
Baltic J. Modern Computing, Vol. 4 (2016), No. 1, 5-33

The Database Normalization Theory and the Theory

of Normalized Systems: Finding a Common Ground

Erki EESSAAR

Department of Informatics, Tallinn University of Technology,

Akadeemia tee 15A, 12618 Tallinn, Estonia

Erki.Eessaar@ttu.ee

Abstract: Database normalization theory offers formalized guidelines how to reduce data

redundancy and thus problems that it causes in databases. More lately, researchers have started to

formalize ideas that the problems caused by unwanted dependencies and redundancy can be

observed in case of any modular system like software, hardware, or organization. To tackle these

problems, they have proposed the theory of normalized systems that complete application frees

systems of combinatorial effects and thus the impact of a change in a system does not depend on

the system size. At the time of writing this paper, the explanations of the theory of normalized

systems do not say much about database normalization. We think that the theories are deeply

related. In this paper, we search a common ground of the database normalization theory and the

theory of normalized systems.

Keywords: database normalization, principle of orthogonal design, normalized system (NS),

evolvability, separation of concerns, combinatorial effect (CE).

1. Introduction and Related Works

Normalization theory of relational databases dates back to the E.F. Codd’s first seminal

papers about the relational data model (Codd, 1970). Since then it has been extended a

lot (see, for instance, Date (2007, Chap. 8)) and the work is ongoing. There are proposals

how to apply similar principles in case of other data models like object-oriented data

model (Merunka et al., 2009), (hierarchical) XML data model (Lv et al., 2004), or

(hierarchical) document data model (Kanade et al., 2014). Database normalization

process helps database developers to reduce (not to eliminate) data redundancy and thus

avoid certain update anomalies that appear because there are combinatorial effects (CEs)

between propositions that are recorded in a database. For instance, in case of SQL

databases each row in a base table (table in short) represents a true proposition about

some portion of the world. CEs mean in this context that inserting, updating, or deleting

one proposition requires insertion, update, or deletion of additional propositions in the

same table or other tables. The more there are recorded propositions, the more a data

manager (human and/or software system) has to make this kind of operations in order to

keep the data consistent. Thus, the amount of work needed depends on the data size and

increases over time as the data size increases. Failing to make all the needed updates

leads to inconsistencies. The update anomalies within a table appear because of certain

dependencies between columns of the same table. Vincent (1998) shows how these

6 Eessaar

dependencies lead to data redundancy. Informally speaking, these anomalies appear if

different sets of columns of the same table contain data about different types of real-

world entities and their relationships. By rewording a part of third normal form

definition of Merunka et al. (2009), we can say that these sets of columns have

independent interpretation in the modeled system. According to the terminology in

(Panchenko, 2012) these sets of columns have different themes. Thus, the table does not

completely follow the separation of concerns principle because database designers have

not separated sets of columns with independent interpretations into different software

elements (tables in this case). The update anomalies across different tables within a

database may occur because of careless structuring of the database so that one may have

to record the same propositions in multiple tables. The update anomalies across different

databases (that may or may not constitute a distributed database) may occur if one has

designed the system architecture in a manner that forces duplication of data to different

databases.

Conceptually similar update (change) anomalies could appear in the functionality of

any system or its specification and these make it more difficult and costly to make

changes in the system or its specification. Pizka and Deissenböck (2007) comment that

redundancy is a main cost driver in software maintenance. The need to deal with the

update anomalies in the systems that are not designed to prevent them is inevitable

because the systems have to evolve due to changing requirements just like the value of a

database variable changes over time. For instance, some of the changes are caused by the

changes in the business, legal, or technical environment where the system has to operate,

some by changing goals of the organization, and some by the improved understanding of

the system domain and requirements by its stakeholders. The theory of normalized

systems (NS) (Mannaert et al., 2012b) reflects understanding of the dangers of the

update anomalies and offers four formalized design theorems that complete application

helps developers to achieve systems that are free of CEs and are thus modular, highly

evolvable, and extensible.

The NS theory speaks about modules and submodular tasks. The work with the NS

theory started after the invention of the database normalization theory. Its proponents see

it as a general theory that applies to all kinds of systems like software, hardware,

information system, or organization or specifications of these systems. Like the database

normalization theory, its goal is to improve the design of systems and facilitate their

evolution. In our view, it would be useful to bring these two theories together to be able

to understand their similarities and differences. Possibly, we can use the ideas that have

been worked out for one theory in case of the other theory as well. Nowadays there is a

lot of talk about object-relational impedance mismatch between highly normalized

relational or SQL databases and object-oriented applications that use these. Thus,

researchers and developers look these as quite distinct domains that require different

skills and knowledge as well as have different associated problems, theories, methods,

languages, and tools. Hence, in addition to technical impedance mismatch there is a

mental one as well. We support the view that database design is programming and has

the same challenges as the programming in the “traditional” sense like ensuring quality

and high evolvability, separating concerns, managing redundancy and making

redundancy controlled, testing the results, versioning, and creating tools that simplify all

this.

Database and application developers sometimes have antagonistic views to the

normalization topic. Merunka et al. (2009) mention a common myth in object-oriented

development community that any normalization is not needed. Komlodi (2000)

 Database Normalization Theory and Theory of Normalized Systems 7

compares object-oriented and relational view of data based on the example of storing a

virtual car in a garage. He compares a design that offers a large set of highly normalized

tables with an object-oriented design where there is class Car that describes complex

internal structure and behavior of car objects. Readers may easily get an impression that

normalization is something that one uses in case of databases but not in case of

object-oriented software.

On the other hand, there are ideas of using the relational model, relational database

normalization theory, and dependency theory, which is the basis of the normalization

theory, to facilitate understanding of evolving systems. De Vos (2014) uses the relational

model as a metalanguage and the relational database normalization theory as a

theoretical tool to explain and predict language evolution in terms of gradual lexicon

development as well as explain the levels of language ability of animals. We have found

the work of Raymond and Tompa (1992), Lodhi and Mehdi (2003), and Pizka (2005)

that apply the dependency theory to the software engineering. Raymond and Tompa

(1992) analyze text editor and spreadsheet software. They describe functionality in terms

of tables, investigate dependencies between the columns, and discuss implications of the

dependencies to the design of data structures and software as well as end-user

experience. They show how decomposing the tables along the dependencies, based on

the rules of database normalization, reduces redundancy in software design and thus

makes it easier to update the software. They suggest that it would be possible to teach

object-oriented design in terms of multivalued dependencies. The authors note that users

could tolerate certain amount of data redundancy but the goal to ensure data consistency

leads to software that is more complex. Having different approaches for dealing with

redundancy within the same software may reduce its usability. Lodhi and Mehdi (2003)

describe and illustrate the process of applying normalization rules to the classes of

object-oriented design. Pizka (2005) considers maintainability of software and discusses

difficulties of maintaining code due to change anomalies, which are conceptually similar

to the update anomalies in not fully normalized relational databases. He transfers the

idea of normalization from data to code and defines two code normal forms in terms of

semantic units and semantic dependencies. In principle, there is such dependency

between program units (for instance, functions), if these units are equivalent or

semantically equivalent. The latter could mean that the operations fulfill the same task

but perform their task based on differently represented input data. He uses the defined

normal forms for reasoning about, finding, and removing change anomalies in code to

improve its maintainability. However, none of these ideas has achieved widespread

attention. In October 2015, the paper (Raymond and Tompa, 1992) had six, the paper

(Lodhi and Mehdi, 2003) had one, and the paper (Pizka, 2005) had two papers that

referred to it according to the Google Scholar™. None of these references has the topic

of the referenced papers as its main topic.

Software systems contain a layer that implements business logic, which is guided by

the business rules. It is possible to represent these rules in decision tables. The works of

Vanthienen and Snoeck (1993) as well as Halle and Goldberg (2010) are examples of

research about normalizing decision tables to improve their understandability and

maintainability. They derive the normalization process from the database normalization

process and define different normal forms of business rules. Halle and Goldberg (2010)

comment that the normalization leads to a decision model structure that causes the

removal of duplicate atomic statements and delivers semantically correct, consistent, and

complete rules.

8 Eessaar

In case of the database normalization theory there is a well-known technique of

denormalization that requires reduction of normalization level of one or more tables (if

we speak about SQL databases) to achieve pragmatic goals like better performance of

some queries in a particular environment. Whether and how much to use it depends on

context. For instance, Helland (2011) gives an impression that that in large-scale systems

do not need database normalization because users add new facts instead of updating

existing facts. Kolahi and Libkin (2010) provide formal justification that databases with

good third normal form design (there are higher normal forms) offer the best balance

between redundancy reduction and efficiency of query answering. Grillenberger and

Romeike (2014) argue that computer science has to “rethink the idea of redundancy from

something that generally should be avoided to a method that is applied in order to

achieve certain specific goals” due to the emergence of NoSQL systems and Big Data.

One starts to wonder, does it mean that these ideas also apply to the redundancy of

functionality.

Perhaps understanding universalness of normalization principles, similarity of

concepts, potential problems of redundancy, and situations when redundancy is tolerable

or even desirable helps us also reduce the mental gap between the application

development and database development domain. Fotache (2006) observes that database

normalization theory has failed to become universal practical guide of designing

relational databases and points to different reasons of that. Badia and Lemire (2011)

mediate a report that in a typical Fortune 100 company database normalization theory is

not used. There are even such provocative calls like “normalization is for sissies”

(Helland, 2009). If one understands better the relationship between the NS theory and

the database normalization theory, then one can learn from the problems of one theory

how to make things better in case of the other. Badia and Lemire (2011) observe with

regret that traditional database design (thus, also normalization) “is not a mainstream

research topic any more” and is often considered “a solved problem.” One could hope

that the interest towards the NS theory will also increase the interest towards the

database normalization. Grillenberger and Romeike (2014) suggest that at the age of Big

Data the topic of strictly normalizing data schema is not any more a broadly influential

fundamental database concept that deserves teaching in the general education. They also

call for discussion as to whether (data) redundancy is such general concept any more.

