
Baltic J. Modern Computing, Vol. 3 (2015), No. 2, 133-147

Process DSL Transformation by Mappings Using

Virtual Functional Views

Lelde LACE, Audris KALNINS, Agris SOSTAKS

Institute of Mathematics and Computer Science, University of Latvia,

Raina bulv. 29, Riga, Latvia

{Lelde.Lace, Audris.Kalnins, Agris.Sostaks}@lumii.lv

Abstract. Every BPMS must have some facilities for transforming its process definition language

to the form directly executable by its execution engine. The paper discusses the situation when

different domain specific process languages need to be transformed to one target environment. A

new approach based on domain specific mappings is proposed. First, the concept of virtual

functional view on target metamodel is introduced which permits to describe the creation of target

model elements at a higher level of abstraction by simple functions. Then mapping rule definition

based on the virtual view is presented which provides in most cases a simple description how

source model elements must be passed to these functions.

Keywords: process model transformations, mappings, virtual view

Introduction

Every Business Process Management System (BPMS) is based on a language used for

process definition. Currently the most used language for this purpose no doubt is BPMN

(WEB, 1). Nevertheless, in cases when processes are quite specific to a business area

domain specific process definition languages provide a significant gain in usability.

Their main advantage is the possibility to use language concepts specific to the chosen

domain, for example, specific action and event kinds with additional parameters. In this

sense frameworks where a new domain specific process language (DSL) can be easily

defined have the greatest value for process designers.

However, a BPMS has to support the execution of the defined processes, therefore it

contains a process execution engine which directly executes processes in some language.

For BPMS supporting only a fixed process definition language such as BPMN a custom

conversion to the execution language can be used. However for BPMS with several

process input languages and especially with DSLs to be defined a more general approach

is required. Since languages typically are represented as models in modelling tools the

most appropriate solution is to use a sort of model transformations.

Thus, typically there is a source model containing a related set of process definitions

in the source language, together with a set of related environment elements such as data

models, form definitions etc. On the other hand, the execution engine requires a target

model containing only elements directly supported by it. Certainly, general purpose

model transformation languages such as MOF QVT (OMG, 2011), ATL (Jouault and

134 Lace, Kalnins, Sostaks

Kurtev, 2005), MOLA (WEB, 2) etc. can be used for such transformation tasks.

Nevertheless, this kind of transformation – process to process, but in a different notation

– is sufficiently domain specific to be supported by a specific transformation technology.

In such a domain specific technology it is possible to hide the transformation tasks

common to all process languages and thus to obtain significantly more compact

transformations for a specific language.

In this paper a domain specific solution based on a new kind of mappings is pro-

posed. The approach is based on the experience by authors in implementing the plat-

form GraDe3 for support of process DSL (Kalnins et al., 2014). The transformation task

in such a framework typically has one fixed target metamodel, but a specific source

metamodel has to be used for each DSL and a specific transformation as well. Therefore

one of the main goals of the platform has been to ease the transformation development as

far as possible. This way the support for a new process DSL could be fully created by

domain experts, having only a basic knowledge on modelling and transformations. This

is essential because the transformation in fact defines the precise semantics of the DSL

to be created.

The proposed approach is based on the assumption that both source and target

process languages are based on explicit control flow graphs defining the execution

sequence. This assumption leads to a structural similarity of source and target

metamodels, thus permitting to separate control flow processing from transforming the

nodes.

A new concept – virtual functional view of the target metamodel is proposed, which

provides a high-level “process-only” view on this metamodel and permits to hide all

technical details. This view contains functions really building the target model elements,

with attributes set and links created. Common functions can be defined only once for

abstract superclasses. Such view has to be defined only once for the given target

metamodel – by platform developers. The transformations for a specific DSL can

reference the target elements at a high abstraction level – by just specifying the

expressions over the source model providing the data required by the functions. In the

result, simple straightforward mappings for the given DSL can be defined, showing only

which virtual target metamodel elements have to be built for the given source element

type and where to find the data required by the functions. Frequently these mappings just

say that for the given source metamodel class a given virtual target metamodel class has

to be created. The virtual functional view is described in section 2 and mappings in

section 3. The conclusions briefly sketch some completely different applications of this

idea.

