
Baltic J. Modern Computing, Vol. 3 (2015), No. 4, 273-293

A Practitioner’s Approach to Achieve Autonomic

Computing Goals

Janis BICEVSKIS
2
, Zane BICEVSKA

1
, Kriss RAUHVARGERS

2
,

Edgars DIEBELIS
1
, Ivo ODITIS

1
, Juris BORZOVS

2

1 DIVI Grupa Ltd, 40-33 Avotu Street, Riga, LV-1009, Latvia

 2 University of Latvia, 19 Raina Blvd., Riga, LV-1586, Latvia

Janis.Bicevskis@lu.lv, Zane.Bicevska@di.lv,

Kriss.Rauhvargers@lu.lv, Edgars.Diebelis@di.lv, Ivo.Oditis@di.lv,

Juris.Borzovs@lu.lv

Abstract. The paper proposes a new approach to the development of software resulting in a

greater facility in using and maintaining an IT system; thus moving closer to the main goal of all

autonomic systems – self management. The authors propose including five practice driven

components into the software. These five components are smart technologies: version updating,

testing of execution environment, self-testing, runtime verification and business process execution.

The smart technologies have been successfully implemented in several IT systems.

Keywords: Autonomic computing; smart technologies; business process modelling; smart

technology framework.

Introduction

Information technologies provide unprecedented opportunities to automate many

processes of human life. Actions which have only a few decades ago been the preserve

of human beings can be executed by programmable equipment now. But the mankind's

progress has also brought up new challenges. One of them is complexity of computing

systems. The authors (Kephart and Chess, 2003) refer to as „computing systems with

complexity approaching boundaries of human ability”. The IBM autonomic computing

manifesto (Horn, 2001) claims: “It’s time to design and build computing systems

capable to manage themselves, adjusting to varying circumstances, and preparing their

resources to handle most efficiently the workloads we put upon them.”

Information system developers are continuously faced with information systems

complexity issues. A frequently used approach how to deal with the problem is including

specific components into information systems that help to deploy, use and maintain

them. In many cases, support functions are created for particular information systems

without any generalization. For instance many information systems have built-in error

handling components. In emergency cases the component takes over, informs developers

about an accident and delivers additional information needed to handle the problem. This

component is undoubtedly helps to maintain the system, allowing to identify the causes

mailto:Janis.Bicevskis@lu.lv
mailto:Zane.Bicevska@di.lv
mailto:Kriss.Rauhvargers@lu.lv
mailto:Edgars.Diebelis@di.lv
mailto:Ivo.Oditis@di.lv
mailto:Juris.Borzovs@lu.lv

274 Bicevskis et al.

of accidents and to prevent them. On the other hand components like that described

above usually are not a part of information system’s basic functionality. These are so-

called non-functional features of information systems, as they do not provide any

functional gains for the information systems and “just” sustain developers during the

information system maintenance.

The concept of smart technologies (Bičevska and Bičevskis, 2007) has similar

objectives as the concept of autonomic computing (Horn, 2001). The main goal of both

is to create self-managing information systems, but the desired levels of generalization

are different. The autonomic computing pursues an ambitious goal to create

sophisticated information technologies in general whilst the approach of smart

technologies provides a set of practically applicable non-functional features to simplify

the maintenance and daily use of information systems (see Fig.1).

Fig. 1. Smart Technologies (overview)

The idea behind the smart technologies is to supplement an information system with

specific built-in non-functional modules providing self-management features. The

concept of “smart technologies” in the sense of this research first appears in (Bičevska

and Bičevskis, 2007) in relation to software system solutions that at least partly contain

system self-management features. Unfortunately, similarly to the concept of autonomic

computing also the concept of “smart technologies” is missing an unambiguous

definition that would provide evaluation criteria whether a particular solution falls into

the category of “smart technologies” or not. We also admit that the objectives of both

autonomic computing and smart technologies concepts are very similar; however ways

to reach them differ greatly. This paper describes five types of smart technologies

identified during practical software development and various experiments:

 Built-in software versioning and data syncing – automated deployment of

information system components (software, data structure descriptions, screen and

report forms, etc.) from a central repository to local workstations and servers

including conversion of data structures and migration of historical data into the new

structures. Results of the research (Bičevska and Bičevskis, 2008) have been

successfully implemented in financing and budget controlling application widely

used by public authorities in Latvia.

 Testing of external environment – automated checking of external environment to

be able to discover discrepancies and to inform users about potentially necessary

actions. The offered approach foresees a special “passport” to be created for a

 A Practitioner’s Approach to Achieve Autonomic Computing Goals 275

particular information system that contains the requirements for the external

environment of the information system (operating system, library versions,

configuration values for the directory physical location, computer technical

parameters, etc.) in order to ensure system’s correct functioning. Results of the

research (Rauhvargers and Bicevskis, 2009), (Rauhvargers, 2008) have been

anticipated in several information systems in Latvia.

 Self-testing – ability of information system to check its own integrity and uptime.

Technically it is implemented as built-in support components for testing of

information system on stored test cases in operating environment (Bicevska and

Bicevskis, 2008), (Diebelis et al., 2009)], (Diebelis and Bičevskis, 2011), (Diebelis

and Bičevskis, 2013).

 Embedded dynamic business model – ability of information system to run according

to an external business process model described in domain specific language

(Bicevskis et al., 2010). The business model should be specified at a level of detail

so it can be run (interpreted) directly. This approach is successfully implemented in

event-driven information systems (Cerina-Berzina et al., 2011).

