
Baltic J. Modern Computing, Vol. 3 (2015), No. 3, 193-204

HTML Document Content Comparison Algorithm

Armantas OSTREIKA, Andrius LAURAITIS

 This paper describes still encountered problems of documents visual content

comparison in contemporary computerized workplaces. There are many ways for creating

HTML documents and plenty of invisible to user data that carries no information in terms

of content. Such circumstances make the automation and visualization process of HTML

document comparison rather complex. Introduced algorithm compares versions of HTML

documents and displays changes in a result document. The comparison is carried out in

such a way that all style and metadata of the document is preserved. Furthermore, the

design phases and implementation aspects of the algorithm are investigated in order to

share achieved results, to create an effectively working tool and draw guidelines for future

work.

Keywords: document content comparison, style data preservation, changes visual

tracking, HTML document.

1. Introduction

HTML files that are the fundamental elements of web-based systems get modified

periodically. Many cases occur where HTML documents are edited by creating,

deleting or updating some of the existing text and evolving to a new version of the

document resulting to a different file. Thus the original file has a revision and

both of them can be compared to analyze and track the changes by the ‘end user’.

Typically, but not necessarily, file comparison can be used for generalization

purposes, e.g. reporting distinguishing alterations of system modules status

between particular date range, etc. The mentioned example just introduces

capabilities of applying such a comparison procedure in practice. In real world’s

scenarios it could also be beneficial in system file monitoring and version control,

tracking changes of various project work or thesis report, providing assistance for

software and web developers, quality managers.

However the comparison of document content is not so simple and trivial task

as it might seem at the first glance. Visible text in document files is encoded and

formatted in a variety of tags and accompanied by metadata, which are dependent

on the document creator. The problems of detecting HTML content changes and

providing a good quality comparison results’ document still persist today and are

not resolved completely. Aim and intention of this work is to find a possible

solution for this problem. One of the most appropriate approaches to apply a

document comparison procedure in practice is to util ize it as a tool. This way it

194 Ostreika and Lauraitis

could be a tangible product for users to benefit from. To clarify the work that has

been done in this area a carried out analysis as a research method is presented in

the next chapter of the paper.

2. Existing document comparison tools analysis

There is a huge variety of file comparison tools in the market. Some of them are

free (bundled with GPL1 usually) other have proprietary software licenses and

cost money. Moreover, the functionality of such tools is very different: from

showing in-line and character changes, moved lines, defining structured

comparison, supporting Unicode to merging changes, generating reports, version

control, directory comparison etc. The selected tools were chosen for the analysis

due to number of reasons:

1. To show the elementary, easy to use comparison tools that meet the basic

expectations when working with text data;

2. To show the contrast between text based and graphical tools, emphasizing

quality of visual representation;

3. To distinguish those particularly dealing with HTML files as they fit closest

to the tasks under investigation.

Next sections of this chapter explore selected comparison tools, their working

principles and summarize common features.

2.1 Built-in Windows and Linux file comparison tools

Some of the most trivial tools in Windows OS for comparing files are the COMP

and FC commands. In Linux OS, a classical file comparison diff utility can’t be

ignored. It is based on solving the longest common subsequence problem (Balcan,

2011) and has many built-in features. To sum up, briefly analyzed file comparison

tools does not support graphical result representation. It can sometimes be

inconvenient because users must have at least minimum skills how to use the

commands and read output at file source level. Furthermore the format of a HTML

file would be distorted and it could not be loaded into a browser directly.

2.2 More feature-rich file comparison tools

In this chapter more sophisticated file comparison tools are ana lyzed. These

selected tools are designed to display visual aspects of tracked content changes

and are especially adapted for HTML documents comparison. The key aspects of

proprietary visual HTML document comparison tools are high content change

detection quality and document style preservation. So the next sections of this

chapter show the basic functionality of these tools. In order to check the quality

of a compared result document better, each of the tools are tested with a set of

prepared HTML files that have comment information, nested tags, Unicode

characters and inline styles.