However, understanding fundamental similarities between the NS theory and the

database normalization theory would strengthen the understanding that redundancy is an

important concept of both data and management. It influences systems in general and

thus certainly deserves teaching.

Thus, the goal of the paper is to bring together and search a common ground of the

theory of NS and the theory of database normalization. We pointed to some observable

similarities and differences between the theories in our earlier paper (Eessaar, 2014).

However, the topic deserves a deeper analysis. To our knowledge, there has not been this

kind of analysis yet in the literature. Since the NS theory is independent of any

programming language, platform, or technology, we want to understand as to whether

the theory of database normalization could be seen as a specialization of the NS theory

in the domain of databases.

We organize the rest of the paper as follows. Firstly, we present an additional

explanation of the main principles and reasons behind database normalization and the

NS theory. After that, we explore what existing NS literature says about databases and

the database normalization theory. Thirdly, we explore a common ground of the

normalization theories. We name some problems of SQL databases and database

 Database Normalization Theory and Theory of Normalized Systems 9

management systems (DBMS) that are caused by the insufficient separation of concerns,

which is a violation of the NS theory. We present a conceptual model that offers a

unified view of the theories. Finally, we conclude and point to the further work with the

current topic.

2. Normalization Theories

Here, we further explore the theories to explain the context and improve understanding.

2.1. Theory of Database Normalization

The normalization theory provides a formalized theoretical basis for the structuring of

databases. The goal of its application is to reduce data redundancy in databases and

hence avoid certain update anomalies. Although this is desirable in case of any data

model, we refer to the relational data model in our discussions because the theory is

probably the best known in this domain. Of course, one may choose to allow redundancy

for the sake of improving some other aspects of the system but in this case it is a

conscious design decision and one must take into account all of its good and bad results.

Technical limitations of data management platforms often cause decisions to permit

certain degree of data redundancy. Because of these, allowing the redundancy is the best

possible way to speed up certain queries or, in case of data models that do not provide an

operation that is similar to relational join, to make possible certain operations in the first

place.

Our understanding of the relational data model, which is also the basis of the SQL

database language, is based on The Third Manifesto (Date and Darwen, 2006). It differs

from the underlying data model of SQL in many crucial details. However, in the

discussions of the database normalization theory, we will use the terminology of SQL –

table, column, and row. We will do it because SQL is well known and we hope that it

will make the discussion more understandable. We will point to the differences of the

underlying data model of SQL and the relational model where we need it.

Data redundancy in a database means that there is at least one proposition that has

two or more distinct representations in the database (two or more separately registered

propositions) (Date, 2006a). The update anomalies make data modification operations

more time consuming and error prone. If one wants to insert, update, or delete a

proposition, then the DBMS or its invoker have to make more work (how much more

depends on the level of normalization and the number of already registered propositions)

to complete the operation and to ensure consistency of propositions. If the system design

determines that applications that use data have to be aware of the redundancy and ensure

consistency, then it increases coupling between the applications and the database. In

addition, data structures that feature data redundancy and update anomalies restrict

propositions that one can record in the database because the system treats independent

propositions at the database level as dependent propositions. Carver and Halpin (2008)

note that NULLs in a fact (proposition) indicate that the fact is not atomic. Contrary to

SQL, The Third Manifesto does not permit us to use NULLs to depict missing values.

Thus, one cannot bundle together propositions to a row as a composite proposition if

some parts of the composite proposition are missing.

Normalization is a multi-step process where each step takes the involved tables to a

higher normal form that is defined in terms of certain well-formedness rules. In other

10 Eessaar

words, the process describes how to evolve the database schema. To take a table T to

first normal form, one must be able to represent data in T so that in each row of T each

field contains exactly one value that belongs to the type of the corresponding column

(and not sets of such values known as repeating groups). Moreover, the table also has to

have at least one (candidate) key to exclude duplicate rows because the table must satisfy

all the requirements of the relational model to tables. It is said that each table that is in

first normal form is normalized. In this paper, further database normalization means

projection-based decomposition of tables. Thus, further normalization of T means

searching certain dependencies between the columns of T and decomposition of T into

smaller tables in a nonloss manner based on the dependencies by using projection

operation. Further normalization process is often informally called normalization.

Nonloss decomposition of a table T means in this case that a database designer replaces

T with certain of its projections so that it is guaranteed that one can restore the original

table T by joining all the projections and all the projections are needed to provide such

guarantee. The process recursively applies also to all the newly created tables.

As a by-product, the result of the normalization process simplifies enforcement of

certain integrity constraints because we can now enforce these by simply declaring keys

to the tables. Enforcement of the integrity constraints means that the system has more

information to check consistency of data and optimize operations. Another by-product is

that the observer of the schema that contains tables will get gradually better

understanding of the concepts and relationships of the real world (domain) that are

reflected by the schema. Tables reflect more and more fine-grained concepts of the real

world and declared keys and referential constraints explain the nature of relationships.

De Vos (2014) draws parallel between normalization of tables and gradual expansion of

lexicon to depict new concepts. Depending on the implementation of a particular DBMS,

the normalization process could lead to the reduction of data storage costs due to the

reduced redundancy.

The reverse process of normalization is denormalization. Database designers use it to

achieve pragmatic goals like improved performance of certain queries or offering data to

applications in an aggregate form so that it is easier for them to read the data. The latter

can be achieved in databases by using viewed tables (views in short) (assuming that the

DBMS supports them and supports operators needed to convert data to aggregate form)

and thus avoiding the negative effects of data duplication (Burns, 2011).

In general, we can say that the normalization theory teaches us how to improve the

design of databases in certain aspects. In addition, its formal and precise definition

makes it possible to semi-automate the process and checking existing databases or

database design models against its defined levels of normalization. On the other hand,

the theory does not cover all the aspects of database design and hence its following does

not guarantee a good database design in every aspect. Hence, the normalization theory is

only one tool in the toolset of database designers. The application of the database

normalization theory cannot even guarantee that a database is free of all kinds of data

redundancies. We actually even do not need this because, for instance, duplication of

data in a distributed database to several locations helps us to improve availability of the

system as well as the speed of answering certain queries. On the other hand, this

duplication introduces new level of complexity to the system because it must control the

redundancy. Date (2006a) explains that in case of controlled redundancy the DBMS and

not its users must take care of propagating (at least eventually) updates to avoid

inconsistent or contradictory propositions in different parts of the database. Of course,

 Database Normalization Theory and Theory of Normalized Systems 11

someone has to instruct the DBMS how to propagate the updates and thus there is more

work for the developers.

The principle of orthogonal design addresses data duplication across multiple tables.

It is not a part of the normalization theory. It requires that no two tables in a database

should have overlapping meanings (Date, 2006a).

The definitions of normal forms, except first normal form, depend on the existence of

keys in the tables, thus eliminating the problem of repeating rows in the tables. However,

definition of first normal form does not require the existence of keys in tables according

to the interpretation of SQL but does require the existence of at least one key in each

table according to the interpretation of the relational model. Keyless tables lead to

possible repeating rows in the tables that is another form of redundancy. As Date (2006b,

Chap. 10) shows, it leads to, for instance, problems with interpreting the query results as

well as optimizing the queries by the system.

Carver and Halpin (2008) argue that the previously described normalization process

is inadequate because a table (as a variable) may have different values (sets of rows),

some of which do not have multivalued or join dependencies but still have fact-

redundancy. They do not question the need of normalization but the process of achieving

fully normalized tables. They argue that if one creates a conceptual model that represents

atomic fact types, then one can synthesize fully normalized tables from it. They

comment that the process of deciding as to whether a fact type is atomic or not requires

knowledge about the domain and is informal. Fotache (2006) also points out that

alternatively one could use normalization to check the results of deriving database

structure from a conceptual model.

2.2. The Theory of Normalized Systems (NS)

Databases are only one, albeit often very important, component of information systems.

Intuitively, it is understandable that some design problems that appear in databases can

appear in some form in any type of systems. These systems could be technical,

sociotechnical, social, or natural. For instance, there could be multiple software modules

in a software system that implement the same task, multiple forms in the user interface

of the same actor providing access to the same task, multiple process steps,

organizational units or organizations that fulfill the same task, or identical or

semantically similar models that describe the same tasks. These examples potentially

mean unnecessary wasting of resources and more complicated and time-consuming

modification of tasks and their models. Being duplicates of each other, the parts have

undeclared dependencies, meaning that changing one requires cascading modifications

of its duplicates to keep consistency. The more there are such duplicates, the more

changes we need to keep consistency.

If there are multiple unrelated or weakly related tasks put together to a module, then

it is more difficult to understand, explain, and manage the module. Such modules have

more dependencies with each other, meaning that changes in one require examination

and possible modifications in a big amount of dependent modules. The less the general

information hiding design principle is followed, the more cascading changes are needed.

For instance, intuitively, one can understand how difficult it would be to understand

places of waste and duplication in a big organization and after that reorganize it. In

organizations, the more fine-grained are its tasks, the easier it is to distribute these

between different parties and in this way achieve separation of duties and reduce the

possibility of fraud.