 Runtime verification – business process execution control in production

environment. The component is implemented as an independent control process at

predefined business process points to ensure that the whole business process works

according to business needs (Oditis and Bicevskis, 2015).

Undoubtedly it is possible to find many other types of smart technologies, which

would be worth to explore and use.

Although the smart technologies approach and the autonomic computing manifesto

(Horn, 2001) approach seemingly share some similarities, it should be emphasized that

the smart technologies approach was developed independently. Unlike autonomic

computing ideas smart technologies are not looking for a universal solution, but they are

limited to easily implantable and practically attractive features.

The practical results gained in IT projects since 2007 provide evidence of the

usefulness of the approach. Analyzing more than 70 SCOPUS indexed articles devoted

to the autonomic computing, authors could not find researches which would be

substantially similar with smart technologies approach.

This paper is a continuation of the research described in (Bičevska et al., 2015). It

contains more detailed characteristics of smart technologies, including description of

practical context, technical solutions and the results achieved.

The second chapter of this paper deals with related research and solutions. The third

chapter describes five types of smart technologies and the proposed architecture.

1. Related work

Smart technologies and autonomic computing have a similar goal - reduce the

complexity of system use by delegating some part of user support functions to the

information system itself. The autonomic computing manifesto declares a vision of fully

independent computer systems (not just software) that are able to self-management. It

also defines evaluation criteria to check the maturity of autonomic systems (Nami and

Bertels, 2007) - from basic level (manually maintainable information systems) to

completely autonomic systems that are able to function operate accordingly to guidelines

276 Bicevskis et al.

set by humans. The main statement implies targeted development of information systems

that are able to self-management thus overcoming gap between users and increasingly

complex world of information technologies.

The manifesto lists four aspects of autonomic computing:

 Self-configuration - automated configuration of components and systems follows

high-level policies. Rest of system adjusts automatically and seamlessly.

 Self-optimization - components and systems continually seek opportunities to

improve their own performance and efficiency.

 Self-healing - system automatically detects, diagnoses, and repairs localized

software and hardware problems.

 Self-protection - system automatically defends against malicious attacks or

cascading failures. It uses early warning to anticipate and prevent system wide

failures.

The manifesto does not include any instructions about implementation issues, but

some sources discuss ideas about essential components of autonomic systems. For

instance R. Sterritt (Sterritt and Bustard, 2003) describes an autonomic environment

consisting of autonomic elements, which are mutually connected via autonomous

channels. Every autonomic element has a kernel, so called manageable component (the

component implementing the business logic), and it is controlled by an “autonomous

supervisor”. The supervising component uses sensors and effectors, and it’s main

functions are monitoring of internal and external states, accumulation of knowledge base

and communication with other autonomic components using autonomous

communication channels. A separate component in this system is so-called “heartbeat

monitor” which communicates with any existing system components through

autonomous communication channels and supervises the system as a whole.

Other authors (Arnautovic et al., 2007) propose to decentralize the communication

among components grouping them into functionally related groups wider exchange of

data is allowed, perhaps even in their own communication dialect.

Some researchers indicate that, in order to create truly autonomous systems, their

components should be clearly documented. The documentation should be provided in a

computer-readable format, so, it is necessary to complement the components with

descriptive metadata to facilitate their operation and maintenance further (Tosi. 2004),

(Orso et al., 2001).

In 2003 IBM extended the list to eight characteristic aspects (Kephart and Chess,

2003), adding system’s ability to "know itself" and manage its resources, system’s

ability to know its environment and the context surrounding its activity, and act

accordingly – to adjust, operate in heterogeneous environment accordingly its open

standards, as well as anticipate the optimized resources needed while keeping its

complexity hidden. The fundamental concept in autonomic computing is the idea of self-

regulation and the self-governing operation of the entire information system, thus

disburdening users and administrators from complexity of system’s use and

maintenance.

Achievements of autonomic computing movement during its first decade after

publication of the manifesto have been explicitly demonstrated in (Kephart, 2011).

Particularly we emphasize (Lalanda et al., 2013), where the list of self-management

features was extended with new ones, reaching a total number of 24, as well as it

contains analysis of most important achievements in implementation of autonomic

 A Practitioner’s Approach to Achieve Autonomic Computing Goals 277

computing. As of now, manifesto’s targets have been met only to some extent.

Paradoxically, to solve the problem—make things simpler for administrators and users

of IT—we need to create more complex systems. Continuing efforts on autonomic

systems include both, theoretical research and practical implementation (Kephart, 2011).

The autonomic computing approach has also been criticized (Herrmann et al., 2005),

and the main reasons are:

 Lack of precise definitions;

 Avoidance of the real complexity of the problem;

 Ignoring of inter-componential links.

Despite these criticisms, autonomic system objectives are so attractive that there

seemed to be no reason to abandon the ideas.

The concept of smart technologies is consistent with the primary objective of

autonomic computing. Unlike the traditional implementation of autonomic computing

where universal autonomous software components are built, the smart technologies

approach deals with embedding of specific system features into information systems

directly.

Although the smart technologies approach and the autonomic computing approach

seemingly share some similarities, it should be emphasized that the smart technologies

approach was developed independently. The practical results gained in IT projects

provide evidence of the usefulness of the approach.

2. Components of smart technologies

There are five fields of smart technologies where practical results were gained since

2007: embedded software versioning and data syncing, execution environment testing,

self-testing, embedded dynamic business model and runtime verification.

