
Baltic J. Modern Computing, Vol. 3 (2015), No. 4, pp. 268–272

A Problem of Hartmanis on Generalized
Partitions

Jonathan David FARLEY1, Dominic VAN DER ZYPEN2

1 Department of Mathematics, Morgan State University, 1700 E. Cold Spring Lane, Baltimore,
MD 21251, United States of America

2 Federal office of social insurance, CH-3003 Bern, Switzerland

lattice.theory@gmail.com, dominic.zypen@gmail.com

Abstract. In 1959, Turing Award winner Juris Hartmanis studied lattices of subspaces of gen-
eralized partitions (“partitions of type n”; “geometries” if n = 2). Hartmanis states it is “an
unsolved problem whether there are any incomplete lattice homomorphisms in” lattices of sub-
spaces of geometries. We give a positive answer to this question.
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1 Introduction

Hartmanis analyzed an abstraction of the concept of partition and called these new
objects generalized partitions. They can be used to define abstract geometries amongst
other things.

Partitions and their generalizations abound in computer science. They appear in fields as
diverse as data analysis, search algorithms, computer graphics, and more. Even though
the objects that Harmanis studies in his paper (Hartmanis, 1959) are quite “old”, their
simplicity and abstraction makes them interesting for present, and (we are confident)
future computer science.

It turns out that generalized partitions have subspaces with certain closure properties
which we define below. In many categories (such as the category of groups or vector
spaces over R), the class of subobjects can be ordered in a natural way using the subset
relation ⊆ and are closed under arbitrary intersections. They form an algebraic object
called a lattice, a concept that we look at more closely in the next section.

Hartmanis asked a question about lattices of subspaces of generalized geometries, name-
ly whether they allow for certain lattice homomorphisms. This article gives a positive
answer to this question.
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2 Notions of lattice theory

The book (Davey et al, 2002) offers an excellent introduction into lattice theory. Nev-
ertheless, we want to define the most important concepts of lattice theory that we use
later on.

A partially ordered set (or poset for short) is a set X with a binary relation ≤ that is
reflexive, transitive, and anti-symmetric (i.e., x, y ∈ X with x ≤ y and y ≤ x implies
x = y). Often, a poset is denoted by (X,≤). A subset D ⊆ X is called a down-set if
it is “closed under going down”, that is d ∈ D,x ∈ X,x ≤ d jointly imply x ∈ D. A
special case of a down-set is the set

↓ x = {y ∈ X : y ≤ x}

for x ∈ X . Down-sets of this form are called principal. If S ⊆ X we say S has a
smallest element s0 ∈ S if s0 ≤ s for all s ∈ S. Note that anti-symmetry of ≤ implies
that a smallest element is unique (if it exists at all!). Similarly, we define a largest
element. Moreover, we set

Su = {x ∈ X : x ≥ s for all s ∈ S}

to be the set of upper bounds of S. The set of lower bounds S` is defined analogously.

We say that a subset S ⊆ X of a poset (X,≤) has an infimum or largest lower bound if

1. S` 6= ∅, and
2. S` has a largest element.

Again, an infimum (if it exists) is unique by anti-symmetry of the ordering relation, and
it is denoted by inf(S) or

∧
X S. The dual notion (everything taken “upside down” in

the poset) is called supremum and is denoted by sup(S) or
∨

X S. The infimum of the
empty set is defined to be the largest element of X if it has one, and the supremum is
the smallest element of X .

A poset (X,≤) in which infima and suprema exist for all S ⊆ X is called a complete
lattice. A lattice has suprema and infima for finite non-empty subsets. If (X,≤) is a
poset and x, y ∈ X we use the following notation

x ∨ y :=
∨
X

{x, y},

and x ∧ y is defined analogously. To emphasize the binary operations ∨,∧, a lattice
(L,≤) is sometimes written as (L,∨,∧). A lattice is distributive if for all x, y, z ∈ L
we have

x ∧ (y ∨ z) = (x ∨ y) ∧ (x ∨ z).

An ideal of a lattice is a subset I ⊆ L that is a down-set of (L,≤) and is closed under
∨, that is

a, b ∈ I =⇒ a ∨ b ∈ I.
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The dual notion is called a filter. An ideal I ⊆ L is prime if L \ I is a filter. In other
words you cannot “get into I from outside” by applying ∧. This compares well to the
situation of ideals in rings: an ideal in a ring is closed under + and it is prime if you
cannot get inside the ideal using multiplication with elements outside the ideal.

In distributive lattices, Zorn’s Lemma implies an important tool:

Prime Ideal Theorem (PIT): If L is a distributive lattice, and I ⊆ L is an ideal, and
F ⊆ L a filter with I ∩ F = ∅, then there is a prime ideal P ⊆ L such that

1. I ⊆ P , and
2. P ∩ F = ∅.

Theorem 10.18 in (Davey et al, 2002) offers a detailled proof. (PIT) cannot be proved
within ZF, standard proofs use the Axiom of Choice. Interestingly, (PIT) is strictly
weaker than the axiom of choice. These subtleties are also explored in the book by
Davey and Priestley.