12 Eessaar

Observers have noticed the same general problems in case of user interface design as

well. Cooper et al. (2014, p. 274) write that navigation is “any action that takes the user

to a new part of the interface or that requires him or her locate objects, tools, or data

elsewhere in the system” and that the need of such actions should be minimized or

eliminated. From the end users perspective, one could see it as a call to denormalize by

bundling tasks together to one form or page. From the perspective of the developers, it is

a warning of dangers because if there are duplicated tasks in different places, then they

have to navigate to modify these. The latter demonstrates conflicting interests of

different stakeholders and possibly the need to have different decomposition principles

at the different system layers.

Thus, this knowledge is not new and the authors of the NS theory are not its

discoverers. For instance, “Once and only once” software development best practice

requires that there should not be duplication of behavior in a system (WEB, a). “Don’t

repeat yourself” best practice is a little bit more relaxed, meaning that each data element

or action element (functionality) must have single authoritative representation in the

system (Wilson et al., 2014). If there is duplication, then it must be controlled

(automated) (WEB, b). Similarly, De Bruyn et al. (2012) refer to different code smells.

Many of these indicate code duplication. Their analysis shows that avoidance of most of

the smells (14 out of 22) contribute towards achieving NS. However, the NS theory tries

to offer more formalized approach how to achieve the system that is free of such

problems.

The Lehman’s laws of software evolution state that E-type evolutionary software

degrades over time unless it is rigorously maintained and adapted as well as its

functional content is increased to maintain satisfaction of users (Godfrey and German,

2014). The NS theory assumes unlimited system evolution over unlimited time

(Mannaert et al., 2012b). Of course, the stakeholders of the system want the evolution

process to be as easy and problem-free as possible. However, this is not the case if the

system grows larger and more complex over time. The bigger it gets, the more there are

dependencies so that changing one part of the system requires changes in other unrelated

parts as the ripple effect. Unfortunately Mannaert et al. (2012b) remain vague about

what does “unrelated” mean here. The theory of NS calls such dependencies

combinatorial effects (CEs) and calls for their complete elimination. Only if this is

achieved, then the impact of change will not depend on the size of the system any more

but only on the nature of the change itself. Thus, the system becomes stable with respect

to a set of anticipated changes. Mannaert et al. (2012b) define a minimal set of such

changes. The theory suggests four prescriptive design theorems to constrain the modular

structure of systems and to guarantee that the system is free of CEs and thus highly

evolvable. The Lehman’s law of increasing complexity states that each E-type software

system grows increasingly complex over time, unless stakeholders explicitly work to

reduce its complexity (Godfrey and German, 2014). In this case, explicit work means

work that is needed during the creation or modification of the system to achieve

conformance to the theorems.

The theory is generic in the sense that according to the authors one could apply it to

any modular system. To achieve this, the theory is described in terms of very generic

primitives like data elements and action elements that configuration forms a system.

Anticipated changes of the system mean changes in the configuration of these elements.

The design theorems that proofs Mannaert et al. (2012b) present in their paper have the

following informal descriptions (Eessaar, 2014).

 Database Normalization Theory and Theory of Normalized Systems 13

 Separation of Concerns means that each change driver (task, including the use

of an external technology) of a system must be put into a separate module.

 Data Version Transparency means that there could be multiple versions of data

elements without affecting action elements that produce or consume these.

 Action Version Transparency means that it must be possible to modify action

elements without affecting action elements that call these.

 Separation of States means that system has to keep state after every action that

belongs to a workflow to be able, for instance, to handle unexpected results.

For instance, there are examples of application of the theory to software (Mannaert et

al., 2012b) and business architecture of information systems (Eessaar, 2014). It is

possible to apply the theory to system development artefacts like requirements (Verelst

et al., 2013) or code. If one uses model driven development to create code based on

models by using transformations, then one must consider the theorems right from the

first artefacts.

The systems that completely follow all the design theorems are free of CEs and are

thus stable in the sense that small initial changes in the system will not lead to big

cascading changes as the ripple effect. Thus, the effort to change the system will be

similar or even constant over time. The theory calls such systems as normalized systems.

The separation of concerns theorem is nicely in line with the code normal forms

proposed by Pizka (2005). The requirement of first code normal form that the basic

building blocks of code must be indivisible atoms means that each block must have one

task. Like the separation of concerns principle, it gives freedom in deciding the

granularity of blocks and hence tasks. Akşit et al. (2001) and WEB (c) require that each

separated concern must have canonical form property, meaning that it should not include

irrelevant and/or redundant abstractions. Similarly, second code normal form requires

that there must not be direct or transitive semantic dependencies between blocks,

meaning essentially that there should not be blocks that are duplicates of each other.

In databases, a design decision could be to have some level of controlled data

redundancy to improve, for instance, performance of some queries due to the technical

limitations of the used platform (in this case a DBMS). Similarly, in systems in general

the redundancy maybe needed and encouraged in order to achieve, for instance, some

level of competition. For instance, in this reason it is useful to have multiple universities

in a country. However, in order to achieve controlled redundancy they should ideally

have some sort of agreement how to best share the common task to offer good education.

3. Databases According to the NS Literature

One of the questions that interests us is how much the database normalization theory has

influenced the NS theory. The reverse process of normalization is denormalization.

Therefore, it interests us how the NS theory regards the possibility of not completely

enforcing all the theorems of NS and thus not achieving a NS. The database

normalization theory stresses the concept of redundancy. Thus, it is interesting to know

how the NS theory treats the concept. Finally, we want to know about the treatment of

databases in general, DBMSs, and database design according to the NS theory.

To find answers to these questions, we conducted a small literature review. Firstly,

we selected the key publication that is a journal paper (Mannaert et al., 2012b), which

explains the NS theory and offers proofs of its theorems. Next, we selected the journal

paper and all the papers that refer to this paper according to Google Scholar™ (at the

14 Eessaar

beginning of March 2015) into the initial set of papers. We also added to the initial set

the earlier papers of Mannaert and Verelst that the selected journal paper references. For

the review, we selected papers (from the initial set of papers) that’s main topic is the NS

theory or its application to some system and full text is available to us. In total, we

reviewed 40 papers from 2006 to 2014 (all in English) that were available as pdf files.

We used the following case insensitive search keywords to search parts of the papers that

are relevant in terms of the research questions: “normal form”, “relational”, “sql”,

“denormalize”, “denormalization”, “database”, “database management system”, “update

anomaly”, “upadate anomalies”, “orthogonal design “, “duplicate”, “duplication”, and

“redundancy”. In addition, we searched case sensitive word “Codd” as well as “NF” and

“DBMS” that are the abbreviations of “normal form” and “database management

system”, respectively. Next, we summarize and discuss our findings. If there are multiple

publications that present similar claims, then we will not present all the publications but

make a selection.

Only Verelst et al. (2013) and our previous work (Eessaar, 2014) mention database

normalization theory. Verelts et al. (2013) refer to only the paper of Codd (1970) in this

regard. They say that it is a well-documented approach how to eliminate many CEs in

case of databases. They correctly point out that the theory does not eliminate all the

effects and thus does not eliminate all the redundancy. This is a crucial difference

between the NS theory and the database normalization theory because the former

requires us to remove all the CEs. None of the reviewed papers explicitly refers to the

concept “denormalization”. However, Verelst et al. (2013) speak about the need to

eliminate CEs at the software level but relaxing this requirement at the higher levels.

This relaxation is nothing else than denormalization in terms of NS. Similarly, in case of

databases it is possible to denormalize views that constitute the external level of a

database without denormalizing tables based on that the views have been defined (Burns,

2011). In case of software systems, the analogy is, for instance, user interface where

each form/page could offer unrelated or weakly related functionality and thus violate the

separation of concerns theorem that is one of the founding theorems of the NS theory. In

case of documentation, an example are diagrams that could couple unrelated or weakly

related model elements. Thus, denormalization is clearly a topic that the NS theory

should consider.

Verelst et al. (2013) incorrectly claim that the CEs that the database normalization

eliminates are caused by the “redundant definition of attributes.” The definitions are not

redundant but the attributes are grouped together so that there will be CEs between

propositions that are represented by the recorded attribute values. Terminology here is

also imprecise because in SQL columns and attributes are structural components of

tables and structured types, respectively. Moreover, it is the principle of orthogonal

design that addresses redundant definition of columns in different tables. The principle is

related to but not a part of the database normalization theory. Only Eessaar (2014)

mentions the principle. Only Eessaar (2014) mentions database normal forms and does

so while giving an example of similarities of the normalization theories. Thus, we

conclude that the database normalization theory has not been an important basis in

working out the NS theory and there is a gap in the research, namely search of a

common ground of these theories.

There are few mentions of relational databases (three papers), object-relational

mapping (one paper), database management systems (two papers), and SQL (three

papers) as examples of possible implementation technologies of systems. The NS theory

is generic and these are just some possible implementation technologies. Data element is

 Database Normalization Theory and Theory of Normalized Systems 15

one of the element types of the NS. According to Mannaert et al. (2012b), one can store

instances of data elements in corresponding relational database tables. They look a

DBMS as an external technology to applications and do not treat it and its provided data

model in terms of the NS theory. The lack of references also shows that the research

regarding database normalization has not been an important basis in working out the NS

theory.

