dynamic analysis

combinations. The static analysis creates PIMs or PSMs that can be enhanced by

dynamic analysis. For example, Fig. 1 illustrates that the PIM layer displays structural

and behavioral diagrams that can be represented by UML (the UML class diagram can

represent structure of the system, and a set of UML sequence diagrams – behavior of the

system).

Further these diagrams can be converted to the TFM (Ovchinnikova and Asnina,

2014). The UML use case diagram, class diagram, activity diagram, object diagram,

collaboration and sequence diagrams can be obtained from the TFM manually as it is

represents in (Osis et. al., 2008b), (Osis and Asnina, 2011d), (Donins, 2012). This means

that the TFM (or its part) can be recreated from these diagrams by back (reverse) steps.

3. Selected Reverse Engineering Tools

In reverse direction within TFM4MDA, as it is illustrated in Fig. 1, we need to go from a

bottom (source code) to the top (a domain model). Using reverse engineering tools,

UML diagrams which display the structure and behavior of the system can be created

from the source code, and then transforming these diagrams the TFM “to be” can be

created (manually by now). It enables developers to enhance the TFM “to be” of the

target system with functionality implemented in the legacy systems of the organization.

The next subsection more deeply discusses tools, which preliminary comparison by

using selection criteria has been started in (Ovchinnikova and Asnina, 2014).

3.1. Brief Descriptions of the Selected Tools

Eight tools, namely Imagix4D, ArgoUML, AmaterasUML, jGRASP, Visual Paradigm

for UML, Fujaba, EclipseUML, and MoDisco have been discussed in the (Ovchinnikova

and Asnina, 2014). As mentioned previously, it is necessary to have the structure and

behavior of the system for creation of the TFM. The UML class diagram can provide the

structure of the system and the UML sequence diagrams can provide the behavior of the

system. A possibility of creation of these diagrams needs to be supported in the selected

tools. Tools that support obtaining the UML sequence and class diagrams from code, as

well as what certain elements of those diagrams are really supported there, has been

investigated deeply and the results are presented here.

Imagix4D (WEB, a) and jGRASP (WEB, c) tools are not tested more deeply in this

research, because they can create only one necessary for our goal diagram, i.e., the UML

class diagram, as well they are standalone tools and do not support Eclipse platform.

 Software Tools for Obtaining UML Diagrams from Code within TFM4MDA 265

Both Visual Paradigm for UML and EclipseUML are commercial tools, but others four

are free tools. This means that commercial tools may have limitations during a trial

period, but free tools may have limitations in documentation completeness. Five of these

tools (EclipseUML, ArgoUML, AmaterasUML, Fujaba, and MoDisco) were installed

and tested for getting more information about elements of the UML class and sequence

diagrams.

Fujaba (WEB, f) or Fujaba4eclipse is free academic tool. This tool has a possibility

to create the UML class, activity and others diagrams. It provides reverse engineering for

Java code. The UML class diagram can be obtained by reverse engineering. There is not

information about export and import possibilities. This plug-in for Eclipse does not work

correctly on the Eclipse Keepler and Eclipse Juno platforms, thus the class diagram is

not created and only an empty fujaba model is provided after code transformation.

Therefore, this tool will not be tested further in this research.

Visual Paradigm for UML (WEB, d) tool’s 30-day trial version is provided for tool

understanding and trying. It has four types of licenses:

 enterprise – there are provided all possible functions in the tool;

 professional – there are absent some of functions;

 standard - it is used for modeling, report creation and source code generation;

 modeler – it is used only for business process and software design.

All of these types of licenses can be tried by free with all necessary functions during

30 days. This tool gives users the possibility to create the UML class, sequence and

activity diagrams and others. The reverse engineering of Java source files, C++ header

files, .NET *.dll and *.exec files, CORBA IDL source file, Ada 9x sources files, XML,

XML schema, PHP 5.0 source files, Python, Objective-C are provided in this tool. The

reverse UML class diagram can be got from the mentioned source files, but only Java

source files can be used for getting of the UML sequence diagram. The obtained UML

class and sequence diagrams can be changed and completed by user in further. As well

this tool supports XML (only XML documents exported from this tool can be imported

back to it), XMI (version 1.0, 1.2, 2.1), Microsoft Excel and Visual Paradigm project

export and import.