3 Generalized partitions

A partition of type n for n ≥ 1 on a set S (consisting of at least n elements) is a set
P ⊆ P(S) such that

1. all members of P have at least n elements, and
2. any n elements of S are contained in exactly one member of P.

Partitions of type 1 are the “traditional” partitions.

A partition of type 2 is referred to as a geometry, and its elements are called lines.

Definition 1. If G is a geometry on a set S, a set T ⊆ S is said to be a subspace of S
with respect to G if it is “closed under lines,” that is, for any distinct x, y ∈ T , for the
(unique) element g ∈ G that satisfies {x, y} ⊆ g we have g ⊆ T .

We denote the collection of subspaces of S with respect to the geometry G by Sub(S,G).

If A ⊆ Sub(S,G) it is easy to see that
⋂
A ∈ Sub(S,G), therefore Sub(S,G) is a

complete lattice with respect to set inclusion.

4 Incomplete lattice homomorphisms

Let K,L be complete lattices. If f : K → L is order-preserving and S ⊆ L we have

f(
∨
K

S) ≥ f(s) for all s ∈ S,
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which implies ∨
L

f(S) ≤ f(
∨
K

S).

A lattice homomorphism f : K → L is said to be join-incomplete if there is S ⊆ K
non-empty such that

∨
L f(S) < f(

∨
K S). (Dually, we define meet-incompleteness.)

We say f is incomplete if it is join-incomplete, meet-incomplete, or both.

The next lemmas deal with incomplete lattice homomorphisms in the context of infinite
complete lattices.

Lemma 1. Let L be an infinite complete lattice (not necessarily distributive) with bot-
tom element 0 and top element 1. Suppose P ⊆ L is a non-principal prime ideal (i.e.,∨
P /∈ P ). Then there is a join-incomplete lattice homomorphism f : L → L preserv-

ing 0 and 1.

Proof. Let f : L → L be 0 on P and 1 on L \ P . Since P is a prime ideal, L \ P is a
filter, which implies that f is a lattice homomorphism. It is (join-)incomplete, because∨
P /∈ P implies

∨
f(P ) = 0 6= 1 = f(

∨
P ).

Of course, there is a dual version of Lemma 1 about filters instead of ideals.

Lemma 2. If L is infinite, complete, and distributive, then it contains either a non-
principal prime ideal or a non-principal prime filter.

Proof. Any infinite distributive lattice contains at least a non-principal ideal or a non-
principal filter. We may assume that J is a non-principal ideal, so that j∗ =

∨
J /∈ J .

Let G = {y ∈ L : y ≥ j∗} be the principal filter generated by j∗. As J ∩G = ∅ we can
use the Prime Ideal Theorem and get a prime ideal P such that J ⊆ P and P ∩G = ∅,
which implies j∗ /∈ P .

Next we show that P is not principal: if we had p∗ :=
∨

P ∈ P then J ⊆ P would
imply p∗ ≥ j∗ =

∨
J and j∗ ∈ P because P is a down-set. Therefore P is a non-

principal prime ideal.

Proposition 1. Let L be an infinite complete and distributive lattice with bottom ele-
ment 0 and top element 1. Then there is an incomplete lattice homomorphism f : L→ L
respecting 0 and 1.

Proof. Combine Lemmas 1 and 2.

5 Construction of an example

Turing Award winner Juris Hartmanis’ problem is on p. 106 of his paper (Hartmanis, 1959):
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So far we have characterized the complete homomorphisms of the lattices of
subspaces of geometries. It remains an unsolved problem whether there are any
incomplete homomorphisms in these lattices and if so how can these geome-
tries be characterized.

In this section we tackle the first part of Hartmanis’ problem.

It asks whether there is a set S and geometry G on S and an incomplete lattice homo-
morphism

f : Sub(S,G)→ Sub(S,G).

Let S = ω and set G =
{
{m,n} : m,n ∈ ω ∧m 6= n

}
.

It is easy to see that Sub(ω,G) = P(ω).

Since P(ω) is distributive, Proposition 1 shows that it allows an incomplete lattice
endomorphism.

In fact, we can give a more constructive way of providing an incomplete lattice homo-
morphism f : P(ω) → P(ω). Let K ⊆ P(ω) denote the set of finite subsets of ω and
let M denote any maximal ideal containing K (this uses Zorn’s Lemma). Let f send
every member of M to ∅ ∈ P(ω) and every member of P(ω) \M to ω ∈ P(ω). Then
f is an incomplete lattice homomorphism.

What remains open is to have a characterization of the geometries such that the com-
plete lattice of subspaces allows incomplete endomorphisms.
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