This paper is an extended version of the paper (Lace et al, 2014) presented at Baltic

DB&IS 2014.

1. General principles of the approach

Let’s take a look on the transformation definition process for a DSL in Fig.. 1. The

source metamodel classes have been denoted by the prefix S# and are called further the

S-classes. The target metamodel classes have been denoted by the prefix T# and called

T-classes. Source and target metamodels consist of two parts. The first one is the

Environment part (the data model, form definitions, user roles). The second is the

Process part – facilities to describe the process control flow graph. Typically, the

Environment parts of source and target metamodels are very similar. Therefore,

 Process DSL Transformation by Mappings Using Virtual Functional Views 135

straightforward mappings can be used as a definition of transformation for this part, and

it is executed before the more complex transformation of the Process part. We also

assume that both metamodels are extended to support explicit source-target traceability

and all mappings automatically create this traceability information (and rely on traces

already created).

For Process part of the target metamodel the Virtual functional view is built. Every

class of the virtual functional view, let’s call them V-classes, has been tied to a particular

T-class. V-classes contain functions and attributes. Attributes of V-classes are used as

parameters for functions. Functions, in turn, can be used to create the extended

neighbourhood of the corresponding T-class and to connect it to the Environment part.

Fig. 1. Definition process of mappings and functions

In the definition of mappings for a concrete DSL the V-classes are used. The

functions contained in a V-class are executed when the mapping is applied to a source

model. All functions use the attribute values provided in the mapping definition as

expressions based on the source model, thus data are transferred from the source model

to the target model being built when the mapping is applied. Thus, though a V-class

syntactically reminds a normal class its meaning is more like an instance creation rule to

be used in a mapping. The mapping has to specify how to find the required attribute

values in the source model. Typically, for mapping definitions of different DSL-s only

the Process element mappings will differ (the mappings denoted by thicker border in

Fig. 1).

Fig. 2. Target metamodel (execution language metamodel) of GraDe3 platform

136 Lace, Kalnins, Sostaks

We assume that both source and target models are based on explicit control flow

graphs. It should be noted that this is true for most of process languages – the standard

ones such as BPMN or UML Activity (but not BPEL!) and most of DSLs. And this is

true for the execution language metamodel which is used in the platform GraDe3

(Kalnins et al., 2014) and will serve as our target metamodel – see Fig.. 2. Classes with

the bold borders correspond directly to the common control flow graph structure. This

target metamodel has no explicit sub-classes of T#ProcessNode, the specific action or

control node type is coded by the typeName attribute. Environment classes are shown

with grey background, and they are assumed to have been already mapped to the

corresponding source model elements before we define the process element mapping.

Those classes do not directly participate in the control flow, but provide information how

exactly the process actions must be executed – which form to open, who can execute the

action etc. Certainly, to execute correctly, all required links from process elements to

these Environment class instances must be created in the target model. In addition, the

Process part of the target metamodel may contain some technical classes, in our case the

T#Expression (a class to hold a call parameter expression or the guard condition for a

control flow).

The provided target metamodel example in Fig. 2 looks relatively simple, therefore

the first impression is that from an adequate source DSL metamodel a set of direct

source-target metamodel mapping rules would be easy to define. While it is true in some

cases, it is not so for all process elements. First, the Process element part of the source

metamodel has more specific classes, in the target metamodel they are just instances of

the ProcessNode class with properly set attributes and relevant links to the Environment

classes, sometimes several such instances have to be created for one source instance.

Further, the real target metamodel typically contains more technical classes with a

complicated structure. The found issues are typical for the task – the target metamodel is

built with the main goal of supporting an efficient execution engine. One possible

solution here would be to introduce an intermediate metamodel containing the same

information at a higher abstraction level and in a more structured way. Then it would be

possible to build a fixed transformation (mapping) from this metamodel to the target one,

and simpler mappings from source to the intermediate model. However, a simple

analysis shows that for supporting references all relevant information including the

Environment should be stored in the intermediate model as well, thus there would be no

significant gain in transformation definition simplicity.

 To solve the source-target mismatch in a way really permitting transformations for a

specific DSL source model to be developed in a very simple way, this paper proposes to

use the virtual functional view as the intermediate representation.