EclipseUML (WEB, e) tool includes a free 30-day evaluation license for tool testing

and understanding. It has four types of licenses:

 academic – it used only for universities, institutes and so on, a student can’t buy

it for himself;

 viewer - it is used only for source code and model synchronization, as well

diagrams can be viewed (but can’t be created);

 mobile – a developer can install as many copies of this tool as he/she needs;

 floating – a developer can use the tool via connection to the server (1.6

developers per one license).

Only mobile and floating licenses can be used for free during 30 days. Others can be

used only after paying for them. It is possible to create the UML sequence, class, activity

and others diagrams in this tool. The reverse engineering of Java source files is also

supported. The reverse UML package, class and sequence diagrams can be got from

source code and completed by a developer in further. This tool provides XMI (version

2.1) export and import.

266 Ovchinnikova and Asnina

ArgoUML (Ramirez et. al., 2012) or ArgoEclipse as a plug-in for the Eclipse

platform is a free tool. The UML class, activity and others diagrams can be created in

ArgoEclipse. The user guide information illustrates that the UML sequence diagram can

be created in this tool. However, the user guide information does not provide a lot of

necessary information. The tool ArgoEclipse was installed in order to check whether the

UML sequence diagram elements exist. As well the UML sequence diagram icon is

provided in the tool, but it does not work. Thus, it is not possible to test which elements

in the sequence diagrams exist. This tool supports XMI (version 1.0, 1.1 and 1.2) export

and import, however the import does not work properly in the ArgoEclipse tool. The

option for creation UML sequence diagrams exists in the ArgoUML (a tool that is

independent from Eclipse) and only some elements (lifelines without type and

synchronous, asynchronous, reply, object creation and deletion messages) can be used

there. There is not much information about reverse engineering in ArgoUML and is not

mentioned which programming languages can be used and which UML diagrams can be

obtained from source code. But source files can be imported into ArgoUML. However,

in such a case only a class diagram without any relations between elements will be

created.

AmaterasUML (WEB, b) is a free tool. This tool gives a possibility to create the

UML class, sequence, activity and others diagrams. There is no information about

supported programming languages in reverse engineering at the tool owner’s website

(but it is stated that Java programming language is supported). The UML class diagram

can be obtained during reverse engineering, for this it is necessary to move all UML

classes from the created project to the working window. The UML sequence diagrams

can also be automatically generated from Java stack traces or debug stacks (after minor

manipulation). Information about import/export wasn’t found at the tool owner’s

website.

MoDisco (Dupe, 2012) is a free tool. The UML diagrams cannot be created as such

in this tool, because it is only the reverse engineering tool. It provides the reverse

engineering for Java source code and other programming languages. This tool gives a

possibility to create a KDM (Knowledge Discovery Metamodel) model as an XMI file of

the existing project. The XML document or UML model can be created from this XMI

file. After that, the necessary UML diagrams can be visualized using an assisting tool

(e.g. Papyrus, UML Designer). The information about elements of the UML class and

sequence diagrams is not provided at the tool owner’s website, that is why this tool will

not be included in the next subsection.

3.2. Elements of the UML Sequence and Class Diagrams in the Selected

Tools

The structural and behavior aspects of a domain model can be represented by UML

diagrams. For example, UML class diagrams capture the structural aspects of a domain

model represented by classes, attributes, operations and relationships, but UML

sequence diagrams capture behavior aspects of a domain model represented by objects

and their interactions. A domain model created by using UML diagrams describes an

examined problem space, but does not overview it completely. Implementation specifics

usually cannot be specified by UML.

The UML defines 13 types of diagrams, divided into 2 categories (WEB, g):

 Software Tools for Obtaining UML Diagrams from Code within TFM4MDA 267

 Structure diagrams – an object diagram, a class diagram, a composite structure

diagram, a component diagram, a deployment diagram and a package diagram.