1 The GNU General Public License (GPL) is the most widely used free software license.

 HTML Document Content Comparison Algorithm 195

Daisydiff (Code Google project base, 2007). It provides features like:

comparing badly formed HTML, detecting text fragments content changes, diffing

source code coherently. In addition, a Daisydiff compared result document has a

navigation and modification report system which helps finding a particular change

faster. Although being a solid comparison tool, Daisydiff doesn’t preserve style

related data and maintain Unicode characters properly.

HTML-diff. This tool (Charles University, 2010) compares HTML files not

only at source level but shown text as well (Charras and Lecroq, 2004). Html-diff

does a pretty good job with HTML file comparing. However the result document

is not well formatted. Moreover some HTML tags are treated as content changes

and it does not show any visual changes with complex large HTML files.

HTML Match. A powerful commercial GUI tool (Salty Brine, 2005) for

Windows OS. Features include: choosing a comparison mode (visual aspects,

source code), defining output format, choosing difference detail level (character,

word, line and document), ignoring whitespace, navigating between found content

changes, and associating text extraction engine with MS Word. HTML Match is

the highest quality comparison tool of all selected ones. It preserves all style data,

has comparison modes. However when loading large complex HTML files the

visual aspect mode does not show any results (although the source code and text

mode works).

2.3 Summary of the selected tools

After analyzing selected comparison tools, a list of features are made to show the

key aspects to consider when implementing a high quality HTML document

comparison utility. Results are displayed in Table 1.

Table 1. List of selected document comparison tools and their features

Title User

interface

Change

tracking

level

Visualization

of changes

Formatting

and style

preservation

Large file

handling

Diff Textual Line,

Document

 No* No Yes

 FC, COMP Textual Character,

Line

No No No

Daisydiff Textual‡ Word, Line,

Document

Yes Partial° Yes

HTML-diff Textual Word, Line,

Document

Yes Partialº Yes

HTML

Match

Graphical Word, Line,

Document

Yes Partial˜ Yes

* Classical version doesn’t have this feature, however there are some modifications.
‡ Basic utility is console based, but there is a plugin for a graphical user interface system DaisyCMS.

° Structure of the result document was malformed as some extra unnecessary HTML tags were generated.
º Some output text symbols were not recognized as valid ones in browser. In addition, content changes were not

detected in HTML table elements.

˜ Visual comparison mode of the tool did not provide any results when multilevel nested HTML tags with inline
comments were tested.

196 Ostreika and Lauraitis

In conclusion, all the reviewed tools have their advantages and practical

application areas. Unfortunately tool features that represent HTML document

content changes visually have their downsides and need some improvement.

3. Determining a design solution for a HTML document

comparison algorithm

In order to implement a more efficient HTML document comparison algorithm

different design strategies for such task should be considered. Firstly, HTML files

are structured documents with embedded mark-up used for defining the semantics

of various elements according to a schema. Additionally, HTML files can be

represented as the Document Object Model (DOM) where every document node is

organized in a tree structure (Deng, C. et al., 2003). Two different techniques are

considered in this chapter: tree structure navigation and single line preprocessing.

3.1 Considerations about applying a tree structure

Here, two special cases are emphasized in the analyzed task: 1) Comparison of

data that forms the content (text, images etc.); 2) Analysis of document structure

and identification of formatting elements.

In the first case analysis is not dependent on the document structure i.e.

text fragment comparison must be performed at character level, interpreted and

merged to word or entire paragraph level afterwards. Performance of such analysis

is not related to document structure whereas identification of formatting elements

could be done in different ways: analyzing document line by line or considering

the format and structure of a file. However hierarchical tree structure of a

document might be very complex since its height and width is not fixed. Each

node of such tree must be analyzed because the node itself or data inside the node

could result in a content change (Chen et al., 2003). Except the HEAD section all

other HTML elements which are located in BODY part could be repeated many

times or nested inside each other, e.g. a paragraph has subparagraph that has even

more subparagraphs etc. (Fig. 1).

Fig. 1. HTML tree structure fragment. Node name correspond to HTML tag name.

