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Abstract. The paper presents a new method for adaptive selection of Self-Organizing Map
(SOM) self-training endpoint. A method is based on the estimation of the newly introduced pa-
rameter ∆init and the learning depth parameter κ. In order to propose an optimal range of κ
values, the influence of the selected learning depth parameter to the performance of SOM was
tested experimentally using input data with uniform distribution. Additionally, four endpoint se-
lection approaches were tested in spectrum sensing application where the SOM based detector
was used to detect primary user emissions in 25 MHz wide spectrum band. Three alternative
SOM self-training endpoint selection methods were tested on the same topology based SOM. In
comparison to SOM self-training endpoint selection algorithm, based on the cluster quality esti-
mation, the proposed method required from 2.6% (for the SOM with small number of neurons)
to 44.6% (for the SOM with higher number of neurons) less iterations to reach the endpoint and
preserve the similar sensitivity of the spectrum sensor based on SOM.
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1 Introduction

High dimensional data analysis is a challenging task. The Self-Organizing Map (SOM)
is frequently used for high dimensional data clustering and dimensionality reduction
(Bernataviien et al. 2006; Bernataviien et al. 2007). In addition, it has already been
shown that the application of Self-Organizing Feature Map could be applied as a part
of the spectrum sensor in cognitive radio systems (Baban et al. 2013; Liu et al. 2015).
The task of the spectrum sensor is to locate gaps in the analyzed radio frequency range
in order to efficiently apply dynamic spectrum management techniques (Yucek and Ar-
slan 2009). During analysis of a wide spectrum band, it is possible to find different
types of the primary user signal transmissions with unknown frequency characteristics,
signal modulation type, signal strength, etc. A Self-Organizing Map is used to cluster
the signal spectrogram features into clusters that indicates unknown primary user signal
transmissions and clusters, indicating the noise – a channel, free for transmission of a
secondary user signal.
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All signal processing steps in the designed spectrum sensor should be made in real-
time. The SOM self-training should be done in real time and the self-training algorithm
should be adjusted for hardware-based implementation. However, the number of iter-
ations needed for SOM convergence is related to the number of neurons in the SOM
structure. The convergence of SOM, constructed from N nodes, is usually obtained
after N × 500 iterations. In addition, the long self-training procedure may cause the
over-fitting of the SOM (Weijters et al. 1997; Lawrence et al. 1997; Lampinen and Kos-
tiainen 1999; Haese and Goodhill 2001; Lampinen and Kostiainen 2000). Therefore,
the optimization of the SOM self-training procedure should be made in order to design
a SOM based spectrum sensor for practical application.

New SOM topology for real-time spectrum sensing and fast convergence was pro-
posed in previous author’s work (Staionis and Serackis 2015). The experimental in-
vestigation has shown that the performance of the spectrum sensor with the proposed
topology remains as high as the performance of the spectrum sensor based on a hexag-
onal topology. For the specific radio spectrum, the sensor performance using the pro-
posed topology was superior compared to spectrum sensors based on hexagonal, grid
or rhombus SOM topologies. However, this newly proposed SOM topology was very
sensitive to the number of iterations used for self-training. The desired SOM topology
was achieved very quickly, but after several more iterations, the over-fitting of the SOM
was obtained. An appropriate method was needed to select an endpoint during SOM
self-training in convergence point.

The convergence of SOM depends on three main aspects: selection of initial weights,
learning rate and neighborhood size. Therefore, limiting the SOM self-training process
by maximum number of iterations is not reasonable, because the SOM self-training
performance may be not very sensitive to the number of self-training steps (Bogdan
et al. 2008). The selection of the SOM self-training endpoint can be made by moni-
toring the estimated mean value of the cost function (Kohonen 1991; Lampinen and
Oja 1992). As an alternative, the tracking of the η(l) ' η(l − 1) can be used as indi-
cation to stop the self-training, if the changes of the learning rate becomes insignificant
(Vegas-Azcarate et al. 2005). The third alternative method for endpoint selection is
based on the SOM cluster quality measure (Herbert and Yao 2007).