2.1. Software Versioning and Data Syncing

Context

Development of successful information system takes many years, during which the

system is being improved, supplemented with new possibilities and features. And every

time you made changes to the information system, a new version of the system of it

should be deployed. During previous decades it was carried out by delivering new

installation packages. The users installed new version of the information system and hat

to rely on the installation process. This approach is suitable for rather simple systems

where transition to new versions does not include complex data structure changes and

data migrations to the new version, or includes to a limited extend only. Commercial

license-based software products are sometimes complemented with the old version

support. For instance Microsoft Office versions have built-in support for objects created

in the previous versions.

The custom-made information systems are in worse situation. Often, the new versions

of programs are unable to work with the old data, and vice versa – the old programs are

unable to work with the new data structures. For example, planning and budgeting

278 Bicevskis et al.

depends on the budget structure and it is variable in the planning institutions and the

state as well. It means the database structure and reporting forms are periodically

changing. Hence the transition to a new version of information system can’t be achieved

with a simple software re-installation, it also requires data migration to new structures

and transition of configuration information to a new version of the information system.

Common users often fail to perform it correctly, and it can result in a distorted

institutional activity.

The first thought is that this problem could be easily solved by creating a centralized

web-based solution. But budget planning and execution is closely related to locally-kept

accounting records of each institution. Locally stored data can be difficult to centralize

due to security or organizational reasons.

The described situation is repeated in many systems, and the challenge was to create

an automated system version delivery, ensuring the integrity of the entire information

system, not only for software components.

Solution

Solution to the problem is offered by creating a component of smart technologies -

Software Versioning and Data Syncing. To ensure reliability of software in long-term,

the system should already in its initial development time include not only the required

(customer specified) functionality, but also supporting mechanism – an “updater” (see

Fig. 2) for software and data (data structures, templates, reports, configuration etc.)

upgrading. The supporting mechanism (so called “updater”) should be built into systems

Fig. 2. Smart technology component: Updater

 A Practitioner’s Approach to Achieve Autonomic Computing Goals 279

and it should include features for deploying of new versions without any user

intervention. The following should be ensured automatically during deployment process:

 Create backups to be able to recover the system in case of incidents;

 Check whether the software to be delivered is in compliance with the external

environment;

 Download and install a new version of the software;

 Update configuration and information about data structures, screen forms, report

templates etc.;

 Migrate stored data into the new data structures of the database as well as the

personalization and configuration data;

 Perform self-testing of the new system’s version to check correctness of the

essential system’s functionality.

The majority of information systems today support some of the characteristics listed

above, but in most cases - to a limited extent only.

 Results

Authors of this paper have implemented the characteristics in several software

development projects, the obtained results are described in (Bičevska and Bičevskis,

2008). The solution containing the built-in smart technology component “updater” is

successfully being used in more than 100 institutions.

The proposed solution was very topical in distributed information systems with

desktop applications, as the new versions of it required reinstallation of the entire

information system or its crucial components in many workstations. The situation is

changing as web applications are becoming more and more popular. It is possible to

store programs and data centrally, so the deployment of new versions can be made of

highly qualified personnel and not have to rely on a non-IT staff available in small

organizations. For the cases when data is stored locally (for instance due to safety

requirements) the problem can be addressed in the above described manner. The rapid

expansion of mobile apps sets new challenges as the deployment of new versions in this

area is not completely solved yet.

2.2. Execution environment testing

Context

It is quite common that programs have specific requirements for their successful

operation in a given environment. The requirements can relate to operating system,

network characteristics, workstation parameters, etc. Discrepancy between the

information systems requirements to external environment and the concrete execution

environment may occur in several situations:

 Developers sometimes assume that software, which works in development

environment, will keep working after it is deployed elsewhere, hence encoding some

assumptions about the environment into the program. As a result, when the software

280 Bicevskis et al.

is installed in other environment, which is different from the development

environment, the software may fail or work only partially correct.

 Several versions of the same software are installed on the workstation. The

environment that is consistent with the "first" systems version can be incompatible

with other systems versions. Or even worse, environment arranging in order to

ensure all for the "first" system necessary components can "demolish" the

environment needed for other systems versions. The validation should be performed

on demand, for instance, before each session; however, some authors propose

validation only during installation.

Practical use of information systems shows that many incidents and failures are not

related to the functionality of the information system itself, but rather are caused by

inadequate infrastructure and the execution environment. It means information systems

must be accompanied by automatic means for external environmental testing.

Solution

The authors (Rauhvargers and Bicevskis, 2009) propose a technology, which allows

independent environment checks, performed by the software, named – “checker”, in

order to validate if the execution environment is suitable for normal execution (see Fig.

3). The proposed solution implies gathering these requirements in a “software profile” to

be able to validate the execution environment before program’s starting. Only if the

results of all checks are satisfactory, the program can be considered prepared for work at

a given environment, otherwise the session is stopped, giving the user an explanation,

why it is not possible to perform work.

A program execution profile is a document achieved when all the requirement

descriptions of software are combined together. The profile can be formalized as a

separate document and supplemented to typical software deliverables such as code and

documentation. The main, but not the only use of the profile is validation of execution

environment during program use.