 HTML Document Content Comparison Algorithm 197

The key point is that an algorithm should search for content changes rather than

changes in file structure. If a document consists mainly of text paragraphs then a

tree will be very low but wide and the analysis of such tree will not be different

from one that applies a cyclic text line processing approach. Moreover, from a tree

structure viewpoint, if the font size of particular words is changed in a line then

these changes will appear in a separate level or additional sub-branch of a

hierarchical tree structure (Artail and Fawaz, 2008). These shifts are not

meaningful because in such cases no content changes are made. So, if a tree

structure is applied then additional analysis must be performed to check if new

document nodes are not partial fragments of nodes which were found previously.

Consider the following HTML code fragment (illustrated as A in Fig. 2).

<p style="margin-top: 0pt; margin-bottom: 0pt;" align="left">

Additional material for laboratory work</p>

<p style="margin-left: 10px;">

 For 3rd course students (T120B186)</p>

However if words become bold or font is changed tree structure changes

(B in Fig. 2).

<p style="margin-top: 0pt; margin-bottom: 0pt;" align="left">

Additional material for laboratory work</p>

<hr><p>andnbsp</p><p style="margin-left: 10px;">

 For 3rd course students (<i>T120B186</i>)</p>

Fig. 2. Changing tree structure (not content) of a HTML document.

In conclusion, Fig. 2 illustrates an important concept: despite of the fact the

structure of the tree changed content should be the same. Node “a” should have

been treated as identical though the tree structure implies differently. Due to these

reasons a single file line (not a HTML tag) processing approach is selected.

198 Ostreika and Lauraitis

3.2 Proposed algorithm

Algorithm analyzes two HTML documents and detects content changes preserving

style data. After processing original and revised HTML documents a comparison

result document is formed. Tracked content changes are visualized.

Fig. 3. Proposed algorithm workflow schema

Algorithm processing phases and working principle . Four essential

processing phases (Fig. 3) are defined: 1) Loading data to memory; 2) Original

and revised document analysis; 3) Tracking content changes; 4) Collecting results

and statistics.

As the detailed workflow schema implies, algorithm is divided into two

 HTML Document Content Comparison Algorithm 199

branches: one with equal line numbers in both documents, other with different

ones. Each action in particular branch corresponds to specific functionality. In the

first stage all initial document data is loaded into computers memory. Second stage

includes document line analysis i.e. reformatting HTML tags and counting total

number of lines. In third stage the document levels where content changes were

found are detected. Depending on the determined level (document, line, word,

symbol) appropriate further actions to find changed elements are executed. During

fourth algorithm processing phase final results, including statistics, are gathered.

Loading data to memory. In this stage, the number of lines in each document

are calculated. This determines the size of initial document data. In the

implementation function, file is read until the end of it and text lines are stored in

an array structure after that. Procedure is applied with different arguments to the

original and revised documents. Loaded data is used in the next phase where

documents are analyzed.

Original and revised document analysis. This stage is a mandatory step in

performing a comparison routine. HTML documents are arranged in the way that

detection of content changes would be as easy as possible. Features include:

 HTML comment handling and avoiding situations when the end of one comment in

the document coincides with the start of other comment tag (Altinel and Franklin,

2000);

 Ignoring whitespace and other separators at the beginning and end of a line. This

gives more capabilities to prepare initial documents by copying and pasting text;

 Reformatting2 standard tags (<p>, <table>, <td>, <tr>, <h1>, <h2>, <!--, etc.). In

order to gain better comparison results, this kind of analysis is made when text

elements of one tag are lied out in several lines (Lim and Ng, 2001);

 Simplifying document text lines by making a copy of the original element.

Simplified lines only have tag name and text content (all additional information is

excluded).

Tracking content changes. Phase working principle is based on two

scenarios: 1) With equal line numbers in both documents; 2) With different line

numbers in both documents. In the first scenario content changes are tracked at

character, word and line level. In the second scenario size of documents are unified

first by detecting changes at document level and referring to first scenario

afterwards. Moreover, second scenario is more time consuming because many data

insertion operations are done in the entire document. Required procedures in the

first scenario:

 Document line decomposition. Each distinguished text fragment (Flesca and Masciari,

2003) is saved into an array. Procedure is applied to both documents.