The preliminary experimental tests of the currently available SOM self-training end-
point selection methods showed that the automatic selection of the endpoint was made
too early (the sensitivity of the SOM based spectrum sensor could ne improved by
adding additional self-training iterations) or too late (the sensitivity of the SOM based
spectrum sensor did not change).

In this paper, we propose an alternative method for adaptive endpoint selection dur-
ing the self-training of SOM. A method is based on estimation of the newly introduced
parameter ∆init and the learning depth parameter κ.

While the method for adaptive endpoint selection was designed to be used in SOM
based spectrum sensor, an additional investigation was performed in order to ensure that
the selected approach is suitable for classical SOM self-training. Additionally, an exper-
imental investigation was performed in order to propose an optimal range of κ values
and to test the performance of the proposed method in spectrum sensing applications.
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To compare the results of our proposed break point selection method to alternatives,
three alternative SOM self-training endpoint selection methods were tested on the same
topology based SOM. The results of experimental investigation and performed tests has
proved the better performance of the proposed endpoint selection method in comparison
to the alternative ones.

2 Self-training Endpoint Selection Methods for SOM

There are two approaches available for SOM training: supervised SOM (Pateritsas
et al. 2004) and un-supervised SOM (Fritzke 1994). The supervised SOM training re-
quires additional external data during SOM training procedure and was not analyzed in
this paper.

During un-supervised SOM training, the network status or the changes of node
weights are monitored. In addition, the representation of input data by SOM can be
analyzed. The changes of SOM node weights reflects the changes in map structure. If
the weights changes are negligible during self-training, the SOM self-training process is
terminated. However, negligible changes of the SOM node weighs during self-training
does not guarantee that the obtained topology properly represents input data.

The endpoint selection during self-training of SOM requires continuous monitoring
of the self-training process. It is possible to classify currently proposed approaches into
two types: continuous monitoring of the current SOM structure during self-training
process or analysis of the input data representation by the SOM.

Using the SOM structure monitoring approach, the SOM self-training process is
suspended, when the changes of neuron weights become insignificant (Vegas-Azcarate
et al. 2005). The weight update of the winner neuron ∆w highly depends on the selected
adaptive learning rate η according to the following expression:

wij (n+ 1) = wij (n) + η (n) ‖In (n)−wi (n) ‖. (1)

The learning rate η changes adaptively and is being estimated accordingly to the
following expression:

η (n) = η0e
−n
τ , (2)

here η0 is the initial value of the learning rate.
During SOM self-training process, the η decreases exponentially. If the learning

rate changes are insignificant and η(l) ' η(l − 1), the further update of the neuron
weights is not reasonable. However, low value of the learning rate η does not mean that
the SOM represents input data well.

In order to monitor the input data representation by the SOM, distance changes be-
tween the input In and the winner neuron weight vector wi should be estimated (Mor-
eira and Fiesler 1995; Solodov and Svaiter 2000; Hulle 2000). During such approach,
the endpoint is initiated when the distance between inputs and winner neuron weights
reach their minimum I (In):

I (In) = arg min
ij
‖In−wi‖. (3)
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As an alternative to the estimation of the distance between input and neuron weights,
the quality of the input data clustering by a set of neurons may be used. However, these
alternative approaches require performing additional analysis using the higher order
statistical data (Kayacik et al. 2007; Herbert and Yao 2007).

3 Investigation of the New Method for Self-training Endpoint
Selection

The SOM self-training endpoint selection method, proposed in this paper, was based on
the idea of monitoring the input data representation by the SOM. The estimated value
of I (In) was compared to the threshold θend, used to initiate the endpoint.