2. Virtual functional view on target metamodel

The virtual functional view is built as a metamodel containing only V-classes and some

associations from the T-metamodel. These V-classes in general correspond to T-classes

relevant for the control flow, but in a “refactored” way as in building an intermediate

metamodel – new subclasses can be added etc., thus giving a more readable and at a

higher abstraction level view on the target world. A V-class is used as a target in a

mapping, to create an instance of a T-class and set its properties.

A V-class contains a number of attributes and a number of function definitions, but

their meaning is slightly different from the traditional class (UML or MOF) notation

 Process DSL Transformation by Mappings Using Virtual Functional Views 137

used in metamodels. The attributes specify the values which have to be provided in a

mapping using the given V-class as a target (these attributes are used as arguments for

the functions of this V-class). For each attribute its name and type are specified, the type

can be a primitive type, a T-class or a collection of these. In a V-subclass a constant

value can be assigned to an attribute defined higher in the inheritance hierarchy.

Each V-class contains a reference to a T-class, specifying that an instance of this T-

class is to be created. Functions of the V-class set the properties of this instance –

attribute values and links to other T-class instances, on the basis of the provided attribute

values. Only non-abstract V-classes are directly used in mapping definitions, the abstract

V-classes build the inheritance hierarchy of the virtual functional view. A V-class

inherits attributes and functions from its superclasses in a standard way.

Now let us present a simple example of a V-class definition – define the class

V#Process, referencing the class T#Process, without any inheritance hierarchies

involved. This V-class causes the creation of a T#Process instance when used in a

mapping. Fig. 3 shows the simplest part of the definition – the function

setProcessAttributes() and two attributes used in the function to set the values

of the two attributes of T#Process class. Both V-attribute values must be set when

V#Process is used in a mapping, and must have the String and Boolean types

respectively. The values are assigned to the two attributes of the new T#Process

instance (denoted by the keyword self in the function body).

Fig. 3. The attribute setting part of V#Process

Next we define a function connectDataClass() as part of the V#Process –

see Fig. 4, the left part. This function performs a typical action in T-model building –

create a link between the T-class instance being built by this V-class – the instance

named self and an existing target instance, created by a mapping already executed. Here

it is a relevant instance of T#DataClass. This instance is specified by a new attribute

mainDataClass of the type T#DataClass in this V-class. The attribute is used as a

direct instance reference in the link creation.

Fig. 4. The connection functions for V#Process

A slightly more complicated function connectStartersRoles() is defined for

creating links (possibly, several) to existing instances of T#Roles – see Fig. 4, the right

part. Here a new attribute is added as well. But in this case we may need several

instances to link to, therefore the attribute type is a collection (list) of elements of the

138 Lace, Kalnins, Sostaks

type T#Roles – shown by enclosing the type in square brackets. Accordingly, the

function body has to locate all the instances in the list and link them to the self.

Therefore an iterator loop construct is provided for the function definition – the iterator

runs over all instances in the list, and for each instance (denoted by the iterator variable –

starterRole) creates the required link.

All three functions used in this V-class are typical ones and represent three function

patterns – attribute setting (1) (see Fig. 3), creating a link to a single class instance

already in the T-model (2) (see Fig. 4, the left part) and creating several links to existing

instances in a loop (3) (see Fig. 4, the right part). Finally, we can show the short form

(without function bodies) of the V#Process definition – see Fig. 5, the top left corner.

One more function pattern 4 is to create a new class instance and link it to self.

Fig. 5. Short definition of V-classes shown as part of V-metamodel

Next a V-class definition example will be shown involving abstract V-classes and

inheritance, this example is based on a fragment of the complete V-metamodel (see Fig.

5) corresponding to our T-metamodel. The goal of this example to define a new V-class

V#ShowFormAction referencing T#ProcesNode. But along the way several

abstract V-classes providing the full inheritance hierarchy for V#ShowFormAction

will be defined as well – V#ProcessElement, V#ProcessNode and V#Action.

The first two abstract V-classes correspond to similarly named T-classes, but V#Action

is a new V-class introduced to organize in a more clearly way the inheritance of

attributes and associations. The definition of V#ProcessElement is very simple,

with just one function connectProcess() of the pattern 2, creating the link to the

relevant T#Process instance. Similarly, the V#ProcessNode definition contains

only the attribute setter function (pattern 1). The definition of V#Action contains a

setter function (pattern 1) for setting the inherited attributes and the function

makeRolesForUserAction() for creating one or more links to T#Roles in a

loop (pattern 3).