 Insertion of fictitious line elements. Analyzes text fragment array for both documents

and determines which elements should be inserted, deleted or left unchanged;

 Capture of line changed text fragments (MacKenzie et al., 1993). This procedure relies

on the insertion of fictitious line elements routine and generates a new text fragment

array which stores information about detected changed text tokens3;

2 Changing the format of existing HTML tags is done in such that if the same element wraps in

multiple lines then it is treated as single line element preserving all style and content data.
3 Include deletion or insertion indication symbols for changed characters or words.

200 Ostreika and Lauraitis

 Formation of a result line. Data from a newly formed array in the previous procedure

is appended into one line. A set of such lines forms the final comparison result HTML

document (Yang and Shang, 2001).

The second scenario requires even more procedures because it refers to all

functions from the first scenario at a particular phase. However there are some

additional routines that must be performed:

 Search for modified document lines (Lecroq, 2007). Both initial documents are

analyzed and specific indicators are formed to mark modified document lines.

Procedure is important in order for algorithm to find content changes not only at entire

document level but also at line, word and character level.

 Insertion of fictitious document elements. Unification of both documents sizes is

performed during this procedure which deals with not found document lines. Moreover,

modified lines can’t be treated as fictitious elements (Cobena et al., 2002).

 Detecting changes in the whole document level. According to previously formed

indicators, lines are inserted or deleted (Mikhaiel et al., 2005). If only modified lines

are found then functions from first scenario are executed.

Regardless of initial document sizes and the scenario that algorithm tracks content

changes, a result document forming process is always conducted.

Visualizing content changes and gathering statistics. The control of how the

final result (Štěpánek and Šimková, 2012) is shown is made in an external CSS

file. A particular procedure is applied to establish a link between the result HTML

comparison document and a CSS file. Style sheet file define classes that are used

to various HTML multimedia objects to track inserted (green color) and deleted

(red color) content. Relevant display rules from CSS are applied according to

different detected element type e.g. changing text font in a paragraph etc.

4. Achieved experimental results

This chapter specifies results that were achieved with the implemented HTML

document comparison algorithm. Selected files for testing had associated

comment and blank lines, nested HTML tags with inline styles, lines with no text

content, HTML tables, paragraphs, headers, and various multimedia elements

(images, videos, audio, embedded objects etc.). Moreover, documents prep ared in

Microsoft Word and saved as regular or filtered HTML web pages are supported

and can be compared to view content changes. Further chapter segments are laid

out in such a way that different content detection levels (word, line and document)

are emphasized.

4.1 Detecting changes at word, line and document level

In the entire content change detection process the document level has the highest

priority because it equalizes4 the size of original and revised documents and

allows tracking content changes at line and word level for remaining unchanged

4 This is managed by inserting fictitious units to newly added or deleted lines in corresponding

document location.

 HTML Document Content Comparison Algorithm 201

lines in further processing stages. This is illustrated in another, slightly more

complex example (Fig. 4) with different document line numbers where content

changes at all three levels in HTML paragraphs, headers and hyperlinks are

tracked (Julian, 2006). Inline HTML element styles could also be provided.

Rendered comparison result in a web browser:

Fig. 4. Detecting content changes at word, line and document level

4.2 Detecting HTML multimedia objects

So far, previous sections of this chapter described how text based content

changes are detected and displayed in document. However HTML files may

include many other interactive content forms like images, video, audio etc.

Designed HTML document comparison algorithm is compatible with tracking

changes in such multimedia objects. Currently HTML 5 media tags (video, audio,

Youtube and other plugins) are supported along with formats (embed, object,

iframe tags) in older HTML versions. Changed multimedia object is detected only

if it was added or deleted as entre unit in the revised document i.e. tracking partly

modified graphical elements is considered to be a separate task. Fig. 5 illustrate s

detected multimedia objects in green or red border.

Fig. 5. Detecting changed multimedia objects in a document

Thus provided algorithm test scenarios emphasize the quality aspects of a comparison

result. However algorithm speed performance also matter as files can get very large.

202 Ostreika and Lauraitis

4.3 Algorithm speed performance

Several HTML document creation approaches were chosen in algorithm testing process.

Furthermore different structure HTML files were considered which were created either

with a HTML editor or generated by Microsoft Word. In order to get proper experimental

results computers were disconnected from internet, leaving only active system processes.