In order to select an appropriate threshold θend for the endpoint, the attention should
be drawn to the first cycles of the SOM self-training (see Fig. 1, a). From the Fig. 1 it
was clear that the signal, obtained by continuously estimating I (In), had a spiking
nature. However, during SOM self-training the magnitude of the spikes decreased. The
monotonic decrease of the distance between input and SOM neuron weights can be seen
also in the characteristics of the averaged I (In). In the given example, the maximum of
I (In) was achieved at the 16th self-training iteration. The current input-to-weights dis-
tance comparison with the maximum, achieved in the first cycles of SOM self-training,
was used to make the final decision in the threshold θend selection phase.

In order to get the more clear view of the I (In) dynamics, the high-pass filter was
applied. The result after differentiation, given in Fig. 1, b, showed, that the greater input-
to-weights distance invoked significant changes of neuron weights (see equation 3 and
1).

The signal in Fig. 1, c, was obtained by estimating the square of the differentiation
result, given in Fig. 1, b. From the given example, it was seen that the weight changes of
the SOM neurons were decreased during the period of 80 self-training iterations. A new
variable ∆init was introduced for adaptive endpoint estimation. The newly introduced
estimate ∆init showed the average level of SOM weight changes during self-training
process. ∆init was calculated according to the following mathematical expression:

∆init =

√√√√ 1

Nf

Nf−1∑

n=0

(
I (In (n+ 1))− I (In (n))

)2
, (4)

here Nf is the number of I (In (n)) estimates in the analysis frame.
The threshold θend was adaptively changed together with estimated ∆init value,

according to the following expression:

θend = κ∆init = κ

√√√√ 1

Nf

Nf−1∑

n=0

(
I (In (n+ 1))− I (In (n))

)2
, (5)

here κ is the additional parameter in the range (0, 1], introduced in order to control the
depth of SOM self-training.
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Fig. 1. Illustration of input-to-weights distance estimate I (In) changes during SOM
self-training: a – I (In) continuous estimate and it’s average I (In) over 200 iterations;
b – I (In) I(InInIn) continuous estimate after differentiation; c – squared differential signal;
d – I (In) continuous estimate and it’s average I (In) over 6200 iterations
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here Nf is the number of I (In (n)) estimates in the analysis frame.
The threshold θend was adaptively changed together with estimated ∆init
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θend = κ∆init = κ

√√√√ 1

Nf
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here κ is the additional parameter in the range (0, 1], introduced in order to
control the depth of SOM self-training.

Fig. 1. Illustration of input-to-weights distance estimate I (In) changes during SOM self-
training: a – I (In) continuous estimate and it’s average I (In) over 200 iterations; b – I (In)
I(InInIn) continuous estimate after differentiation; c – squared differential signal; d – I (In) contin-
uous estimate and it’s average I (In) over 6200 iterations

The I (In (n)) estimate changed dynamically in time with a high frequency. In order
to make a decision about SOM self-training endpoint initialization, the threshold was
compared to the average estimate (I (In)). The illustration of the (I (In)) dependences
are given in Fig. 1, a and Fig. 1, d.

4 Selection of Optimal Values for Self-training Endpoint

An experimental investigation was performed in order to measure the influence of each
selected parameter (Nf , κ) and to select the optimal values for practical application of
proposed endpoint selection method, based on the average level of SOM weight changes
(ALWCh).

4.1 SOM Training Performance Dependences on the Analysis Frame Size

In order to investigate the dependences of SOM self-training performance and ∆init to
the selected analysis frame size Nf , four SOM, different in size (2× 2, 4× 4, 6× 6 and
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8 × 8 neurons) were trained. The SOM self-training results for the first 500 iterations
are illustrated in Fig. 2.A New Method for Adaptive Selection of SOM Self-training Endpoint 7
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Fig. 2. Squared I (In) signal after differentiation for different SOM size: a – 2× 2; b –
4× 4; c – 6× 6; d – 8× 8

The main spike for the 6×6 SOM structure was obtained at 15th self-training
iteration. However, the spikes at 350th and 435th iterations had similar magni-
tude. In order to cover all spikes with a very high magnitude, the frame width
should be selected equal to Nf = 450. The value ∆init = 0.038 is less that ob-
served for smaller SOM structure for the same frame width. However the effect of
nonlinear decrease of ∆init, increasing the size of SOM structures, was observed
for all frame width above Nf = 100 (Table 1).