 Behavior diagrams – an activity diagram, a sequence diagram, a use case

diagram, a communication diagram, an interaction overview diagram, a state

machine diagram, and a timing diagram.

There are two incidence matrices of elements from UML sequence and class

diagrams that exist in the selected tools illustrated in Table 1 and Table 2. Columns in

tables represent tools’ names. Rows in Table 1 represent elements of the UML class

diagram, and rows in Table 2 represent elements of the UML sequence diagrams. More

information about the elements of the UML sequence and class diagrams can be found in

(WEB, g).

Table 1. The matrix of elements of the UML class diagram that exist in the selected tools

Visual Paradigm for

UML
EclipseUML ArgoEclipse AmaterasUML

Class 1 1 1 1

Class attribute 1 1 1 1

Attribute visibility 1 1 1 1

Attribute name 1 1 1 1

Attribute type 1 1 1 1

Class operation 1 1 1 1

Operation visibility 1 1 1 1

Return value type in the class
operation

1 1 1 1

List of parameters in the class

operation
1 1 1 1

Interface 1 1 1 1

Package 1 1 1

Association 1 1 1 1

Aggregation 1 1 1 1

Composition 1 1 1 1

Dependency 1 1 1 1

Generalization 1 1 1 1

InterfaceRealization 1 1 1 1

Realization 1 1 1 1

Tools Visual Paradigm for UML, EclipseUML, and ArgoUML have all elements of

the UML class diagram as it is illustrated in Table 1. The tool AmaterasUML also has all

elements of the UML class diagram, excluding the “Package” element. All the tools

mentioned in Table 1 can show the structure of the software system.

268 Ovchinnikova and Asnina

Table 2. The matrix of elements of the UML sequence diagram that exist in the selected tools

 Visual Paradigm for UML EclipseUML ArgoEclipse AmaterasUML

Outside actor 1 1 1

Lifeline without type 1 1 1

Lifeline <Boundary> 1 1

Lifeline <Control> 1 1

Lifeline <Entity> 1 1

Synchronous message 1 1 1

Asynchronous message 1 1 1

Object creation message 1 1 1

Object deletion message 1 1

Reply message 1 1 1

Lost message 1 1

Found message 1 1

Unknown message

Alt frame 1 1

Opt frame 1 1

Par frame 1 1

Loop frame 1 1

Critical frame 1 1

Neg frame 1 1

Assert frame 1 1

Strict frame 1 1

Seq frame 1 1

Ignore frame 1 1

Consider frame 1 1

Both tools Visual Paradigm for UML and EclipseUML have all elements of the

UML sequence diagram, excluding element “Unknown message”, as it is illustrated in

Table 2. The UML sequence diagram cannot be created in the tool ArgoEclipse, because

this function does not currently work correctly in it. This is the reason why no one

element is included in Table 2. The AmaterasUML has only some of the UML sequence

diagram elements, shown in Table 2. Only two tools, namely Visual Paradigm for UML

and EclipseUML, can show the behavior of the software system in detail. The ability to

show the behavior of the software system in the AmaterasUML is limited, because it

does not support any kind of the UML sequence diagram frames.

4. Related work

Architecture Driven Modernization (ADM) that is implemented by OMG is an approach

that supports reverse engineering within MDA. It is used for existing software system

modernization, understanding, improvement, modification, migration, translation into

 Software Tools for Obtaining UML Diagrams from Code within TFM4MDA 269

another language and so on (WEB, h). The following tools can be used for this approach

(Madiot, 2010):

 MoDisco tool which is discussed in this research can be used for ADM, because

in this tool a KDM is created from source code;

 Mia-Mining is created for analyzing COBOL programs and providing

information about their internal data and structure;

 Mia-Studio for generation model-to-text templates and developing model-to-

model transformation rules.