Three computers (numbered ascendingly by CPU frequency) were picked randomly and

test sets were run separately in each computer to compare speed results. Selected test

computers can be further analyzed and investigated in context of overall CPU Benchmark

rating system (CPU Benchmark, 1998). PC1: Intel® CPU T2060 1.60 GHz, 0.99 GB

RAM, 32-bit; PC2: Intel® Core™ i5 – 2430M, 2.4 GHz, 8 GB RAM, 64-bit; PC3: Intel®

Core™ i5 – 3470 CPU 3.2 GHz, 4 GB RAM, 64-bit.

Table 2. HTML document comparison algorithm speed performance results

Document

Type

Equal

Line

Number

Document size

(lines /

symbols)

Inline

styles

Computer

Type

Algorithm

Speed (s)

”Clean“ ⃰

HTML

document

Yes 796 / 95930 No

PC3 49,37

PC2 71,35

PC1 147,04

No

798 / 95989

with

813 / 96227

No

PC3 54,59

PC2 67,17

PC1 147,82

HTML

table‡

document

Yes 3327 / 124593 No

PC3 108,35

PC2 136,20

PC1 475,48

No

2232 / 162647

with

2021 / 144287

Yes

PC3 80,33

PC2 106,18

PC1 280,42

MS Word

generated

document

No

947 / 52032

with

2700 / 142568

Yes

PC3 30,78

PC1 40,23

PC2 46,56

9819 / 618263

with

9590 / 602921

Yes

PC3 524,36

PC2 653,90

PC1 1086,37

* Prepared without any additional tags like <!--, <script>, <meta> etc. Does not require reformatting.
‡ The basis of document content is formed using HTML table elements when corresponding data fields are

edited. Tag reformatting operation is required.

To sum up, the better CPU tactical frequency the faster a result is formed. Moreover

computers with a higher rank in CPU Benchmark system process the HTML document

comparison algorithm quicker. Algorithm performance is slower if these factors increase:

number of lines in document, reformatting operations, size difference between both

documents (more content changes needs to be detected) and inline styles.

 HTML Document Content Comparison Algorithm 203

5. Conclusions and further work

The developed HTML document comparison algorithm tracks content changes at word,

line, document level, preserves style data and can process large files. Mentioned features

improve the quality of presenting results visually. Compared HTML document can be

viewed in a browser directly. Algorithm was implemented and tested in MS Windows

platform with C++ programming language.

Implementing a tree structure for HTML file comparison routine would be meaningful if

the tree is applied not only for documents but for complex hierarchical structure websites.

An intermediate algorithm combining single line processing approach and using a tree

structure (to a certain hierarchical level) should be considered as well.

However ability to process very complicated HTML code results in relatively large

processing time. Proposed and implemented HTML document comparison algorithm is

still in a prototype version therefore further work should be carried out in: optimizing the

algorithm and improving its speed by exploiting different data structures (e.g. linked lists),

switching from high level programming language like C++ to middle level C. In addition

investigating parallel computing on CUDA-enabled GPU should be considered where

each text line or node processing is executed in a separate core.

References

Altinel, M., Franklin, M.J. (2000). Efficient Filtering of XML Documents for Selective

Dissemination of Information. USA, University of Maryland and University of California at

Berkeley. Proceedings of the 26th VLDB Conference, Cairo, Egypt

http://www.cs.berkeley.edu/~franklin/Papers/XFilterVLDB00.pdf

Artail, H., Fawaz K. (2008). A fast HTML web page change detection approach based on hashing

and reducing the number of similarity computations. Data and Knowledge Engineering, Volume

66, Issue 2, pp 326-337.

Balcan, Maria-Florina. (2011) Longest common subsequence problem.

http://www.cc.gatech.edu/~ninamf/Algos11/lectures/lect0311.pdf. Accessed 12 Dec 2014.

Charles University (2010), Faculty of Mathematics and Physics. HTML-diff Project.

https://code.google.com/p/html-diff/. Accessed 10 Oct 2014.

Charras, C., Lecroq, T. (2004). Handbook of exact string matching algorithms.

http://www-igm.univ-mlv.fr/~lecroq/string/string.pdf. Accessed 05 Sep 2014.