An experimental investigation performed on the 8 × 8 size SOM structure
showed that the increase of the SOM size reduces the fluctuations of the ∆init

estimate in the analyzed frame width range. The stability of ∆init estimate is
achieved after 150–200 SOM self-training iterations with fluctuations in the range
of 10%–13%.

4.2 SOM Training Performance Dependences on a Learning Depth

In order to investigate the influence of the learning depth parameter κ to the
SOM self-training performance the 8 × 8 size SOM topology was trained with

Fig. 2. Squared I (In) signal after differentiation for different SOM size: a – 2× 2; b – 4× 4; c
– 6× 6; d – 8× 8

The ∆init was calculated for different analysis frame width Nf in order to find the
optimal value for the most of SOM structures. During investigation, the parameter Nf

was changed from 25 to 300 with the step size of 25. The results are summarized in
Table 1.

During the experiments with the 2 × 2 SOM structure, the ∆init has reached its
maximum with Nf = 25. The analysis of experimental investigation results showed
that the group of spikes between 100th and 200th iterations should be included into the
estimation of ∆init because the changes of SOM weights still remains comparatively
high. In addition, the ∆init estimate was reduced by 36%, when the frame width was
increased from Nf = 25 to Nf = 300.

Using the 4 × 4 SOM structure, the main spikes were achieved at 99th and 178th

iterations. Therefore the frame width of Nf = 200 iterations showed the maximum
value of ∆init = 0.069.
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Table 1. ∆init estimates for various frame width

SOM size
Frame width Nf

25 50 75 100 150 200 250 300

2× 2 0.469 0.359 0.324 0.296 0.297 0.277 0.263 0.258
4× 4 0.040 0.039 0.042 0.054 0.06 0.069 0.067 0.064
6× 6 0.057 0.048 0.043 0.04 0.036 0.038 0.036 0.036
8× 8 0.054 0.045 0.04 0.036 0.032 0.035 0.033 0.032

The main spike for the 6 × 6 SOM structure was obtained at 15th self-training
iteration. However, the spikes at 350th and 435th iterations had similar magnitude. In
order to cover all spikes with a very high magnitude, the frame width should be selected
equal to Nf = 450. The value ∆init = 0.038 is less that observed for smaller SOM
structure for the same frame width. However the effect of nonlinear decrease of ∆init,
increasing the size of SOM structures, was observed for all frame width above Nf =
100 (Table 1).

An experimental investigation performed on the 8 × 8 size SOM structure showed
that the increase of the SOM size reduces the fluctuations of the ∆init estimate in the
analyzed frame width range. The stability of ∆init estimate is achieved after 150–200
SOM self-training iterations with fluctuations in the range of 10%–13%.

4.2 SOM Training Performance Dependences on a Learning Depth

In order to investigate the influence of the learning depth parameter κ to the SOM
self-training performance the 8× 8 size SOM topology was trained with four different
values of κ. Two random signals with uniform distribution were used as inputs during
the experimental investigation. During the experimental test, we have obtained different
number of passed iterations before the endpoint was activated (see Fig. 3).

The learning depth κ was changed in the range [0.15, 0.3]. The shortest SOM learn-
ing cycle was achieved with κ = 0.3. The endpoint at θend = 0.01065 was obtained at
811th iteration. It is seen from Fig. 3, a, that the SOM did not reach the regular struc-
ture. However, the neurons at the right side were already starting to adjust their weights
in the right order.

The SOM learning endpoint with κ = 0.25 was activated after 3120 iterations. The
threshold θend = 0.008875 obtained with κ = 0.3. The results of experimental tests are
illustrated in Fig. 3, b. The obtained SOM structure was more regular comparing to the
results shown in Fig. 3, a, however the SOM weights still needed additional adjustment
in order to represent the uniform noise distribution.