Fig. 3. Smart technology component: Execution environment testing

 A Practitioner’s Approach to Achieve Autonomic Computing Goals 281

The practical environment testing task is carried out by “checker”, which manages

environment validation modules- drivers. Each driver is an atomic unit, which enforces

validation of a single type of requirement; this is done by reading information from the

environment and comparing it to reference values. In a simple scenario, each

requirement describes required value of some resource’s attribute (for instance, for

instance, decimal separator must be the symbol “,”, data base server must be reachable,

etc.). When the testing functionality of the module is invoked, it uses the information

available in execution environment to do the “inspection”.

To be able to modify the set of checks to be performed without modifying the

program code, information about the checks (both the algorithms and reference values)

must be stored outside the code – in the software profile. This concept differs from other

approaches used in practice – both from the ones, which validate the environment

straightaway after installation or updating, and from the others, which try to “hide” the

checks in source code.

To be able to describe requirements regarding execution environment, a formal

language is required to encode the requirements, moreover, the language must be

extendable, when new kinds of requirements are defined. Such an aspect complicates the

construction of checker, since it has to be compatible with the language, which is not

fully defined during development of checker. The problem is solved by assigning the

checker only the role of language syntax analysis, but the semantic analysis of

requirements is performed in environment validation drivers.

Results

The proposed solution is used in a number of local information systems in Latvia. As

described in the precious chapter, an execution environment testing was usually

performed when supplying a new version of the information system. The new version

was installed only after the current execution environment was checked for its ability to

run the new version. Also, receiving alarms from users about the systems malfunctions

there was first tested if the execution environment of the concrete workstation meets the

environment requirements. In many cases, missing or wrong components of the

execution environment were the reason for malfunctions.

The described approach can also be used for other purposes, for instance to monitor

the computer systems that are in use in company's internal network and to check the

compliance of configurations with standards set by the company.

The practical implementation showed that development of the proposed approach

requires relatively little programming resources. The proposed smart technology solution

and obtained results are presented by the authors in (Rauhvargers and Bicevskis, 2009).

2.3. Self-testing

Context

One of the smart technologies offers an original approach to software testing, named as

self-testing. Every successful software solution is being used and improved significantly

longer than the development of its first version has taken. Information systems are in use

for many years, and the software is gradually modified, updated with new features,

282 Bicevskis et al.

improved to approximate to all user needs. And every time, when the software or the

operating environment has been changed, also the correctness of the entire running

system has to be checked.

Traditionally, the testing is carried out in a separate environment, so-called test

environment. The testing process is supported by testing tools which allow gathering of

test cases, executing of test cases and composing of test reports. By default it is assumed

that test environment corresponds to the execution environment, respectively the

assumption is that well tested information system will work in the execution

environment just as well as in a test environment. Unfortunately this assumption is not

always fulfilled. There can be many causes for that, some of them are as follows:

 Productive system databases are filled with real data, which content and amount

may differ significantly from those in the test environment.

 Interfaces to productive external systems can be unavailable in the test environment

as the availability can be determined by the safety requirements, licensing

conditions for use, testing support tool restrictions etc.

So even very carefully tested information systems can work incorrectly in the

execution environment. To restrict such cases, developers use to deliver developed

information systems together with automatically executable test cases for validation of

system’s critical functionality.

For example, a complicated process graph could be delivered as a test case covering

all admissible constructions for testing of a calculation program. The calculations can be

performed without any influence of them to the stored data in the production database

hence the testing in execution environment could be performed if the calculation

software would have mechanisms for this kind of operations. Unfortunately, only in rare

cases, the program provides an opportunity to perform testing in the execution

environment.

Solution

Self-testing is a smart technology providing the software with a feature to test itself

automatically prior to operation. There is similarity between self-testing and hardware

self-checking where computer tests its own readiness for operation when it is just turned

on. The purpose of self-testing is to use a built-in support component for automated

execution of previously accumulated tests cases not only in test, but also in execution

environment.

Self-testing contains two components:

 Test cases of system critical functionality that check the set of functions without

which the software could not be used. Identification of critical functionality and

designing of tests for it, as a rule, is a part of the requirement analysis and testing

process.

 A built-in automated testing mechanism (regression testing) providing automatic

execution of tests and comparison of results with benchmark values. These features

are typically a part of traditional testing tools, and the self-testing approach offers to

build them into the system during the development.

 A Practitioner’s Approach to Achieve Autonomic Computing Goals 283

Fig. 4. Smart technology component: Self-testing

Implementation mechanism of self-testing approach uses an idea and means of the

software instrumentation, which is already known from the 70-ies. Testing operations

are put by programmers into certain places of the source code; these points are named as

test points. Testing operations allow to track the changing values and to compare them

with a benchmark. Thus it is possible to check the correctness of the information system.

Unfortunately, this solution is usable only for that software whose development is in the

user's influence sphere.

It should be noted that the idea of built-in support for program testing has been offered

quite a while ago (Bichevskii and Borzov, 1982), (Chengying et al., 2007) and it has

been implemented in some projects. Regardless the system environment (Development,

Test and Production) self-testing functionality can be used in the following system

modes (see Fig. 4):

1. Test capture mode - new test cases are captured or existing tests are

edited/deleted.

2. Self-testing mode - automated self-testing of software is done by automated

execution of stored test cases.

3. Use mode - there are no testing activities – a user simply uses the system. The

built-in self-testing mechanism can be used in emergency situations to find out

the internal state of the system, which may facilitate the analysis of the causes

and consequences of the emergency situation.

4. Demonstration mode. The demonstration mode can be used to demonstrate

system’s functionality. User can perform system demonstrations using use cases

stored in storage files.