Seventeen papers refer to databases. Mannaert et al. (2012b) explain that if a

transaction fails because, for instance, it violated integrity rules or if a system fails

during active transactions, then the system must be aware of all actions that it has

performed for the recovery purposes. Thus, the system needs state keeping and that is

what the fourth NS theorem prescribes. Mannaert et al. (2012b) do not mention it but

many DBMSs implement this by using, for instance, rollback/undo segments. Mannaert

et al. (2012b) comment that over time programming languages have evolved to be more

consistent with the NS theorems. The design of DBMSs is themselves a subject of the

NS theory and the systems implement or facilitate independent implementation of many

of the concerns, which separation the NS theory requires. We did not find analysis of

DBMSs in terms of how much support they offer in building NS and how it has evolved

over time. Thus, in our view, the systems deserve more attention in this regard (see

Section 4.1).

At the higher level, applications store in databases the general observable states of

real-world systems. Mannaert et al. (2012a) call these states macrostates. This is another

manifestation of state keeping, required by the fourth NS theorem.

Some of the reviewed publications mention databases as a part of architecture of

information systems. Their authors argue that the architecture would benefit from the

application of the NS theory. Mannaert et al. (2012b) note that multi-tier architecture

with a separate layer of database logic is a manifestation of the separation of concerns

theorem.

In their examples, the papers concentrate to the application layer. Maes et al. (2014)

stress that checking based on database as to whether a user has an authorization to use an

IT application and its different functions is a separate concern. Developers must

implement it in a separate module for the sake of evolvability. Ideally, all the

applications will reuse it. Maels et al. (2014) call for reusing such software modules in

case of developing new applications. De Bruyn et al. (2014) refer to many different

cross-cutting concerns of systems like authorization policy, logging, integrity checking,

external communication, and bookkeeping adapter that one should implement in separate

modules. Integrity checking is a part of the underlying data model of a DBMS. Others

are services that one can build on top of the model in a DBMS. Modern SQL DBMSs

provide more or less separation of concerns between the model and the services by

providing means to manage the services separately of managing elements determined by

the data model.

A goal of the use of the NS theory is to reduce dependencies between modules.

Coupling is a measure of such dependencies. Van der Linden et al. (2013) list seven

different types of couplings. They name external coupling as the third tightest coupling.

In this case, two or more modules communicate by using an external database. Access of

this external resource is a concern that all the modules duplicate, meaning that these

modules have multiple concerns, which violates the separation of concerns theorem.

Fowler (a) calls this kind of approach integration database. The loosest types of

couplings are stamp coupling and message coupling in which case modules

communicate by passing data structures that they use only partially and messages,

16 Eessaar

respectively. These approaches are in line with the application database approach

(Fowler, b) when each database is controlled and accessed by a single application. The

applications share data by exchanging messages via services. In each system, one has to

find a balance between different requirements. Although application databases reduce

coupling they could lead to data duplication in multiple databases and thus problems in

case of performance and ease of use (data needed for some decisions are in multiple

places and it takes time to put it together). There could be problems of reusability (data

structures in an application database have been created by taking into account

requirements of a specific application and not multiple applications that all could need

this data) and integrity (difficult to enforce constraints that checking requires reading

data from multiple databases; duplication of data in different databases could lead to

inconsistencies). In principle, this means CEs because changes in data as well as in the

requirements to data mean changes in many parts of the system. Mannaert et al. (2012b)

do not see a problem in that because according to them separation of concerns is only

about action elements, not data elements.

Authors often use update anomalies to explain and justify database normalization.

Similar anomalies exist in systems in general if updating one part of a system causes the

need to update other parts as the ripple effect and the need increases with the increasing

of the system size. However, only Eessaar (2014) briefly mentions update anomalies.

Thus, the NS theory uses different terminology (like combinatorial effects and

composition of concerns) and does not use update anomalies in the database world to

explain similar problems in the general domain of systems.

Interestingly, only three papers, two of which discuss requirements engineering and

use cases, say something about redundancy in the context of the NS theory. Verelst et al.

(2013) comment that use cases that describe the same functionality or terminology

violate the separation of concerns principle. In this case there is redundancy and thus

also a CE. The redundancy could exist only at the model level but it could also reflect

redundancy in the real world. In total, we found four papers that mentioned that

duplication (another word that refers to the concept “redundancy”) (for instance, code or

processes) causes violation of the separation of concerns principle. De Bruyn et al.

(2012) analyze different code smells. These smells often indicate duplicate code that is a

sign of CEs according to De Bruyn et al. (2012). They give an example of two modules

that share the same code to implement a duplicate functionality but have also additional

functionality. They comment that in this case there is a violation of the separation of

concerns theorem because the modules have two change drivers. It is unclear from the

comment as to whether two identical modules that both have one change driver would

violate the theorem. In our view, there is still a CE because modification of one copy

requires modifications of other copies or conscious decisions not to modify and the more

there are copies, the more work one has to do.

4. Exploring a Common Ground of the Normalization Theories

Data version transparency, action version transparency, and separation of states theorems

are all about encapsulating action elements, which call each other and could have

multiple versions. The theorems require that each action element should continue

functioning if new fields are added to its consumed data elements, newer versions of its

called action elements are created, or called action elements return unexpected results

(including do not return a result). The database normalization theory does not directly

 Database Normalization Theory and Theory of Normalized Systems 17

deal with conceptually similar questions but as we later point out, the use of highly

normalized tables makes it easier to implement data version transparency. Each subtype

inherits all the properties of its supertype. The database normalization theory does not

deal with problems that are conceptually similar to the theorems about encapsulation and

versioning. Thus, it is incorrect to say that the NS theory is its generalization.

On the other hand, the separation of concerns theorem deals broadly with the same

questions as the database normalization theory and therefore one can say that these

theories have an overlap. The NS theory describes systems in terms different primitives,

including action element and data element. WEB (c) defines concern as “A canonical

solution abstraction that is relevant for a given problem.” However, the separation of

concerns, according to the NS theory, applies specifically to the action elements.

“Essentially, this theorem describes the required transition of submodular tasks—as

identified by the designer—into actions at the modular level” (Mannaert et al., 2012b).

On the other hand, users of the database normalization theory apply it to the data

elements. We argue that database normalization is a domain-specific application of

separation of concerns theorem to the data elements in the domain of databases.

We wanted to validate our impression that literature does not explain the database

normalization theory in terms of separation of concerns (as of October 2015). Firstly, we

looked all the materials (books and papers) about normalization topic that the current

paper mentions and did not find any references to the separation of concerns principle.

Secondly, we searched Google Scholar™ with the search phrases “separation of

concerns in databases” (one result) and combination of “separation of concerns” and

“database normalization” (41 results). We also looked the 357 papers (as of October

2015) that cite the work of Hürsch and Lopes (1995) and searched with phrases

“normalization” (two results) and “normal forms” (four results) within this set of papers

by using Google Scholar™. Similar search with the phrase “separation of concerns”

from the 216 papers citing Fagin (1979) returned four results. We found only one

previous source (Adamus, 2005) that comments database normalization in terms of the

separation of concerns. He mentions database normalization only once, claiming that it

causes tangling, which is not good. He applies the principles of aspect-oriented

programming to object-oriented databases and defines aspects so broadly that every

software feature that “can be isolated, named, described and documented at a high

abstraction level” is an aspect (concern).

Both Adamus (2005) and WEB (c) see concerns as conceptual abstractions that

implementation involves the creation of one or more elements in the implementation

environment. Adamus (2005) gives an example that an aspect (concern) Person, which

one could represent as an entity type in a conceptual data model, could be implemented

by using multiple tables in a relational or SQL database. Adamus (2005) thinks that

because of the creation of multiple tables the concern is scattered to multiple places of

the database. He characterizes such concern as tangling, meaning that due to the

restrictions of an implementation environment (in this case a SQL DBMS) implementers

have no other choice than to scatter the concern. Of course, this does not have to be the

case if the DBMS properly supports definition of new types and using these as column

types as the relational model requires. Each concern is a conceptual abstraction that

according to WEB (c) depends on problem at hand. The definitions leave it fuzzy as to

what is an appropriate abstraction level to consider something as a concern. Hence, in

this case, one could change the level of abstraction. Instead of looking Person as a

concern that one must implement with the help of tables Person_detail and

Person_e_mail, one could consider these tables as data elements that bijectively map to

18 Eessaar

and represent more fine-grained concerns. Based on these two tables, one could create a

denormalized view (also a data element) that corresponds to the more coarse-grained

concern Person. Database normalization helps us to achieve more fine-grained tables

that correspond to more fine-grained concepts (see the work of De Vos (2014)). Thus,

we can use the database normalization to find conceptual structure of the system and

define its conceptual (data) model. Usually the order of creation is the opposite. Firstly,

modelers create a conceptual data model. Based on that they create the database design

models by using model transformation.

Very informally speaking, in case of tables the separation of concerns means that

each table must address the main general concern of a database that is to record data

corresponding to some entity type or relationship type. In case of tables that are only in

first normal form, each table is a structure that contains data about multiple types of

entities and relationships. For instance, it makes it more complex to perform data

modification operations and enforce certain integrity constraints. The higher is the

normalization level of tables, the more fine-grained the concerns will become and thus

the separation of concerns gradually increases. Hürsch and Lopes (1995) note that there

must be a gluing mechanism that holds the decoupled concerns together. In case of

relational or SQL databases and “traditional” projection-based normalization these are

candidate keys and foreign keys of tables. One can use the values of the keys to join the

decomposed tables back together in the nonloss manner (recouple concerns).

What about constraints to data, which help us to enforce business rules? In our view,

one should look these rules as separate concerns as well. Ideally, one could implement

each such rule by using one declarative database language statement. However, if due to

the restrictions of a DBMS the implementation of a constraint requires the creation of

multiple trigger procedures, which have to react to different events and are perhaps

attached to different tables, then this is an example of tangled database concern.