When the learning depth was decreased to κ = 0.2, the endpoint was activated after
6146 iterations and SOM neurons formed a regular structure divided into four groups
of neurons (see Fig. 3, c). The threshold θend, at whict the endpoint was activated, also
had a lower value, equal to 0.0071.

An additional decrease of learning depth to κ = 0.15 did not show the significant
changes of the SOM structure after the 6146 iterations has passed. The self-training
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four different values of κ. Two random signals with uniform distribution were
used as inputs during the experimental investigation. During the experimental
test, we have obtained different number of passed iterations before the endpoint
was activated (see Fig. 3).
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Fig. 3. SOM structure after self-training: a – 8× 8 SOM structure after 811 iterations
with κ = 0.3; b – 8 × 8 SOM structure after 3120 iterations with κ = 0.25; c – 8 × 8
SOM structure after 6146 iterations with κ = 0.2; d – 8×8 SOM structure after 10 000
iterations with κ = 0.15

The learning depth κ was changed in the range [0.15, 0.3]. The shortest SOM
learning cycle was achieved with κ = 0.3. The endpoint at θend = 0.01065 was
obtained at 811th iteration. It is seen from Fig. 3, a, that the SOM did not
reach the regular structure. However, the neurons at the right side were already
starting to adjust their weights in the right order.

The SOM learning endpoint with κ = 0.25 was activated after 3120 iter-
ations. The threshold θend = 0.008875 obtained with κ = 0.3. The results of
experimental tests are illustrated in Fig. 3, b. The obtained SOM structure was

Fig. 3. SOM structure after self-training: a – 8 × 8 SOM structure after 811 iterations with κ =
0.3; b – 8× 8 SOM structure after 3120 iterations with κ = 0.25; c – 8× 8 SOM structure after
6146 iterations with κ = 0.2; d – 8× 8 SOM structure after 10 000 iterations with κ = 0.15

was stopped because of the reached maximum allowed number of iterations (equal to
100 000) in the algorithm and the endpoint was not activated. During the experimen-
tal investigation, the regular structure of the SOM has been achieved with κ = 0.2.
However, the other type of input signal (not random) may require the higher value of κ.
Few additional tests performed with the signals having different statistical distributions
showed, that the κ should be chosen in the range from 0.2 to 0.25.

5 Comparison of Different SOM Self-training Endpoint Selection
Methods

ALWCh endpoint selection method proposed in this paper works in an un-supervised
manner. Therefore, three alternative methods for SOM self-training endpoint selection
were used to compare the performance of the proposed approach: a method based on the
mean value of the cost function (MVCF); a method based on monitoring learning rate
changes (LRCh) and a method based on cluster quality estimation (CQE). The alterna-
tive approaches were selected by taking into account the additional computational cost
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during the application of the selected method in real-time. The amount of additional
calculations, which were needed to make a decision about the self-training endpoint,
had to be less or equal to the proposed method. The results, obtained by using four
different methods on the same SOM of size 8 are shown in Fig. 4.
10 Stašionis and Serackis
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Fig. 4. Illustration of I (In) changes at every self-training iteration with marked self-
training endpoints, obtained during experimental investigation

was the most computationally intensive in our test. The endpoint was activated
with a delay, because the quality of current SOM in this method was verified for
various neurons and with various input vectors.

An activation of 8×8 SOM self-training endpoint accordingly to the proposed
ALWCh method was done at 6265th iteration shown in Fig. 4 as mark 1mark 1mark 1. The
number of iterations passed from the beginning of the SOM self-training was
above 6000. From the Fig. 3, c, it is clear that the SOM at the point mark 1mark 1mark 1 was
already well trained.

The CQE endpoint activation method passed 6527 iterations before acti-
vation (mark 4mark 4mark 4 in Fig. 4). It took 262 (4.19%) more iterations comparing to
the proposed ALWCh method. The SOM weight changes were insignificant in
7151 iteration accordingly to the least computationally intensive LRCh method
(mark 3mark 3mark 3 in Fig. 4). The MVCF endpoint activation method gave unacceptable re-
sults because the self-training was stopped too early, at the 4606 iteration. The
SOM structure after 4606 iterations was still distorted and needed additional
adjustments.