The implementation of self-testing feature can be done in ca. 3000 LOC in C++.

Additionally, the source code of the particular system should be instrumented with

testing activities like accumulating of test cases and executing of them. These

investments are justified when the system is designed and developed for long-term use.

284 Bicevskis et al.

Results

Instead of traditional testing that verifies correctness of software using testing tools in

test environment, the proposed approach provides to build the testing support during a

software development. It helps to perform tests not only in testing phase, but also offers

opportunity to verify software correctness in action with real data in production

environment.

Nowadays a wide range of testing tools is available, and they are intended to support

various testing methodologies. In evaluating the usefulness of the self-testing approach,

the opinion of the Automated Testing Institute (ATI), which is a leading authority in the

field of testing, was used. The self-testing tool was compared with globally popular

testing tools that have received ATI Automation honours. Comparison and evaluation of

testing efficiency led to the following key conclusions:

 The self-testing approach and the inclusion of testing support functions in the

system offer not only options equal to those offered by other globally recognized

testing support tools. Moreover, self-testing additionally offers options that other

testing tools do not possess or do it poorly: testing external interfaces with other

systems and database management systems, testing in production environment,

testing with the white-box method, possibility for users without IT knowledge to

capture tests.

 Since testing support is a part of systems developed and it is available throughout

the entire life cycle of software, the offered self-testing technology makes possible

to test software during development, regression testing as well as maintenance in the

development, testing and production environments.

 Self-testing changes the testing process by considerably broaden the role of the

developer in software testing. The self-testing functionality should be integrated into

software already during development. As shown by the real experience, self-testing

would let to identify and rectify 60% of all later discovered bugs (Diebelis and

Bičevskis, 2013).

 Implementation of the self-testing functionality is useful in incremental

development models, in particular in systems that are gradually improved and

maintained for many years, and less useful in linear (waterfall) development models.

The self-testing support tool requires further development with regard to technical

implementation aspects: to widen the range of platforms available and to provide support

for performance, load, stress and other new testing options. The results are described in

(Diebelis and Bičevskis, 2013).

2.4. Embedded business processes

Context

Nowadays the software development cycle is becoming shorter, and changes in

information systems should be implemented fast and effectively. So the smart

technology research has been also devoted the question how to change information

systems functionality fast and without much effort.

The main idea behind embedded business processes is to create an accurate

information system model in a high abstraction level and to develop a software

 A Practitioner’s Approach to Achieve Autonomic Computing Goals 285

component, so-called interpreter, that works accordingly to the system model. If changes

in the systems model are made the functionality of the information system can be

automatically changed to a certain extent.

The approach as an idea is known since the 60-ies. The main burden for its wider

usage are implementation issues of non-functional features - usability, security,

performance etc. The non-functional features are hard to describe using means of

functional modelling, and so they can’t be obtained from the system model automatically

in a good quality.

Smart technologies, unlike other related solutions, propose to create an interpretable

system model only for the functional part relating to workflows, not for all systems

components and functions. The rest of functionality is created in a traditional way, and a

built-in business model interpreter is included into information system allowing derive

some part of functionality from business process descriptions.

The approach is useful if several enterprises run similar but not identical business

processes. Using the same interpreter but defining specific business process models for

every enterprise, it is possible to obtain the desired functionality and to use the same

universal software in all enterprises.

Workflow based information systems is the area where business process modelling is

an essential component for functioning of information systems. Business process of

organization is described by a workflow model containing sequential business process

steps – activities - together with performers of the activity, deadlines, the actual state of

the object in the workflow etc. Documents and reports can also be created during the

workflow execution, and this should be included in business process descriptions.

Fig. 5. Smart technology component: Embedded business process

It is common to describe business processes using modelling languages. There can be

used universal modelling languages or domain specific languages (DSL). When DSL is

chosen, it must ensure two important features: (1) the language should be easy

understandable for the majority of systems stakeholders, (2) it should include all

necessary information for automated execution (for interpreter) of workflow steps.

Usage of DSL lets business process experts to build the domain specific business process

models, and, on the other hand, it allows IT professionals to provide the system with

integrated mechanisms for interpreting of the models.

286 Bicevskis et al.

Solution

At the beginning of information system development the business processes (see Fig. 5)

should be described as the information system will be designed to support them. A set of

business process descriptions are created using DSL, and it serves as business process

model. Graphical representations like diagrams can easily be understood and used by

domain experts (as a rule, non-IT specialists) for the business process description. After

the business process model is created, the information from the diagrams can be

transferred to the database of an information system, and it is a task for IT professionals.

The business process descriptions are embedded into the information system, and the

engine of the information system can interpret information born from the diagrams.

Embedded business processes ensure that the information system behaves according to

the business process model.

As practice shows (Cerina-Berzina et al., 2011), it is possible to create a special tool

for transfer of model’s data to executable application relatively quickly. The API of the

graphical editor can be used to access the model’s repository, to gather the information

and to transfer it to applications database. Thus guaranties that the application operates

according to the model developed in a graphical DSL. And the overall quality of the

application – usability, reliability, security, performance etc. – is dependent on the

application itself, not on the hypothetical ability of a code generator to create an

application in the desired quality.

Contrary to the model driven architecture (MDA) that aims completely automated

generation of information systems from business model descriptions, the offered

approach provides the development of information systems in the traditional way. The

required functionality and non-functional features like usability, security, performance,

etc. are enhanced with an extra component for workflow execution that is able to run the

information system according to business process descriptions imported from the

business process model.