 Process DSL Transformation by Mappings Using Virtual Functional Views 139

The non-abstract V-class V#ShowFormAction contains one function to be defined

– connectEditForm(), with the pattern 2, for creating a link to an existing instance

of T#EditForm. In this V-class constant values are assigned to two inherited attributes

(by assignment statements starting with ”-“). Fig. 5 shows the short form of these V-

class definitions as a V-metamodel, for function definitions their pattern types are shown

as well.

Since V#ShowFormAction is the only non-abstract V-class in the fragment, only

it can appear in mapping rules. Using it in a mapping rule means that all inherited

functions will be invoked as well. All attribute and link setting in these functions will be

applied to the created T#ProcessNode instance. Therefore the attributes of the super-

classes (certainly, those not superseded by setting constant values to them) will appear in

the list of attributes to be set for V#ShowFormAction (however, this attribute setting

can be syntactically split into attribute setting rules, see section 3).

 We conclude the section with one more V-class required for mapping examples in

the next section. The V-class V#Transition has one function (with a pattern 4)

makeConstraint() which creates a new class instance (a T#Expression) using a

direct string parameter (the constraint text) and link it to the created T#Transition –

see Fig. 6. A new element is the filter condition (if-expression) which triggers the

specified building action only when the condition is true.

Fig. 6. The function makeConstraint()for V#Transition.

3. Mappings based on functional view

A mapping definition consists of mapping rule definitions and rule execution order

specification. Each mapping rule specifies what target model fragment is to be created

for the given S-class. The rule may contain some filtering conditions with respect to

instances of this class, but more complicated source patterns are not included – there is

no need for them in the domain. The mapping rule body contains one or more V-class

occurrences with all attribute values set. Expressions for attribute setting are based on a

specific source metamodel, Fig. 7 shows the used here source metamodel corresponding

to one specific DSL to be defined. Although the given source metamodel is similar to the

target metamodel, it is sufficient to show all basic mapping constructs.

140 Lace, Kalnins, Sostaks

Fig. 7. Source metamodel of an example DSL used for mapping rules.

Mapping rule execution means applying it in a loop to each instance of the specified

S-class in the source model and creating T-class instances as specified by the included

V-classes. In addition, the standard source-target traceability information at instance

level is created. In fact, mapping rules are of several categories and these categories

influence their execution order. The categories are listed here according to their

execution order.

Fig. 8. Mapping execution order specification using categories.

First, there is the Environment category which includes the mappings for

Environment classes. The next category is Process, which contains only the rule for

S#Process. Then the category ProcessElements follows, which contains all “normal”

process element kinds in the source model (S#Start, S#ShowFormAction etc.).

These rules create local fragments consisting of T#ProcessNode instances –

frequently just one instance. But the created fragment may consist of several

T#ProcessNode instances, if the body contains several V-classes; then internal

control flow creation can be defined as well and the fragment must always have one

entry and one exit. The execution order of rules in this category is irrelevant. There is

also a special category AbstractElements, these rules are based on an abstract S-class and

 Process DSL Transformation by Mappings Using Virtual Functional Views 141

extend the fragments already created for non-abstract subclass instances of this class.

Both the ProcessElelements and AbstractElements rules automatically create an

extended traceability – besides the standard source-target traceability links they create

links from source instance to the entry and exit of the created T-fragment. The last

category – Transition is for building T#Transition instances between the created T-

fragments.

Fig. 9. Example of mapping definition using V#Process (two syntax forms)

Fig. 9 (left) shows the simplest mapping rule definition which maps all S#Process

instances from an S-model built according to the metamodel in Fig. 7 to T#Process

instances as required – create instances, set attributes, build links. The V#Process

definition here is even more abridged – only assignments to attributes are visible. The

mapping runs over all instances of the specified S-class – S#Process and for each

does what is specified in the V#Process class definition by creating the T#Process

instance and invoking the functions. The attribute values are set by expressions in the

mapping rule on the basis of the current S#Process instance, denoted by “@” in these

expressions (the standard property-based navigation notation is applied). For class-typed

attributes the special built-in function FindTarget is applied which returns the

instance in the T-model to which the current S-model instance has been mapped (using

the traceability information). The FindTarget function can also be applied to a list of

S-instances, then it returns the corresponding list of T-instances.