Declarative statements and triggers are examples of action elements of the NS theory.

Implementation platforms of concerns determine what concerns one can and cannot

separate. According to the terminology of Tarr et al. (1999), data and functionality

would be different dimensions of concerns along of that to decompose the system. For

instance, object-oriented systems couple functionality and data because objects contain

both methods, which implement behavior and attributes, which hold data. The same is

true in case of user-defined structured types in SQL that couple attributes (data) and

methods to access the attributes. These methods also have to enforce whatever

constraints there are to the values of the attributes in addition to the type of the attribute.

On the other hand, the relational data model takes the approach that it is possible to

specify separately operators for performing operations with data, constraints to restrict

data, data structures, and data types. This distinction follows the spirit of the separation

of concerns principle.

Hürsch and Lopes (1995) write about the benefits of separating concerns and observe

that we must separate the concerns at both the conceptual and the implementation level

to achieve these. Section 4.1 explains that unfortunately current SQL DBMSs have many

shortcomings in this regard.

Hürsch and Lopes (1995) note that separating concerns makes it possible to reason

about and understand concerns in isolation. One could say the same about tables that one

creates as the result of decomposition during the normalization process. Each table

heading represents a generalized claim (external predicate) about some portion of the

world. The lower is the normalization level of a table, the more its predicate contains

weakly connected sub-predicates as conjuncts. During the normalization process, these

 Database Normalization Theory and Theory of Normalized Systems 19

predicates are separated to distinct tables. For instance, a table in first normal form might

have the following external predicate that explains the meaning of the table to its users:

Client with identifier CLIENT_NO, first name CFNAME, and last name CLNAME rents

property, which has the identifier PROPERTY_NO, address ADDRESS by paying RENT

Euros in a month. If one further normalizes the table, then one of the resulting tables

would contain data about clients and has the following external predicate: Client has

identifier CLIENT_NO, first name CFNAME, and last name CLNAME. All that the

current paper writes about separate concerns is true and relevant in case of this table as

well.

Hürsch and Lopes (1995) write that separation of concerns makes concerns

implementable one by one and substantially reduces the complexity of implementing

individual concerns. In case of database normalization, we can implement the resulting

tables, which correspond to separate and more cohesive concerns, one by one. If we

proceed with the normalization process, then it is gradually easier to implement these

tables because due to the decomposition the tables have gradually less and less columns.

Moreover, it is easier to update data in these tables due to the reduction of update

anomalies. If we want to enforce constraints to data, then as the result of normalization

process more and more constraints must refer to multiple tables. It is complicated to

enforce these constraints in modern SQL DBMSs because they do not support general

declarative constraints (assertions) that can refer to multiple tables and multiple rows and

are not directly connected to any table (separation of concerns at the implementation

level). However, this is a restriction of implementation environments not a principal flaw

of the relational data model and the normalization process.

Dependencies between columns based on that the tables are decomposed are actually

a type of constraints that should be known and enforced by the system. These constraints

are also separate concerns. Complexity of their implementation depends on the choices

during the decomposition process. Sometimes it is possible to decompose a table in

multiple different nonloss ways. Date (2003) explains that one could classify the

resulting tables (projections) of each decomposition as independent or dependent. If the

resulting tables are independent, then it is possible to enforce constraints corresponding

to functional dependencies by declaring proper keys to the new tables. For instance, in

case of table Client, one has to declare {client_no} as the key to enforce the rule that

each client must have exactly one first name and exactly one last name. However, if the

resulting tables are dependent, then enforcing these constraints requires the creation of

database constraints that span multiple tables, making the implementation more

complex.

Hürsch and Lopes (1995) comment that separating concerns results in a weak

coupling of the concerns, meaning, “changes to one concern have a limited or no effect

on other concerns.” Date (2003) comments that in case of two tables that are the result of

an independent decomposition, one can update data in either of these without updating

the other (expect the updates that violate referential constraints between the tables). In

case of two tables that are the result of a dependent decomposition, one must monitor

data updates of both tables to ensure that they do not violate dependencies that span the

tables. Understandably, Date (2003) suggests us to prefer independent decompositions.

Systems usually have a layered architecture that is themselves a manifestation of the

separation of concerns principle (Mannaert et al., 2012b). Changes in a concern at one

layer must be propagated to the depending concerns at the upper layers as well. At least

partially, these changes can be hidden behind interfaces, which elements recouple

concerns of the interfaced layer but at the same time allow us to avoid tight coupling

20 Eessaar

between the layers. Because each layer (an implementation of a coarse-grained concern)

has its own responsibilities, avoiding their tight coupling is a direct application of the

separation of concerns principle. An example of interface is virtual data layer, which can

contain views that join (recouple) data from different tables (Burns, 2011). There could

be duplication of tasks at different layers because at different layers they help us to

achieve different goals. For instance, data validation in user interface gives quick

feedback and reduces network load whereas database constraints among other things

express the meaning of data and help the system to optimize operations. However, there

is a dependency between the tasks and changes in one must be propagated to another.

Preferably, it must happen automatically to make the redundancy controlled.

 Hürsch and Lopes (1995) comment that weak coupling of concerns increases their

reusability. Burns (2011) notes that reusability of data in case of different applications

and business uses is one of the basic principles of data management. If a table contains

data about different general business areas (in other words about separate concerns), then

it could discourage data reuse. For instance, if a program has to register personal data

about clients but the table Client contains also information about the contracts with

clients and products or services that the clients consume, then it could increase

temptation to create a separate table just for this program to register some personal

details of clients.

Database normalization deals with separating concerns at the conceptual database

level according to the ANSI/SPARC layered architecture of DBMSs. The layered

architecture is themselves an example of separation of concerns. DBMSs separate

concerns like persistence, checking privileges, speeding up performance of operations,

failure recovery, and replication in the sense that the DBMS together with its human

operators deals with these questions in the background and the users of data ideally do

not have to refer to these in statements of data manipulation language.

If one wants to achieve the highest separation of concerns in case of designing tables,

then one must create tables that are in sixth normal form. If a table has the key (a set of

columns) and in addition at most one column, then it is in sixth normal form. We cannot

decompose such tables in a nonloss manner to tables that have fewer columns than the

original. Date (2006a) calls it the ultimate normal form with respect to normalization.

The use of this kind of tables offers advantages like better handling of temporal data,

better handling of missing information, and simplification of schema evolution.

Regarding the last property, Panchenko (2012) notes that modifiability of a database

schema is one of the most important quality criteria of applications that use the database.

Conceptually, this argument is also the driving force behind the NS theory, which offers

guidance how to create highly evolvable systems, which retain this characteristic over

time. The sixth normal form tables have been popularized by the anchor modeling

(Rönnbäck et al., 2010), which is a model-driven development approach for creating

highly evolvable databases that are well suited for storing temporal data. It results with

tables that are mostly in sixth normal form. However, the approach also requires the

creation of views and function that present more denormalized view of data. Thus, there

are multiple interfaces for working with the data. One provides direct access to tables

that correspond to anchors and attributes to make it possible to register new true

propositions about the world. Another contains elements that implement less granular

concerns (for instance, the latest view in case of anchors that presents the latest values of

historized attributes). Rönnbäck et al. (2010) do not write about separation of concerns

in the context of their approach.

 Database Normalization Theory and Theory of Normalized Systems 21

In relational databases, first normal form requires that each field of a row must

contain exactly one value that belongs to the type of the corresponding column.

Although this is not a part of the database normalization theory, one must be able to use

any type (including types that have complex internal structure; only excluding the type

pointer) as a column type. Selection of column types determines the granularity of

values that database users and DBMS can process (read from and write back to the

system) as one value. Thus, one could decide that in case of the entity type Person there

is a table Person with the columns first_name and last_name with type VARCHAR or

perhaps user-defined type Name_T. It means that one wants to treat values in these

columns as the main units of processing (reading and writing) data of persons. On the

other hand, one can decide to create the user-defined type Person_T with components of

its possible representation first_name and last_name and to create a column with this

type to be able to record values with this type. In this case, one treats values with the

type Person_T as the main units of processing. The relational normalization theory does

not look inside the recorded values of the column types and does not deal with possible

data redundancy within these values.

Mananert et al. (2012b) state that the identification of tasks that one should treat as

separate concerns and should place to different modules is to some extent arbitrary. In

relational databases, the use of tables in sixth normal form together with the possibility

to use simple or complex types as column types offers a flexible model in determining

the granularity of concerns. One could design tables so that dealing with first names and

last names are separate concerns, and the corresponding data is in separate tables. On the

other hand, one may decide to consider dealing with data about persons as one concern

and register data of persons in a table that has exactly one column, which has the type

Person_T. This column is also the key column of the table. The latter design is less

flexible, just like we expect from less-separated concerns. It is more difficult to

implement recording historic attribute values in case of some attributes (but not all

attributes) of Person. Difficulties in database evolution like starting to register data

corresponding to new attributes or making constraints to attributes stronger or weaker

depend on the inheritance model of types that the DBMS offers. For instance, a new

requirement is to start registering national identification numbers of persons. It could be

that the system does not support type inheritance or its inheritance model does not permit

definition of subtypes that values the system cannot represent in terms of the possible

representation of its supertype. In other words, we cannot add to the possible

representations of the subtype a new component national identifier. In this case, we have

to create a new type without inheritance and have to create a new table that has the

column with the new type. Now there are two places (tables) in the database where the

names of persons are registered.