Results

The authors have created the domain specific graphical language BILINGVA (Cerina-

Berzina et al., 2011) that is convenient for description of workflows. Graphical editor for

diagrams was created using a specific tool building platform (Barzdins et al., 2007),

(Barzdins et al., 2009).

The developed solution was successfully applied to the Latvian state institutions,

which supervise and monitor various project tenders. Every institution had its own

branch-specific business processes, respectively every institution supervised their

projects in a different way. An average business process model consisted of ca. 20

graphical diagrams with in average 20 activities (steps) per diagram. The relevant

regulatory documents that describe these processes in natural language, took about 200

DIN A4 pages.

Instead of each institution to develop its own information system, a universal

application was created being able to interpret different business models. Each institution

received a high quality information system with desired functionality that can be easily

changed making changes to the business model. The non-functional features of the

applications as well as some very specific screen forms were programmed in the

traditional way.

 A Practitioner’s Approach to Achieve Autonomic Computing Goals 287

The approach was applied in practice, and particularly surprising was the positive

feedback from users about the graphical representation of business processes. The

diagrams served as some kind of information system’s user manual that explained

functioning of the information system in a more precise and understandable way than the

conventional (written) user manuals.

2.5. Business process runtime verification

Context

Business process runtime verification is targeted to enterprises using many different

types of software for support of different business processes (Draheim, 2010). The

establishment of a heterogeneous environment in large and long–lasting companies is

inevitable, because the organizational size and functions are subject to changes over the

course of time and develop gradually.

Traditional testing methods are not able to prevent conflicts of different processes and

systems in collaboration, where part of the process is done by people, and the other part

is supported by software. The software can be designed to support particular processes in

different environments at different time frames. Self-management features if they are a

part of information system approximate the main objectives of autonomic systems.

This is also evidenced by several authors arguing that static verification and testing of

software are insufficient aids for modern business process verification that relates to a

service-based architecture in a heterogeneous environment. Processes are implemented

by many components changing independently over the course of time. This means the

process runtime verification must be conducted through the entire lifetime of the process

(Wu, 2013), (Ghezzi and Guinea, 2007).

Runtime verification has been well known for years in the area of embedded systems.

It is an approach to computing system analysis and execution based on extracting

information from a running system and using this information to detect and possibly to

react to observed behaviors satisfying or violating certain properties. Such defense

mechanisms may be included in the system during its development or they may be

included as independent controls from the base process. The independent character of

such mechanism allows making later adjustments by adding or disabling the controlling

component when a system is developed, and changes are made. These ideas can be

applied in business process runtime verification, too.

An example of a bank's electronic clearing system (ECS) and its file processing

module illustrates the functioning of the business process runtime verification. ECS

collects files with payment messages from the banks, settles payments and delivers

payments to the banks-senders. There are few tasks for runtime verification:

 Identify payment files processed too slowly;

 Report to the staff about ECS process failures.

The state chart depicted in Fig. 6 illustrates simplified payment file process in order to

explain the essence of the idea. From the system's point of view, the file processing starts

with the "File received" state, i.e., the file is copied onto the system operator's file server

288 Bicevskis et al.

(via FTP or other file transfer services). Then the file is registered in the system's

database, and the actual processing is launched:

 The file is decrypted;

 The file is parsed and all messages are extracted;

 All messages are checked in accordance with the particular business rules.

Fig.6. An example of a base process

During the file processing, the system prepares one of three types of responses:

affirmative, an error list or a rejection of file procession. When the response is prepared,

it is created in a temporary directory as the respective type of file, it is encrypted, and it

is delivered to the recipient.

In order to verify file process execution, indicative control states must be part of the

file processing state chart. When adding verification points to a process description, it is

necessary to think about whether it will be possible to detect a situation in which the

process has achieved a specific state. For example, it is possible to detect the creation of

a new file in a specified directory or a new record in a database table, but it is practically

impossible to identify object value changes in the memory (RAM) of another process. In

the example that is seen above, three states have been identified as possible verification

states (marked in grey in Fig. 6) – File received, File registered and Response delivered.

The process verification description can be created when these states and links among

them are utilized.

 A Practitioner’s Approach to Achieve Autonomic Computing Goals 289

According to the aforementioned process verification description can be created from

“zero”, from the existing state chart, as well as from an activity diagram or other process

descriptions. The only requirement is to add extensions such as event and time control

concept.

Solution

The authors (Oditis and Bicevskis, 2015) propose a solution for business process runtime

verification (see Fig. 7), that uses three objects: verification model/description, agents

and controller. The basic idea of the solution is to run a separate verification process for

each controllable business process (further – base process).

A verification description contains instructions about the correct execution of the base

process, an agent is a software module for registering of base process execution events,

and a controller compares the events received from agents with the permissible

(“correct”) events described in the verification model. As a result, the controller may

discover the incorrect behavior of base processes. If inconsistencies are detected, the

controller is sending messages to the support staff.

If the base process does not have a formalized description/ model, the verification

process must be built from the scratch. If the base process is already described in a form

of the formalized model, the verification process can be created from the base model by

indicating those process steps which will be carried out in the runtime verification

process (see Fig. 8).

Fig. 7. Smart technology component: Runtime verification

290 Bicevskis et al.

It should also be noted that one basic process can create multiple, different process

verification processes, and each of them examines their specific process steps

individually.