The results given in Table 2 presents the comparison of the different endpoint
activation methods for the smaller SOM topologies. From these results, it was
clear that all endpoint activation methods preserves the same tendencies during
SOM self-training. The CQE method had near 250 iterations delay in comparison
to proposed ALWCh method. The activation of the endpoint by MVCF method
was always earliest. However, the visual analysis of the SOM weight adjustment
showed that the activation of the endpoint according to MVCF method was too
early on experimental data and should not be used.

Fig. 4. Illustration of I (In) changes at every self-training iteration with marked self-training
endpoints, obtained during experimental investigation

The self-training endpoint, estimated by MVCF method is shown as mark 2mark 2mark 2 in
Fig. 4. The complexity of this endpoint activation method is similar to the complex-
ity of the ALWCh method proposed in this paper. The additional calculations, needed
for endpoint activation parameter are performed at the same time.

The self-training endpoint, estimated by LRCh method is shown as mark 3mark 3mark 3 in Fig. 4.
The method tracks the dynamics of SOM weight changes. If the changes of the SOM
weights becomes insignificant, the endpoint is activated and the self-training is sus-
pended. Because no additional calculations are performed during the SOM self-training
process, the implementation complexity does not increase.

The self-training endpoint, estimated by CQE method is shown as mark 4mark 4mark 4 in Fig. 4.
The cluster quality, measured in this method, shows how well the SOM classify the
inputs and how well each neuron represents (as a cluster) it’s input data. The rating was
performed in each training cycle. Therefore, this method was the most computationally
intensive in our test. The endpoint was activated with a delay, because the quality of
current SOM in this method was verified for various neurons and with various input
vectors.

An activation of 8 × 8 SOM self-training endpoint accordingly to the proposed
ALWCh method was done at 6265th iteration shown in Fig. 4 as mark 1mark 1mark 1. The number
of iterations passed from the beginning of the SOM self-training was above 6000. From
the Fig. 3, c, it is clear that the SOM at the point mark 1mark 1mark 1 was already well trained.

The CQE endpoint activation method passed 6527 iterations before activation (mark 4mark 4mark 4
in Fig. 4). It took 262 (4.19%) more iterations comparing to the proposed ALWCh
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method. The SOM weight changes were insignificant in 7151 iteration accordingly to
the least computationally intensive LRCh method (mark 3mark 3mark 3 in Fig. 4). The MVCF end-
point activation method gave unacceptable results because the self-training was stopped
too early, at the 4606 iteration. The SOM structure after 4606 iterations was still dis-
torted and needed additional adjustments.

The results given in Table 2 presents the comparison of the different endpoint acti-
vation methods for the smaller SOM topologies. From these results, it was clear that all
endpoint activation methods preserves the same tendencies during SOM self-training.
The CQE method had near 250 iterations delay in comparison to proposed ALWCh
method. The activation of the endpoint by MVCF method was always earliest. How-
ever, the visual analysis of the SOM weight adjustment showed that the activation of
the endpoint according to MVCF method was too early on experimental data and should
not be used.

Table 2. Comparison of the endpoint activations for the SOM of the different size

2× 2 3× 3 4× 4 5× 5 6× 6 7× 7

MVCF −25% −8.4% −4.1% −9.1% 4.4% −31.8%
LRCh 38.9% 24.5% 31.1% 18.9% 33.8% 14.2%
CQE 15.3% 24.5% 31.1% 5.1% 22.5% 3.4%
ALWCh 1627(0%) 2868(0%) 3405(0%) 4622(0%) 4276(0%) 6194(0%)

5.1 Application of SOM for Spectrum Sensing

A set of additional experiments were performed by using SOM based spectrum sensor.
The self-training of SOM was performed in real time, additionally in parallel analyzing
the current state of SOM self-training results.