Model Driven Reverse Engineering (MDRE) is another approach that supports

reverse engineering within MDA. It is used for model of legacy system understanding,

manipulation and discovery. The following tools can be used for this approach (WEB, i):

 MoDisco also can be used for MDRE for model discovery and understanding;

 ATL is a model transformation toolkit and language. It provides producing of

target models from source models.

5. Conclusions

In the research on reverse engineering within TFM4MDA, the UML diagrams are

planned to be used as an assisting model in a transformation chain from the source code

to the TFM. In order to obtain them, we have investigated six tools, namely Visual

Paradigm for UML, EclipseUML, ArgoUML, AmaterasUML, MoDisco and Fujaba. At

the beginning of the research we have selected eight tools, but Imagix4D and jGRASP

have been excluded from the further investigation, since they create only the class

diagrams and do not support interaction with the Eclipse platform.

The VisualParadigm for UML and EclipseUML tools are commercial tools. As the

research showed, they provide more functionality and more information in the user

manual than the free tools. As well these tools have all necessary elements of the UML

class and sequence diagrams as it is shown in tables above. The free tools have a little of

information or it is absent at all in the user guides. The Fujaba tool is an academic tool

and a user guide is not provided for it, as well this tool does not work on the Eclipse

platform. MoDisco only creates KDMs, from which the UML diagrams can be created

and refined by using assisting tools in further. The UML sequence diagram cannot be

created in the ArgoEclipse tool due this function does not work properly. Summarizing

the results, only three tools, namely VisualParadigm for UML, Eclipse UML and

AmaterasUML supports a greater number of required elements.

The results of the research are mainly based on the information about the selected

tools provided by the tools’ vendors. Five of the six selected tools have been installed

and support of the elements of the UML class and sequence diagrams has been

determined. However, the reverse engineering is supported in the three tools that showed

better results and must be investigated more deeply.

One of the future research directions is related to verification of quality of the

obtained UML diagrams from the source code by experiments with VisualParadigm for

UML, Eclipse UML and AmaterasUML. Another one foresees complete development of

transformation rules from the received qualitative UML diagrams to the TFM.

270 Ovchinnikova and Asnina

References

Asnina E., Osis J. (2011). Topological Functioning Model as a CIM-Business Model. In: (Osis and

Asnina, 2011a), 40 - 64.

Donins U. (2012). Topological Unified Modeling Language: Development and Application. PhD

thesis, Riga Technical University, Riga, Latvia.

Dupe G. (2014). MoDisco, available at http://wiki.eclipse.org/MoDisco#Documentation.

Favre L. (2012). MDA-Based Reverse Engineering, available at

 http://www.intechopen.com/books/reverse-engineering-recent-advances-and-

applications/mda-based-reverse-engineering.

Madiot F. (2010). Architecture-Driven Modernization Case-Studies, available at

 http://fmadiot.blogspot.com/2010/04/architecture-driven-modernization-case.html.

Osis J., Asnina E., Grave A (2008). Formal Computation Independent Model of the Problem

Domain within the MDA. Information Systems and Formal Models, In: Jaroslav Zendulka

(ed.) Proceedings of the 10th International Conference, (Apr., Hradec nad Moravici,

CzechRepublic), Silesian University in Opava, Opava, 47 – 54.

 Osis J., Asnina E.. (2008). A Business Model to Make Software Development Less Intuitive, In:

M. Mohammadian (ed.) Proceedings of the 2008 International Conference on Innovation in

Software Engineering (10 – 12 Dec. Vienna, Austria), IEEE Computer Society CPS, Los

Alamitos, 1240 – 1246.

Osis J.,Asnina E.,Grave A. (2008). Formal Problem Domain Modeling within MDA. Software and

Data Technologies: Communications in Computer and Information Science 22, 387 - 398.

Osis J., Asnina E., Grave A. (2007). MDA Oriented Computation Independent Modeling of the

Problem Domain, In: Cesar Gonzalez-Perez, Leszek A. Maciaszek (eds.) Proceedings of the

2nd International Conference on Evaluation of Novel Approaches to Software Engineering,

ENASE 2007 (23 – 25 Jul. Barcelona, Spain), INSTICC Press, Barselona, 66 - 71.