Developers could externally couple modules (action elements) by using an

integration database (Van der Linden et al., 2013). In this case, they can implement data

elements as relational database tables. NSs must exhibit data version transparency,

meaning that action elements must function even if there are multiple versions of data

elements. Mannaert et al. (2012b) describe anticipated changes in systems in terms of

very generic primitive elements. Two of these changes are addition of a data

attribute/field and addition of a data element. If we use the anchor database approach,

then both these modifications are non-invasive to existing tables, meaning creating new

tables, not altering the existing tables. Thus, every old database conceptual schema

version is a proper subset of the latest schema. We can hide such changes in the schema

behind the interface of views and functions that encapsulate the database. Anchor

22 Eessaar

database offers an interface that denormalizes data and presents it in terms of different

temporal perspectives. Adding tables means that we have to recreate the functions and

views but the action elements that use these can continue function normally. Until the

creation of new version of the action elements, they just do not use the new data

presented through the database interface.

Publications about database normalization theory state explicitly that its objective is

to reduce data redundancy. The papers about the NS theory (Mannaert et al., 2012b) as

well as separation of concerns that is a founding principle of the NS theory (Hürsch and

Lopes, 1995), (Tarr et al., 1999), (Akşit et al., 2001) pay less attention to this objective.

Still, Mannaert et al. (2012b) offer a proof of the separation of concerns theorem in

terms of redundant implementations of a task (let’s call it A) in different action elements

(see part a1 of Fig. 1), showing how it leads to unbounded amount of coding changes

during system evolution. If the task A needs modification, then one has to make changes

in multiple modules. The more modules that contain A there are, the more difficult and

time consuming the work will become. Thus, there is a CE, which we must eliminate

according to the NS theory. In essence, it is an example of update anomaly. By the way,

conceptually similar situation could appear within one module as well (see part a2 of

Fig. 1).

Module 1

Task A

Task B1

Module 2

Task A

Task B2

Module X

Task B1 Task A

Module X1

a1)

c)

b)

Module

Task ATask B1

Task ATask B2

a2) Module Y

Task B2 Task A

Module Y1

Module X

Task B1 Task A

Module Z Module Y

Task B2

Fig. 1. Different design options to combine and separate concerns

The solution to the problem depicted in the proof of separation of concerns theorem

in Mannaert et al. (2012b) is separation of the tasks A to a separate module (see part b of

Fig. 1). However, one could do this in a way that actually does not reduce redundancy

and hence does not avoid a CE (see part c of Fig. 1). The principle of nonloss

decomposition in case of the database normalization theory (Date, 2006a) requires

among other things that one needs all the resulting components to restore the original

table. This would correspond to the design b on Fig. 1. The canonical form property of

concerns also means that one must avoid such redundancy. However, what should

happen if there is already a separate module that implements the same version of Task A

as in case of Fig.1 parts a1 or a2? Clearly, there is no need to create a new module

(Module Z in Fig.1 part b) but instead the redesigned modules should refer to this

existing module. Unfortunately, both normalization theories look one element at a time

during the decomposition and do not consider other already existing elements in the

system, possibly leading to the creation of redundant elements. At least in case of

relational or SQL databases, there is the principle of orthogonal design to search and

reduce redundancy across tables whereas in case of the NS theory there is no explanation

about what to do with CEs that appear because of the duplication of action elements,

each of which separately conforms to the separation of concerns theorem. Just like

different names of action elements make it more difficult to discover redundancy,

different column names make it more difficult across tables.

 Database Normalization Theory and Theory of Normalized Systems 23

Merunka et al. (2009) address the same problem in the definition of second and

fourth normal form for the object-oriented data model and require elimination of such

CEs.

Aspect-oriented software development describes cross-cutting concerns as concerns

that are scattered to multiple other concerns leading to duplication or significant

dependencies. They could exist because of the restrictions of the implementation

environments that do not allow implementation of such concerns in any other way.

Adamus (2005) characterizes such concerns as tangled aspects. However,

implementation in a manner that increases dependencies and duplication could also be a

choice of designers. This is the case in case of violations of the orthogonal design

principle in databases. It means that two or more tables do not have mutually

independent meaning in the sense that the same row can satisfy the predicates of

multiple tables and thus appear in multiple tables. The choice to violate the principle is

not from absolute technical necessity. The reason could be an expectation of better

performance of some read operations.

In case of the NS systems, denormalization would mean knowing violation of one or

more design theorems in at least one part of the system to improve the overall

satisfaction with the system. The database normalization theory defines intermediate

levels of normalization (normal forms) whereas the NS theory only states the end goal

that the system must satisfy all the design theorems. It means that if one wants to reverse

the normalization process after its completion or perhaps not to complete it in the first

place, then the database normalization theory offers possible levels where to stop but the

NS theory does not. The proponents of the NS theory promote full normalization at the

software level but allow relaxation of the rules at the higher levels (Verelst et al., 2013)

without exact guidelines where to stop. Both theories offer normalization as a tool that

one should use according to his/her best understanding and the needs of a particular

context.

Different levels of database normalization make it possible to do database

normalization iteratively in a manner that different iterations take tables to different

normal forms. The NS theory also suggest possibility of iterative normalization

(Mannaert et al., 2012b) in the same way. Because of the lack of different levels, the

authors have to use vague descriptions like “making the elements ever more fine-grained

over time.”

One could say that denormalization in terms of separation of concerns appears in

layered architectures. For instance, Pizka (2005) notes that normalizing (and thus

reducing update/change anomalies) on one level of abstraction does not guarantee that

higher levels of abstraction are free from these anomalies. For instance, a page or a form

in a user interface is a user connector element in terms of the NS theory. This element

may combine different tasks (functionality) and thus recouple concerns of the lower

system layers. Moreover, it may present data about different entity types and relationship

types that one considers separate concerns at the database level and thus recouple these

concerns. Another example is that in the database one can implement the virtual data

layer (Burns, 2011), which consists of functions and procedures that are both action

elements as well as views that are data elements. Again, these elements could recouple

concerns of the lower system layers. Yet another example are macros in many

applications that recouple lower-level actions and considerably improve the usability of

the system. Thus, we see that denormalization at the higher system layers in terms of

lower layers is even desirable to ensure usability of the system. In this context, we

cannot speak about total separation of concerns as required by the NS theory but only

24 Eessaar

about a goal to increase the separation within and between layers but not necessarily in

the interfaces of these layers.

“Concern” concept is very flexible. Thus, an interpretation of the previous section is

that in case of different layers the completely separated (atomic) concerns have different

granularity. It is the general property of the layered architecture that elements at the

higher layers “abstract away” and hide elements at the lower layers. Thus, they recouple

concerns that are separate at the lower layers. For instance, if we create tables in a SQL

database, then it abstracts away from the users of the tables things like internal data

storage, indexing to improve query performance, algorithms for checking integrity

constraints, and logging data modifications to be able to roll them back. At the internal

database level (layer), one would consider these as separate concerns but at the

conceptual level of databases one recouples these concerns and works with a higher-

level concept that is a table.

Moreover, denormalization at one layer may lead to denormalization at the upper

layers. Raymond and Tompa (1992) write that data redundancy leads to redundant

processing in applications. Because such redundancy violates the canonical form

property of concerns it means that CEs in data lead to the CEs in applications. One can

mitigate the effect with the help of views, which can give impression of data redundancy

to readers while reducing redundant processing because there is no need to update data

in multiple places. Tarr et al. (1999) explain the concept of one single, dominant

dimension of separating concerns at a time in typical software environments. Data

models (like the relational data model) that support creating views and thus

implementing virtual data layer break the “tyranny of the dominant decomposition”

within the data dimension of concerns.

Akşit et al. (2001) describe six “c” properties that each concern should have. The

database tables (as implementations of concerns) have all the six properties. Tables

correspond to solution domain concerns that describe parts of systems that one creates to

solve problems of clients. Nonloss decomposition of tables ensures that the resulting

tables have canonical form property, meaning that in the result of decomposition there

are no redundant tables, which one does not need to restore the original table. Tables are

composable by using join operator. Moreover, the closure property of relational algebra

ensures that one could further compose the composed tables by again using join

operation because output from one such operation could be an input to another relational

algebra operation. Tables are computable, meaning that they are first class abstractions

in the implementation language (for instance, SQL) and thus one could create them in

the implementation environment (DBMS). Tables have closure property, meaning that

both separated and composed tables have all the same general properties (no duplicate

rows, each column has a type and unique name within the table, etc.). Concerns must

also have certifiability property, meaning that it must be possible to evaluate and control

their quality. There are certainly methods for evaluating and improving table design (one

of them is the database normalization theory) but it would be a topic of another paper.

Hürsch and Lopes (1995) note that redundant system elements help us to achieve

fault-tolerance in computing. The database normalization theory does not deal with the

data redundancy caused by the need to protect data assets by making distinct copies of

them (by using replication or by making backups). Similarly, we want to protect source

code or documents by making copies of them, thus increasing redundancy and CEs. This

is outside the scope of the NS theory as well. In both cases, we need appropriate tools

and processes for version control. Please note that this example also shows that there are

types of redundancies that are outside the scope of the theories.

 Database Normalization Theory and Theory of Normalized Systems 25

To summarize, the look to the separation of concerns in the NS theory is too narrow.