Alternative syntax for mapping rules is also available – a rule can be split into a

declarative attribute setting rule for a V-class (on the basis of the relevant S-class) and

executable T-instance creation rule (see Fig. 9, right). The main advantage of such

splitting is that attribute setting rules can be applied to abstract V-classes as well and can

be inherited by their subclasses, thus a significantly more compact mapping description

can be obtained. This style will be used for the rest of the example.

Fig. 10. Attribute setting rules

142 Lace, Kalnins, Sostaks

Now more examples of mapping rules are given. Fig. 10 shows the attribute setting

rules for the relevant V-classes in the form of an inheritance tree. There the description

compactness is clearly visible, e.g. the attribute specifying the link target from any kind

of process node to the process itself has to be set only once in the rule for the

V#ProcessNode. The attribute rule hierarchy is based on the corresponding V-class

hierarchy. Each rule references an S-class; the property navigation in the rule must be

consistent with this class in the S-metamodel. These S-classes along an inheritance path

in the rule tree must be consistent with the inheritance in the S-metamodel, and end up

with a non-abstract S-class for the leaf rule (for a non-abstract V-class which is used in

an executable mapping rule). This is because during execution all @-navigation goes

from the current instance of this non-abstract S-class. For better readability relevant V-

classes without attribute assignments can also be included in the rule inheritance tree – to

see what attributes must be set or what V-subclasses may be used.

Fig. 11. Mapping rules for S#Start, S#End and S#ProcessCall classes

Now we will describe the executable rules. We begin with some comments on the

rules in the category ProcessElement, starting with the simplest ones. All the attribute

setting has already been defined in the attribute rules. Therefore rules for S-classes

S#Start, S#End and S#ProcessCallAction (see Fig. 11) where only the

relevant T-class instance is to be built contain just the reference to the V-class.

Fig. 12. Mapping rule for S#DecMerge

The mapping rule for S#DecMerg (Fig. 12) is more complicated, since in our DSL

decision and merge control nodes are united into one control node, the meaning of this

control node can be deduced from the control flow context – one outgoing control flow

means merge, single incoming one means decision, otherwise there must be both merge

and decision nodes. To have such case-like functionality, the if-elseif-else construct is

introduced. The last case contains two V-classes thus creating two T#ProcessNode

instances, these instances are connected by a control flow specified graphically.

 Process DSL Transformation by Mappings Using Virtual Functional Views 143

Fig. 13. Mapping rule for S#ShowFormAction

 A loop can be defined directly in the mapping, to create a variable number of

instances of a “main” T-class. Fig. 13 shows such an example – the mapping rule for

S#ShowFormAction. According to the metamodel (Fig. 7) in a source model one

such action instance is related to one or more forms – the expression @.form returns a

list of source forms. For each of the forms a separate instance of T#ProcessNode has

to be created. So the mapping body must be executed for each form instance in this list

in the source, the corresponding created target fragments are connected by transitions

into a single sequence. Note that this is the only mapping rule where the attribute type

for a function in the V-class (T#EditForm) doesn’t coincide with the expression type

required for the mapping rule itself (a list of source forms). Therefore this attribute is not

set in an attribute setting rule in the inheritance tree (Fig. 10). Instead, in the mapping

rule the value of the attribute showForm is set explicitly on the basis of the current

source form instance in the list (c_form). Certainly, the values of the other inherited

attributes are taken from the inheritance tree.

Fig. 14. Mapping rule for the abstract class S#Action

Now a rule in the category AbstractElements – the rule for creating an additional

merge node (Fig. 14). The DSL permits two or more control flows to enter an action,

while the target model requires a merge node to be prefixed to such an action. The rule is

based on S#Action – a merge node is prefixed to all relevant fragments created from

S#Action subclass instances (this is done after all such fragments have been created).

The new “internal” transition must go to entry node of the existing target fragment; this

is specified using the predefined function FindFirstTarget (find the fragment

entry) based on the extended traceability.