Osis J., Asnina E. (2011a). Model-Driven Domain Analysis and Software Development:

Architectures and Functions, IGI Global, New York.

Osis J., Asnina E. (2011b). Is Modeling a Treatment for the Weakness of Software Engineering?

In: (Osis and Asnina, 2011a), 1 -14.

Osis J., Asnina E. (2011c). Topological Modeling for Model-Driven Domain Analysis and

Software Development: Functions and Architectures. In: (Osis and Asnina, 2011a), 15 -39.

Osis J., Asnina E. (2011d). Derivation of Use Cases from the Topological Computation

Independent Business Model. In: (Osis and Asnina, 2011a), 65 -89.

Ovchinnikova V., Asnina E. (2014). Reverse Engineering Tools for Getting a Domain Model

within TFM4MDA, In Proceedings of the 11th International Baltic Conference on

Databases and Information Systems Baltic DB&IS 2014, (8-11 Jul. 2014, Tallinn, Estonia),

Tallinn University of Technology Press, Tallinn, 417-424.

Ramirez A., Vanpeperstraete P., Rueckert A., Odutola K., Benett J., Tolke L., Wulp M..

(2011). ArgoUML user manual, available at

 http://argouml-downloads.tigris.org/nonav/argouml-0.34/manual-0.34.pdf.

WEB (a). Imagix 4D, available at http://www.imagix.com/products/source-code-analysis.html.

WEB (b). AmaterasUML, available at

 http://amateras.sourceforge.jp/cgi-bin/fswiki_en/wiki.cgi?page=AmaterasUML.

WEB (c). jGRASP, available at http://www.jgrasp.org/.

WEB (d). Visual Paradigm for UML User’s Guide, available at

http://www.visual-paradigm.com/support/documents/vpuserguide.jsp.

WEB (e). EclipseUML, available at http://www.omondo.com/.

WEB (f). About Fujaba, available at http://www.fujaba.de/about-fujaba.html.

WEB (g). Unified Modeling Language, version 2.4.1, available at

http://www.omg.org/spec/UML/2.4.1/.

http://argouml-downloads.tigris.org/nonav/argouml-0.34/manual-0.34.pdf
http://www.omg.org/spec/UML/2.4.1/

 Software Tools for Obtaining UML Diagrams from Code within TFM4MDA 271

WEB (h). Architecture-Driven Modernisation Task Force, available at

 http://www.omgwiki.org/admtf/doku.php.

WEB (i). Model Driven Reverse Engineering, available at

 http://www.emn.fr/z-info/atlanmod/index.php/Model_Driven_Reverse_Engineering.

Author’s information

Viktoria Ovchinnikova took bachelor’s degree in Automation and Computer

Engineering from Riga Technical University, Latvia, in 2013.

Currently she is the second year master’s student and Scientific Assistant at

Department of Applied Computer Science in Riga Technical University. She actively

participates in the scientific research projects. She is an author of one conference paper.

Her research interests include programming, system modeling, reverse engineering

and model-driven software development.

Erika Asnina received M.Sc. in computer systems in 2003 and doctor’s degree

(Dr.sc.ing.) in information technology with specialization in system analysis, modeling

and design from Riga Technical University in 2006.

She is Associate Professor in the Department of Applied computer Science in Riga

Technical University since 2013. She also worked 5 years as a Software Developer. She

is author of 37 conference papers, four book chapters and one book. Her research

interests include software quality assurance, model-driven and object-oriented software

development, and software engineering.

Latvian Academy of Sciences has awarded her and her co-author, Janis Osis, for the

book “Model-Driven Software Development: Architectures and Functions”, which was

recognized as one of the most significant theoretical achievements of Latvian Science in

2011. She was also awarded as a scholarship laureate of the target program “For

Education, Science and Culture” of Latvian Education Fund in 2004 and 2005.

Received November 9, 2014, accepted November 13, 2014