We propose to treat database data structures (for instance, tables) as data elements of the

NS theory and argue that normalization process separates concerns in case of these

elements. A table as a data element might couple multiple more fine-grained concerns

that we separate as the result of the process. One can recouple these concerns with the

help of views that are also data elements and are a part of database interface. Constraints

to data are also concerns. Declarative statements for enforcing constraints and database

triggers are action elements of the NS theory. If, despite technical restrictions of a

DBMS, one manages to enforce a constraint by using a declarative statement, then the

concern maps to exactly one action element. One may need multiple triggers to enforce a

constraint and it is an example of tangled concern. If a constraint is a logical conjunction

of more fine-grained constraints, then it couples more fine-grained concerns. Designers

have to decide, based on the context, what is the best level of separation of these

database-related concerns. The NS theory dictates that the concerns must be as separated

as possible.

Following of the separation of concerns principle clearly offers advantages. If one

chooses to follow it only in case of functionality of the system, then one can compare the

resulting system with a factory that has machinery (functionality) that has to be easy to

maintain and extend and needs a lot of inexpensive raw material (data) to produce

products that quality is not so important. Perhaps the only requirement is that the factory

must fulfill orders as quickly as possible. If the system follows separation of concerns

principle in case of functionality and data, then, in addition to machinery, the factory and

its owners also value more the quality of material that it consumes and products that it

produces.

4.1. Some Violations of Separation of Concerns in the SQL Database World

1970-ties saw separation of database management functionality from applications to

separate database management systems (Van der Aalst, 1996). This is a good example of

the application of the separation of concerns principles.

It is unfortunate that in the domain of databases, researchers and developers often

overlook the separation of concerns principle and do not describe problems that its

violations cause in terms of the principle. For instance, Badia and Lemire (2011) only

recently raised a question as to whether it is time that database design science should

start to look relations as purely conceptual entities that in other words means completely

separating concerns between the conceptual and internal levels of databases. However,

this is something that already Codd’s 12 Rules (Voorhis, 2015) desired in terms of

physical data independence. Hürsch and Lopes (1995) also note that the benefits of

separating concerns (like higher level of abstraction, better understanding, weak

coupling, and also more creative freedom because of less dependencies) appear if it is

applied at both conceptual and implementation level.

Here, we present a non-exhaustive list of such problems in SQL DBMSs. Many of

these support the observation of Hürsch and Lopes (1995) that separation of concerns is

often practiced at the conceptual level, but not at the implementation level.

Unfortunately, instead of demanding to fix the problems, there are calls to scrap the

relational model and start to use technologies that have even more such problems. For

instance, the need to enforce integrity constraints and access rights to data elements are

cross-cutting concerns. Database languages should support separation of these concerns

by providing dedicated sub-languages that one can use to implement these concerns in

26 Eessaar

one place (in a DBMS). Coupling the concerns with application code or procedural

database interface leads to scattering of the functionality across the code base and

significant dependencies. For instance, there could be a requirement to restrict access of

certain users to data about certain entities or their specific attributes or relationships. If

the applications have a task to save data with security labels and a task to ask data by

explicitly referring to the labels, then now this mechanism is coupled with the database

application code and is scattered to multiple places in one or more applications. The

same thing happens if one uses a DBMS that does not require explicit definition of

database schema at the database level. In this case, the developers of database

applications have to define the schema implicitly within algorithms (procedures) of

applications across the code base of applications.

Does it mean that application developers themselves do not believe the principle? We

do not think that it is the case. Instead, a problem seems to be that application developers

have not thought about these problems in terms of the separation of concerns principle.

We think that understanding the root causes of the problems and similarities with the

problems of their own domain (for instance, application development) could ideally lead

to the increased understanding of the logical difference between a model and its

implementations. In the longer run, it could ideally lead to technology improvement

because customers start to demand it from vendors. In case of solving the separation of

concerns problems, SQL DBMSs and their offered model of data management could be

a good example and success story of applying the separation of concerns principle.

Next problems occur because the DBMSs do not provide sufficient separation of

different database levels (layers, tiers) that the ANSI/SPARC DBMS model (Date, 2003)

defines and thus these have multiple change drivers.

• One can denormalize tables, which are the elements at the conceptual level of a

database, to improve the performance of certain queries. With the changes at

the conceptual level, one hopes to influence the organization of data at the

internal level of the database. One could also denormalize to offer data to

applications in an aggregate form so that it is easier for them to read the data,

thus fulfilling a task of the external level. The reason could be that the DBMS

does not support building virtual data layer (Burns, 2011) or because it does not

provide suitable operators (or means to create these) to aggregate data on the

fly. Moreover, one could denormalize to make possible or simplify enforcement

of some constraints in a database because the DBMS does not support

assertions or subqueries in table constraints. Thus, depending on circumstances,

the conceptual database level couples the following concerns: reflecting the

concepts, relationships, and rules of the domain in the scope of the functional

requirements; read operations of applications; data integrity; performance; data

storage.

• Horizontal partitioning of tables at the conceptual database level to improve

performance of queries makes the conceptual database level to couple the

following concerns: reflecting the concepts, relationships, and rules of the

domain in the scope of the functional requirements; performance; data storage.

Moreover, if a statement of data manipulation language refers directly to

partitions at the conceptual or internal level, then the statement couples the

following concerns: functional requirements; performance; data storage.

• One can use views to implement the external level of databases. If the

possibility of updating data in the database through a view or performance of

queries based on a view depends on how one writes its subquery, as it

 Database Normalization Theory and Theory of Normalized Systems 27

unfortunately does in modern SQL DBMSs, then the external level couples the

following concerns: fulfilling functional requirements; the use of language

constructs; performance.

Next problems occur because the SQL Data Manipulation Language is not

sufficiently declarative. Therefore, one has to take into account low-level

implementation details of the DBMS while writing the statements and the statements

have multiple change drivers.

• In case of declarative database language statements, the system has to produce

the execution plan that specifies the best low-level algorithm for achieving the

desired results of the statement in case of current data. If the proposed plan and

thus, also, the efficiency of executing the statement depends on how one writes

the statement, then the system couples the following concerns: functional

requirements; the use of language constructs; performance.

• If a SQL dialect provides an option to use hints in the SQL Data Manipulation

Language statements that guide the selection of its execution plan, then the

statements that use the hints couple the concerns: functional requirements;

performance. As a result, the code to improve performance is scattered across

triggers, database routines, and applications, making its maintenance difficult

and causing potential performance problems if the hints do not take into

account the current amount and distribution of data in the database.

• If a DBMS implements the Multiversion Concurrency Control method and

provides snapshot isolation instead of serializable snapshot isolation, then the

database users have to lock explicitly data elements to avoid read phenomena of

concurrent transactions and the resulting data inconsistencies. The locking

policy depends on the internal implementation of DBMS. Thus, the system

couples the following concerns: functional requirements; concurrency control;

data integrity.

Next problems occur because DBMSs provide inadequate support for creating

declarative constraints that leads to the scattering of constraint checking to multiple parts

of the system. The elements that implement the constraints have multiple change drivers.

In our view, functional requirements and data integrity are separate concerns because

data integrity comes from the business rules that are determined by the domain, are

universal for applications, and thus do not depend on a particular application that uses

data.

• The creation of trigger procedures instead of a declarative integrity constraint

may mean scattering integrity enforcement code to multiple parts of a database

because the triggers have to react to all the possible events that could lead to the

violation of the constraint. The same trigger procedure could couple

enforcement of multiple integrity constraints in addition to other tasks. The

triggers couple the following concerns: functional requirements; data integrity;

concurrency control.

• In SQL user-defined structured types, one cannot enforce declarative

constraints to the values of attributes, except the type of attribute. Thus, one has

to implement these constraints in the methods that modify the values of the

attributes. The same method could couple enforcement of multiple constraints

as well as business logic for retrieval and manipulation of data. The methods

couple the following concerns: functional requirements; data integrity. If there

are multiple methods that change the value of the same attribute, then these

duplicate constraint-checking code.

28 Eessaar

Fig. 2. A conceptual model of a holistic view to the separation of concerns principle

• The enforcement of constraints in procedures or functions (routines) that are a

part of virtual data layer (Burns, 2011) may be inevitable due to the technical

restrictions of a DBMS. It makes the routines to couple following concerns:

functional requirements; data integrity; concurrency control. The same routine

could couple enforcement of multiple integrity constraints as well as business

logic for retrieval and manipulation of data. If there are multiple routines that

modify data in the same table, then these duplicate constraint-checking code.

• Explicitly created unique index (an internal level element) to enforce

uniqueness (a constraint at the conceptual level) couples the following

concerns: data integrity; data storage; performance. Unfortunately, SQL does

not provide means to declare uniqueness to a subset of table rows but some

DBMSs permit the creation of partial unique index to a subset of table rows.

Next problems do not belong to the previous categories.