144 Lace, Kalnins, Sostaks

Fig. 15. Mapping rule for S#Transition

We show also the mapping for Transition (Fig. 15). The created

T#Transition must connect the exit and entry nodes respectively of the relevant

fragments, the nodes are located by the functions FindLastTarget and

FindFirstTarget respectively. We remind that transition mappings are applied as

the last ones, after all fragments for nodes have been finalized. Here two links are

directly created as well in the T-model (therefore the corresponding associations from

the T-metamodel were included also in the V-metamodel).

 We conclude with brief comments on some more possible mapping facilities not

shown here. For a loop defined directly in the mapping the corresponding created target

fragments were connected by transitions into a single sequence (Fig. 13). However more

complicated control patterns such as parallel fan-out – fan-in can also be specified.

Completely another dimension in extending the approach is the possibility to define new

built-in functions on models, such functions then can be used for various expressions

both in V-rule and mapping rule definitions, thus significantly extending the expression

power beyond simple model navigation shown here. It seems that these extensions cover

most of possible needs for mapping various DSL constructs. However, for practical

examples of DSLs built using the platform GraDe3 (Kalnins et al., 2014) the described

here facilities were completely sufficient.

4. Related work

The approach proposed in the paper has the largest value for situations when a domain

specific process definition language has to be transformed to some executable process

language. Especially it is in the case where the corresponding implementation platform

supports easy facilities for defining new domain specific process languages including

graphical ones. In fact, there are not so much process DSL environments. One of the first

such environments is jABC (Steffen et.al., 2007). Some separation of control flow and

process element aspects is present there, however only process elements directly

implemented as Java classes are considered there, therefore explicit process

transformations do not appear. The next to be mentioned is the approach based on

Karlsruhe’s Integrated Information Management (KIM) (Freudenstein, 2009). There a

number of standard process languages (BPMN, UML Activity, Petri nets) are used as

source languages, but they are transformed to a common execution language via an

intermediate model. Processes in source languages are entered as models, but these

models are stored as xml files and the transformations are built in XSLT. Some

transformation structuring is provided there, but only via transformation modules

 Process DSL Transformation by Mappings Using Virtual Functional Views 145

invoked as web services. The approach closest to ours is DSLs4BPM (Heitkötter, 2012),

there new graphical DSLs can be defined using the Eclipse framework. All these DSLs

have a fixed control structure, but new action kinds can freely be added, and BPMN is

used as the target language. Language transformation there is completely model based,

and implemented in MOF QVT Operational Mappings language (OMG, 2011). Fixed

transformations are provided for the control structure, but new action kinds (building

blocks) are transformed by new custom rules to be included via MOF QVTO extension

mechanism. Thus some transformation structuring and reuse is provided in DSLs4BPM,

but it requires significantly higher transformation development skills than our approach

and is less flexible at the same time.

5. Conclusions

A new approach to process transformations by means of virtual functional views on the

target metamodel and mapping rules based on such views has been proposed. This

approach has been partially implemented in the platform GraDe3 for support of domain

specific process languages (Kalnins et al., 2014), with the basic possibilities of mapping

rules really present there. However, the concept of virtual view was not explicitly used;

the idea appeared only as an appropriate structuring of T-model creation functions,

implemented in the low-level transformation language Lua/lQuery (Liepiņš, 2012). The

explicit use of V-metamodel would have simplified the transformation development

significantly, especially for simple modifications of source DSLs in order to find the

most appropriate process DSL for a domain. On the other hand, these experiments have

shown that implementation of the whole approach in this environment would not be

expensive since the main building blocks are already present.

However, the idea of a virtual functional view of a metamodel could have an even

broader applications – in many cases where the target metamodel to be transformed to

has a complicated coding of details. Then such details could be hidden in the functions

defined in the view. In the result, any creation of target model elements – by a trans-

formation or mapping – could be based on “main” elements of the T-metamodel kept in

the V-metamodel and the corresponding functions.

The situation is even quite typical for classical Model Driven Development (MDD)

tasks based on UML (OMG, 2010). One such example is UML sequence diagrams

where a simple task – to add a new message to a diagram (an arrow representing a class

operation invocation) requires adding up to 18 instances of different metamodel classes,

thus making transformation definitions overloaded with technical details. In procedural

(imperative) model transformation languages such as MOLA (WEB, 2) these problems

can be solved to a degree by creating specialized elementary transformation libraries – as

in standard programming languages. However it is much more difficult to accomplish

this for declarative transformation definition style and mappings – a style much broader

used in practice.