Chen, Y., Wei-Ying M., Hong-Jiang Z. (2003). Detecting Web Page Structure for Adaptive Viewing

on Small Form Factor Devices. Accessed Apr 2015.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.331.8878&rep=rep1&type=pdf.

Cobena, G., Abiteboul, S., Marian, A. (2002). Detecting Changes in XML Documents. INRIA,

Rocquencourt France, Columbia University/ N.Y.USA. Data Engineering, Proceedings. 17th

International Conference. Accessed 10 Apr 2015.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=994696.

Code Google project base (2007). Daisydiff. https://code.google.com/p/daisydiff/.

 Accessed 10 Oct 2014.

CPU Benchmark. PassMark (1998). http://www.cpubenchmark.net/. Accessed Apr 2015.

Deng, C., Shipeng Y., Ji-Rong W., Wei-Ying M. (2003). VIPS: a Vision-based Page Segmentation

Algorithm. Microsoft Research Asia. Technical Report MSR-TR-2003-79

http://research.microsoft.com/pubs/70027/tr-2003-79.pdf. Accessed Apr 2015.

Flesca, S., Masciari E. (2003).Efficient and effective Web change detection. Data and Knowledge

Engineering 46 203–224. Rende, Italy Accessed Feb, 2015.

http://www.sciencedirect.com/science/article/pii/S0169023X02002100.

http://www.cs.berkeley.edu/~franklin/Papers/XFilterVLDB00.pdf
https://code.google.com/p/daisydiff/

204 Ostreika and Lauraitis

Julian (2006). Comparing Strings: An Analysis of Diff Algorithms.

http://www.somethinkodd.com/oddthinking/2006/01/16/comparing-strings-an-analysis-of-diff-

algorithms. Accessed 10 Oct 2014.

Lecroq, T. (2007). Fast exact string matching algorithms. Information Processing Letters, vol. 102,

issue 6, pp. 229-235.

Lim, S-J., Ng, Y-K. (2001). An Automated Change-Detection Algorithm for HTML Documents

Based on Semantic Hierarchies. USA, Brigham Young University. Data Engineering,

Proceedings. 17th International Conference

http://ieeexplore.ieee.org/stamp/st amp.jsp?tp=&arnumber=914842. Accessed 20 Feb 2015.

MacKenzie, D., Eggert, P., Stallman, R. (1993). Comparing and merging files

http://www.chemie.fu-berlin.de/chemnet/use/info/diff/diff_3.html. Accessed 10 Jan 2015.

Mikhaiel, R., Stroulia, E. (2005). Accurate and Efficient HTML differencing. University of Alberta,

Edmonton, Canada. Software Technology and Engineering Practice. 13th IEEE International

Workshop

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1691644. Accessed Nov 2014.

Pehlivan, Z., Ben-Saad, M., Gancarski, S. (2010). Vi-DIFF: Understanding Web Pages Changes.

University P. and M. Curie Paris, France. Lecture Notes in Computer Science Volume 6261, pp

1-15

Salty Brine (2005). HTML Match http://www.htmlmatch.com. Accessed Apr 2015.

Sanka, A., Chamakura, S., Chakravarthy S. (2006). A dataflow approach to efficient change

detection of HTML/XML documents in WebVigiL. USA, University of Texas at Arlington.

Computer Networks, Volume 50, Issue 10, Pages 1547–1563.

Štěpánek, J., Šimková, M. (2012). Comparing web pages in terms of inner structure. Czech

Republic, University of Hradec Králové. 2nd World Conference on Educational Technology

Researches – WCETR2012. Procedia - Social and Behavioral Sciences 83, 458 – 462.

Yang, Y., Zhang, H. (2001). HTML Page Analysis Based on Visual Cues. Microsoft Research

China. Proceedings Sixth International Conference on Document Analysis and Recognition

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=953909. Accessed Feb 2015.

Received July 31, 2015, accepted August 29, 2015

http://www.somethinkodd.com/oddthinking/2006/01/16/comparing-strings-an-analysis-of-diff-algorithms/
http://ieeexplore.ieee.org/stamp/st