25 MHz wide radio spectrum band at 928 MHz frequency was analyzed during
experimental investigation. The recorded radio signals were pre-analyzed by cyclosta-
tionary feature estimation based spectrum sensor to detect and annotate the primary
user signal emissions. A SOM based spectrums sensor was applied to the same radio
signals. As a result, the rate of detected primary user emissions PD and the rate of
spectrum sensor false alarms PFA were collected for each SOM based detector with
different self-training endpoint setting approach. The number of self-training iterations
passed before the endpoint was activated is given in Table 3.

The activation of the SOM self-training endpoint is made according to the train-
ing state analysis results, estimated in parallel to self-training procedure. Therefore,
the computationally intensive analysis algorithm activates the endpoint with a delay.
Such situation was observed for the endpoint selection method based on the analysis
of cluster quality. Both, the proposed ALWCh method and CQE methods showed simi-
lar performance in primary user emission detection (see Table 4). However, three from
eight SOM detectors, which used CQE method during self-training, failed to detect all
primary user emissions in the radio signal spectrogram.
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Table 3. Comparison of the SOM self-training endpoint activation points during spectrum sensing
application

SOM size ALWCh method CQE method LRCh method MVCF method

3× 3 1295 1329 1901 492
4× 4 1324 1391 2852 650
4× 5 1454 1567 3804 1031
5× 5 1373 1545 4753 789
5× 6 1258 1524 5700 876
6× 6 1115 1612 6632 1422
5× 8 1339 1866 7825 857
5× 9 2262 2346 8742 907

Table 4. Comparison of the SOM based spectrum sensor performance with different endpoint
selection algorithms

SOM size
ALWCh
method

CQE
method

LRCh
method

MVCF
method

PD PFA PD PFA PD PFA PD PFA

3× 3 1 0.0169 1 0.0183 1 0.0159 0.897 0
4× 4 1 0.0156 0.9985 0.0057 1 0.0133 0.859 0
4× 5 0.9801 0 1 0.0142 1 0.0115 0.931 0
5× 5 1 0.0202 1 0.0196 1 0.0121 0.884 0
5× 6 1 0.0165 0.995 0.0089 1 0.0125 0.894 0
6× 6 1 0.0175 1 0.0214 1 0.0108 1 0.0175
5× 8 1 0.0242 0.99 0.0126 0.995 0.0101 0.91 0
5× 9 1 0.0168 1 0.0175 0.98 0.0089 0.923 0

A good sensitivity was achieved during application of SOM based spectrum sensor
with self-training endpoint selection by LRCh method. The false alarm rate PFA was
lower comparing to all methods which have found all primary user emissions (see Ta-
ble 4). However, the number of iterations that passed before the endpoint was activated
was much higher comparing to alternative methods. Especially this difference was high
when the number of SOM neurons was increased (see Table 3). The high number of
SOM self-training iterations means that it takes more time for the SOM based spectrum
sensor in order to adapt to the dynamic radio environment and to start the primary user
emission detection tasks.

6 Conclusions

The endpoint activation method proposed in this paper allowed us to reduce the number
of SOM self-training iterations before the SOM based spectrum sensor can be applied
for primary user emission detection.
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The proposed method was compared to alternative approaches, suitable for imple-
mentation in real-time embedded system. The performance of the proposed method was
slightly better in comparison to the alternative methods according to two parameters:
emission detection rate and number of iterations before the endpoint is initiated. Only
the sensor with SOM of 4 × 5 size (from eight tested in total) was not able to detect
all primary user emissions, while alternative methods reduced the sensitivity of two or
more SOM based sensors.

In comparison to SOM self-training endpoint selection algorithm, based on the clus-
ter quality estimation, the proposed method required from 2.6% (for the SOM with
small number of neurons) to 44.6% (for the SOM with higher number of neurons) less
iterations to reach the endpoint and preserve the similar sensitivity of the spectrum sen-
sor.
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