Fig. 8. The base and verification process

Results

The developed runtime verification solution was piloted in bank's electronic clearing

system (ECS). The piloting results leads to two main conclusions – (1) the solution is

able to detect business process execution defects, and (2) data processing system

verification process creates a tiny extra load for the involved information systems

infrastructure.

The solution provides a number of interesting possibilities, which bring us closer to

the goal defined by ideas of autonomic computing:

 The verification process can be defined without modifying the base process - the

base process can have more than one verification process so as to verify all of its

various aspects;

 The verification process runs in parallel to a base process and does not interfere with

it;

 Process verification can be added dynamically to legacy systems

 Verification does not depend on modelling language used for process description; it

depends only on possibility of verification agents to identity events of the base

process.

Likewise, some solution limitations must be taken into account: verification

mechanism can detect only those base process steps which leave some modifications in

the systems „memory”. Otherwise verification agents cannot work as external process,

but must be incorporated into the base process.

 A Practitioner’s Approach to Achieve Autonomic Computing Goals 291

However, it must be stressed that the proposed solution can significantly reduce

monitoring load of information systems’ operational staff. It automates business process

runtime verification that typically is done manually and not continuously.

Conclusions

Several years were spent on research to achieve goals similar to autonomic computing –

facilitating the use, maintenance and development of systems by including support

components in them. The conclusions are as follows:

 Several components, created using smart technologies, can provide good support in

use, maintenance and development of information systems;

 Smart technologies have advantages for use and maintenance in at least two cases:

(1) when the cooperation between the customer and the supplier is long-term, or (2)

when the information systems are used by many users without profound IT

knowledge;

 Building of smart technologies into information systems requires additional work.

Often it is an investment, as the customers are not ready to pay for an

implementation of complex mechanisms. Some of them are unable to assess the

benefits offered by smart technologies;

 Smart technology enabled systems are currently not very common; due to the fact

that these ideas are not popular enough yet, hence the customers don’t include

requirements for smart technologies into system’s specifications.

The smart technologies which are described in this paper achieve the autonomic

computing initiative goals only partially. There may be still a vast variety of smart

technologies which would be useful to explore and implement practical systems. For

instance, these would include – data quality control, access control, performance

monitoring, availability monitoring which are easy enough to implement for a

small/medium size organization. Additionally, we emphasize that the very usability

makes the smart technologies approach different from academic researches. According

to authors’ experience smart technologies can be used even in a small to medium size IT

company with 30-50 employees. Authors is not discussing other research directions i.e.

smart spaces, smart environments, smart services and smart objects in the Internet of

Things because they have not practical implementation of these technologies.

Acknowledgment

The research leading to these results has received funding from the research project "IT

Competence Centre" of EU Structural funds, contract No. L-KC-11-0003 signed

between IT Competence Centre and Investment and Development Agency of Latvia,

Research No. 1.4 “Research of model based architecture for business processes

modeling”.

292 Bicevskis et al.

References

Arnautovic, E., Kaindl, H., Falb, J., Popp, R., Szep, A. (2007) Gradual transition towards

autonomic software systems based on high-level communication specification. In:

Proceedings of the 2007 ACM symposium on Applied computing, 2007. pp.84-89.

Barzdins, J., Cerans, K., Grasmanis, M., Kalnins, A., Rencis, E., Lace, L., Liepins, R., Sprogis,

A., Zarins, A. (2009) Domain Specific languages for Business Process Managment: a Case

Study. In: Proceedings of DSM’09 Workshop of OOPSLA 2009, Orlando, USA (2009).

Available from Internet: http://www.dsmforum.org/events/DSM09/.

Barzdins, J., Zarins, A., Cerans, K., Kalnins, A., Rencis, E., Lace, L., Liepins, R., Sprogis, A.

(2007) GrTP: Transformation Based Graphical Tool Building Platform. Workshop on Model

Driven Development of Advanced User Interfaces, MODELS, Nashville, USA. 2007.

Available from Internet: http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-

WS/Vol-297/.

Bičevska, Z., Bičevskis, J. (2007) Smart Technologies in Software Life Cycle. In: Proceedings of

Product-Focused Software Process Improvement. 8th International Conference, PROFES

2007, July 2-4, 2007 (Münch, J., Abrahamsson, P., eds.), Riga, Latvia, vol. 4589/2007, 2007.

pp.262-272.

Bičevska, Z., Bičevskis, J. (2008) Application of Smart Technologies in Software Development:

Automated Version Updating. In:Scientific papers, vol. 733 (Bārzdiņš, J., Freivalds, R.-M.,

Bičevskis, J., eds.) University of Latvia, 2008, pp.24 -37.

Bicevska, Z., Bicevskis, J. (2008) Applying Self-Testing: Advantages and Limitations. In:

Databases and Information Systems V - Selected Papers from the Eighth International Baltic

Conference, DB&IS 2008, June 2-5, 2008, Tallinn, Estonia (Haav, H.-M., Kalja, A., eds.),

IOS Press, vol. 187, 2008. pp.192-202.

Bičevska, Z., Bičevskis, J., Oditis, I. (2015) Smart Technologies for Improved Software

Maintenance. Preprints of the Federated Conference on Computer Science and Information

Systems pp. 1549–1554.

Bichevskii, YY, Borzov, YV. (1982) Prioriteti v otladke bolsih programmnih sistem

Programmirovanie, 1982, vol. 3, pp. 31-34 (in Russian). (Bichevskii Ya.Ya., Borzov Yu.V..