An attempt to apply ideas similar to metamodel views for model transformation

development in the classical MDD area was made by IMCS team in (Kalnina et al, 2012)

where a simplified metamodel view – a tree type definition facility was offered both for

source and target metamodels. This way many practical model transformations for UML

based MDD could be defined by simple mappings, including sequence diagram creation.

However the implementation of this idea required Higher order transformations in

146 Lace, Kalnins, Sostaks

Template MOLA (Kalnina et al, 2010) to be used. In addition, the proposed facilities for

creating the target model from the target tree (just extended OCL-like navigation) may

be insufficient for more complicated cases, explicit functions would fit there well.

The same problem is important also for the model transformation language most used

in practice – ATL (Jouault and Kurtev, 2005). Though ATL supports also the imperative

style, most of transformations in ATL are being developed in the declarative style. There

matched transformation rules with their from and to clauses are close to advanced model

mappings. For source metamodels there are rich facilities in ATL – helper functions and

attributes, which in fact permit to define a required view on the metamodel by extracting

the relevant data from the source model in the form most appropriate for use in the given

transformation rules. Each helper is defined in the context of a source metamodel class

or the transformation module in general. However there are no similar facilities in ATL

for accessing the target metamodel in to-clauses of rules, all features of the to-class

instance to be created must be set explicitly in the rule. A setter function concept similar

to our functions in V-model could be added to ATL, with the context being a “main”

target metamodel class, the environment of which has to be built with all technical

details included. The only issue could be the fact that currently all functions in ATL are

without side effects.

 All this provides a new dimension in transformation structuring, which is yet to be

evaluated in practice.

6. Acknowledgments

This paper partially has been supported by the ESF project

2013/0005/1.1.1.2.0/13/APIA/VIAA/049.

References

Freudenstein P. (2009). Web Engineering for Workflow-based Applications: Models, Systems and

Methodologies. Karlsruhe: KIT Scientific Publishing, German

Heitkötter, H. (2012). A Framework for Creating Domain-specific Process Modeling Languages.

Proceedings of the ICSOFT 2012, Roma: SciTePress, 127-136.

Jouault, F., Kurtev, I. (2005). Transforming models with the ATL. Lecture Notes in Computer

Science, Springer, volume 3844, 128–138.

Kalnina E., Kalnins A., Celms E., Sostaks A. (2010). Graphical template language for

transformation synthesis. Proceedings of SLE 2009, LNCS, Springer, volume 5969, 244-

253.

Kalnina E., Kalnins A., Sostaks A., Celms E., Iraids J. (2012) Tree Based Domain-Specific

Mapping Languages. Proceedings of the SOFSEM 2014, LNCS, Springer, volume 7147,

492-504.

Kalnins A., Lace L., Kalnina E., Sostaks (2014). A. DSL Based Platform for Business Process

Management. Proceedings of the SOFSEM 2014, LNCS, Springer, volume 8327, 351-362.

Lace L., Kalnins A. and Sostaks A. (2014). Mappings for Process DSL Using Virtual Functional

Views, Proceedings of Baltic DB&IS 2014, Tallinn University of Technology Press, 371-

378.

 Process DSL Transformation by Mappings Using Virtual Functional Views 147

Liepiņš, R. (2012) Library for model querying: IQuery. Proceedings of the 12th Workshop on

OCL and Textual Modelling (OCL '12). New York: ACM, 31-36.

OMG (2010). OMG Unified Modeling Language (OMG UML), Superstructure, version 2.4

OMG (2011). OMG MOF 2.0 Query/View/ Transformation (QVT) Specification, version 1.1

Steffen B., Margaria T.et al. (2007). Model-driven development with the jABC. Proceedings of

the 2nd International Haifa Verification Conference, LNCS, Springer, volume 4383, 92-108.

WEB (a) BPMN 2.0 specification, http://www.bpmn.org

WEB (b) MOLA – MOdel transformation LAnguage, http://mola.mii.lu.lv

Received June 9, 2015, accepted June 12, 2015

http://www.bpmn.org/