Priorities in debugging of large software systems. PROGRAM. & COMP. SOFTWARE.

8:33, 129-131, 1983).

Bicevskis, J., Cerina-Berzina, J., Karnitis, G., Lace, L., Medvedis, I., Nesterovs, S. (2010)

Practitioners View on Domain Specific Business Process Modeling. Databases and

Information Systems VI. Selected papers from Ninth International Baltic Conference DB&IS

2010, IOS Press, (2011), 169-182.

Chengying, M., Yansheng, L., Jinlong, Z. (2007) Regression testing for component-based software

via built-in test design. In: Proceedings of the ACM symposium on Applied computing,

March 11 - 15, 2007, Seoul, Korea, 2007. pp.1416-1421.

Cerina-Berzina, J., Bicevskis, J., Karnitis, G. (2011) Information systems development based on

visual Domain Specific Language BiLingva Selected Papers from the 4th IFIP TC 2

Central and East Europe Conference on Software Engineering Techniques, CEE-SET 2009,

Krakow, Poland, LNCS 7054 Springer (2011), 124-135.

Diebelis, E., Takeris, V., Bičevskis, J. (2009) Self-Testing - New Approach to Software Quality

Assurance. In: Proceedings of the 13th East-European Conference on Advances in

Databases and Information Systems, ADBIS 2009, September 7-10, 2009, Riga, Latvia

(Grundspenkis, J. et al., eds.), 2009. pp.62-77.

Diebelis, E., Bičevskis, J. (2011) Test Points in Self-Testing. In: Databases and Information

Systems VI - Selected papers from 9th International Baltic Conference, DB&IS 2010

(Barzdins, J., Kirikova, M., eds.), IOS Press, vol. 224, 2011. pp.309 – 321.

Diebelis, E., Bičevskis, J. (2013) Software Self-Testing. In: Proceedings of the 10th International

Baltic Conference on Databases and Information Systems, Baltic DB&IS 2012, July 8-11,

2012, Vilnius, Lithuania. IOS Press, vol. 249, 2013. 249 – 262.

 A Practitioner’s Approach to Achieve Autonomic Computing Goals 293

Draheim, Dirk (2010) Business Process Technology: A Unified View on Business Processes,

Workflows and Enterprise Applications, Springer Berlin Heidelberg ISBN: 978-3-642-

01587-8 (Print) 978-3-642-01588-5 (Online), www.springer.com (2010).

Ghezzi, C., Guinea, S. (2007) Run-time monitoring in service-oriented architectures, in: Test and

analysis of web services, Springer, 2007, pp. 237–264.

Herrmann, K., Muhl, G., Geihs, K. (2005) Self management: the solution to complexity or just

another problem? Distributed Systems Online, 2005, 1, vol. 6.

Horn, P. (2001) Autonomic Computing: IBM's Perspective on the State of Information

Technology. IBM, 2001. http://libra.msra.cn/Publication/2764258/autonomic-computing-

ibm-s-perspective-on-the-state-of-information-technology.

Kephart, J., Chess, D. (2003) The Vision of Autonomic Computing, IEEE, Computer Magazine

36: 41-52, doi:10.1109/MC.2003.11600552003.

Kephart, J. (2011) Autonomic computing: the first decade. ICAC 2011: 1-2.

Lalanda, P., McCann, JA., Diaconescu, A. (2013) Autonomic Computing: Principles, Design and

Implementation, 2013 – Springer, 288 p.

Nami, M. K., Bertels. A. (2007) Survey of Autonomic Computing Systems. In: ICAS '07:

Proceedings of the Third International Conference on Autonomic and Autonomous Systems,

2007. p.26.

Oditis, I., Bicevskis, J. (2015) Asynchronous Runtime Verification of Business Processes. In

Proceedings of the 7th International Conference on Computational Intelligence,

Communication Systems and Networks (CICSyN), Riga, 2015, pp. 103-108.

Orso, A., Harrold, M., Rosenblum, D. (2001) Component Metadata for Software Engineering

Tasks. In: EDO '00: Revised Papers from the Second International Workshop on

Engineering Distributed Objects, London, vol. 1999, 2001. pp.129-144.

Rauhvargers, K., Bicevskis, J. (2009) Environment Testing Enabled Software – a Step Towards

Execution Context Awareness. In: H.-M. Haav, A. Kalja (eds.), Databases and Information

Systems, Selected Papers from the 8th International Baltic Conference, vol. 187, IOS Press,

(2009), 169–179.

Rauhvargers, K. (2008) On the Implementation of a Meta-data Driven Self Testing Model. In:

Software Engineering Techniques in Progress (Hruška, T., Madeyski, L., Ochodek, M.,

eds.), Brno, Czech Republic, 2008. pp.153-166.

Sterritt, R., Bustard, D.(2003) Towards an autonomic computing environment. In: Proceedings of

14th International Workshop on Database and Expert Systems Applications (Marík, V.,

Retschitzegger, W., Stepánková, O., eds.), Prague, Czech Republic, 2003. pp.694 – 698

Tosi, D. (2004) Research Perspectives in Self-Healing Systems. Technical report LTA:2004:06,

University of Milano-Bieocca, Milano.

Wu, C. W. W. (2013) Methods for reducing monitoring overhead in runtime verification, Ph.D.

dissertation, University of Waterloo, 2013.

Received November 11, 2015, revised December 16, 2015, accepted December 21, 2015