• In SQL, one can create user-defined structured types that group attributes

(structure) and methods (behavior) to access and modify their values. These

types couple concerns of structure and behavior whereas The Third Manifesto

Technology environment

DBMS

Connection

concern

Connector

element

0..1

1

0..1

1

el. implements

ideally

Workflow

concern

Workflow

element

0..1

1

0..1

1

el. implements

ideally

Trigger

concern

Trigger

element

0..1

1

0..1

1

el. implements

ideally

Tangled concern

{Optional}

{Optional}

{Optional}

{Mandatory; And}

{Optional}

{Mandatory; Or}

Concept

{Optional}

Data concern

Data

element

1

0..1

1

0..1

el. implements

ideally

Functional

concern

SQL DBMS

Table

1

0..1

1

0..1
element can be

implemented

Action

element

0..1

1

0..1

1

el. implements

ideally

SQL database

0..*

1

0..*

1

is used to implement

0..*
1

0..*
1

Declarative

constraint

1..*

1..*

1..*

1..*
0..1

1

0..1

1

element can be

implemented

1

0..*

1

0..*

{Optional}Key constraint

{Optional}

Virtual data layer

{Optional}

{Optional}

User interface

Tangled "because

of choice" concern

{Optional;

Or}

Tangled "because of

environment" concern

Relevance level Canonical form level

Production environment

0..*

1

0..*

1

caused by

Goal Problem constraint

Solution

0..*

1

0..*

1

0..*

1

0..*

1

1..*

0..*

1..*

0..*

solution determines

Problem

1..*

1

1..*

1

0..*

1

0..*

1

0..*1 0..*1

Interface

Concern

0..*

1

0..*

1

0..*

0..1

0..* contains

0..1

Requirement

0..*

1..*

0..*

1..*

requirement leads to the

discovery

Layer

0..*

1

0..*

+provider 1

0..*

1

0..*

+direct

consumer1

1

1

1

1
layer implements ideally

Element

0..1

0..*

0..1
contains0..*0..*

0..*

0..*

depends

0..*

0..1

0..*

0..1

0..*

0..*

0..*

0..*

0..*

el. may implement in

reality

System

1

0..*

1

0..*

0..*1 0..*1

0..*

1

0..*

1

0..*

0..*

0..*

contains

0..*

 Database Normalization Theory and Theory of Normalized Systems 29

(Date and Darwen, 2006) offer a model that separates types (with possible

complex internal structure), operators that one can use to perform operations

with the values of these types, and integrity constraints.

• In some SQL dialects, if one creates a table (an element at the conceptual

database level), then one has various options how to guide the internal storage

of the table data by using the same statement. Thus, the statement couples

concerns of representing data at the conceptual and internal level.

• If a SQL dialect permits inline functions in data manipulation statements to

improve performance, then the statements couple declarative and procedural

processing as well as performance concern. The statements duplicate functions.

• SQL terminology speaks about tables. The Third Manifesto (Date and Darwen,

2006) points that table as a variable and table as a possible value of this variable

are two distinct concepts. If one uses one concept instead of two distinct

concepts, then it is a violation of the separation of concerns principle at the

semantic level. Another example is the use of the word “database” to refer to

databases as well as DBMSs. One can notice similar problem in case of the NS

theory where it is unclear when and where data element means value or

variable.

• The SQL data model violates orthogonality principle in language design

(Eessaar, 2006). A complex web of dependencies between model elements

means that a localized change in a database design can lead to other cascading

design changes. This is a violation of the separation of concerns at the language

level.

• If the specification of the underlying data model of a database language couples

the description of its concrete syntax like in case of SQL, then one firstly has to

separate the description of the data model (Eessaar, 2006) to be able to reason

about, analyze, and compare the data model with other data models.

4.2. Towards a Holistic View of Separation of Concerns

Based on the previous discussion, we propose a conceptual model of a holistic view of

separation of concerns principle where action elements are not the only focus (see Fig.

2). It takes into account the ideas of Mannaert et al. (2012b), Adamus (2005), WEB(c) as

well as our understanding of the principle. The NS theory describes different types of

elements, and all these could correspond to different types of concerns.

5. Conclusions and Future Work

Data and functionality are two fundamental aspects of systems. Unfortunately, there is a

mental gap between these aspects. Therefore, nowadays many look the corresponding

research and development fields as quite distinct with different terminology, tools,

problems, processes, and best practices. We think that it should not be the case and that

the fields have many similar problems and solutions. One of these is the principle of

separation of concerns that WEB (c) calls “ubiquitous software engineering principle.”

In reality, researchers and developers rarely discuss it in the context of data. Although

the ideas about concerns in databases and applying the principles of database

normalization to software engineering are not new, there is very little literature about

this.

30 Eessaar

Recently the theory of normalized systems (NS) has started to gain attention. By

using four design theorems, it declares the conditions that systems must fulfill in order to

be free of combinatorial effects and thus be highly evolvable. The theory is general and

should be applicable to all kinds of systems. Database normalization is older and more

mature theory. In this paper, we wanted to gain understanding what the relationship

between the theories is. We conducted a literature review of 40 papers about the NS

theory and found that the papers had little to say about databases and almost nothing to

say about the database normalization. We found a comment that database normalization

resolves many combinatorial effects in databases. Papers of the NS theory treat

databases as external services used by applications and concentrate attention to the

application design.

The lack of references between the theories is not surprising because the NS theory

defines “separation of concerns”, which is one of its central pillars, in terms of the action

elements but not data elements. We analyzed the theories and concluded that the

database normalization theory actually helps us to achieve separation of concerns in case

of data elements, meaning that data about different entity types and relationships and in

extreme cases data corresponding to different attributes of entity types is in different data

structures (for instance, tables). On the other hand, the NS theory is not a generalization

of the database normalization theory, because the database normalization theory does not

deal with the questions of encapsulation and versioning.

We observed that methods of coupling that allow us to achieve higher separation of

concerns in action elements could reduce separation of concerns in case of data. If we

treat data and functionality as equal partners, then we have to find a balance. The

advantages of database normalization are conceptually very similar to the advantages

that the following of the separation of concerns principle helps us to achieve in case of

action elements (for instance, modules or use cases). The respective processes are also

quite similar. Both can be done iteratively, look system one element at a time, increase

the number of elements in the system, make elements more cohesive and understandable,

make it easier to evolve the resulting system, and are not silver bullets in terms of

removing redundancy. A difference is that the database normalization offers different

levels of normalization (normal forms) whereas the NS theory only declares the end goal

that all the concerns must be separated. However, literature does not explain database

normalization theory in terms of separation of concerns. We pointed to the problems of

lack of separation of concerns in SQL databases and SQL DBMSs. We proposed a

conceptual model of a holistic view to the separation of concerns principle that considers

both action and data elements as well as other elements proposed by the NS theory. For

instance, in the education process it is important to facilitate understanding that

redundancy and coupling weakly related elements is a fundamentally similar challenge

to both data and functionality. Thus, if one teaches database normalization to people

with business analysis, system analysis, or application development background, or, for

instance, application design to database developers, then one can and should point to the

conceptually similar problems and solutions in different domains.

To conclude, the paper is a step towards understanding that problems and solutions

of data and functionality management are not so different after all. One should not

declare that database normalization is old fashioned, nowadays almost unimportant, and

a product of a legacy technology but instead learn and apply its lessons. We agree with

Raymond and Tompa (1992), who write that “the update implications of systems are

important, and that they can be profitably studied in a formal setting taken from

dependency theory.”

 Database Normalization Theory and Theory of Normalized Systems 31

Future work could include the use of the database normalization theory for the

normalization of action elements (for instance, use cases). To do this, one firstly has to

find the most suitable way to represent the action elements in terms of data elements

(tables). To allow bigger separation of concerns in case of both action and data elements

there is a need to improve technology. Otherwise, there is a continuous need to find a

proper balance between normalization of action and data elements. It would be

interesting to analyze modern NoSQL systems as well as systems that implement the

relational model according to the principles of The Third Manifesto to find how they

support achieving NS, including separation of concerns. It would also be interesting to

analyze as to whether the use of tables in sixth normal form together with the type

inheritance model proposed by Date and Darwen (2006) would help us to implement NS

and if not, then what changes in the model are needed. Perhaps the most important is to

create a teaching program that emphasizes fundamental similarities as well as

differences in the application and database design.

References

Aalst, W.M.P. van der (1996). Three good reasons for using a Petri-net-based workflow

management system, In: Wakayama, T., Kannapan, S., Chan Meng Khoong, Navathe, S.,

Yates, J. (Eds.), Proceedings of IPIC, International Working Conference on Information and

Process Integration in Enterprises (14-15 Nov. 1996, Cambridge, Massachusetts, USA),

179–201.

Adamus, R. (2005). Programming in aspect-oriented databases. PhD thesis, Institute of Computer

Science, Polish Academy of Science, Warsaw, Poland.

Akşit, M., Tekinerdogan, B., Bergmans, L. (2001). The six concerns for separation of concerns, In:

Proceedings of ECOOP, Workshop on Advanced Separation of Concerns (18-22 June 2001,

Budapest, Hungary).

Badia, A., Lemire, D. (2011). A call to arms: revisiting database design. ACM SIGMOD Rec. 40,

61–69.

Burns, L. (2011). Building the Agile Database. How to Build a Successful Application Using Agile

Without Sacrificing Data Management. Technics Publications, LLC, New Jersey.

Carver, A., Halpin, T. (2008). Atomicity and normalization, In: Halpin, T., Proper, E., Krogstie, J.,

Hunt, E., Coletta, R. (Eds.), Proceedings of EMMSAD, International Workshop on Exploring

Modeling Methods for Systems Analysis and Design (16-17 June, Montpellier, France),

CEUR-WS.org, 40–54.

Codd, E.F. (1970). A relational model of large shared data banks. Comm. ACM 13, 377–387.

Cooper. A, Reimann, R., Cronin, D., Noessel, C., Csizmadi, J., LeMoine, D. (2014). About Face.

The Essentials of Interaction Design. 4th ed. Wiley, Indianapolis, Indiana.

Date, C.J. (2003). An Introduction to Database Systems, 8th ed., Pearson, Addison Wesley.

Date, C.J. (2006a). The Relational Database Dictionary. A comprehensive glossary of relational

terms and concepts, with illustrative examples. O’Reilly.

Date, C.J. (2006b). Date on Database. Writings 2000-2006. Apress.

Date, C.J. (2007). Logic and Databases. The Roots of Relational Theory. Trafford Publishing.

Date, C.J., Darwen, H. (2006). Databases, Types and the Relational Model, 3rd ed., Addison

Wesley.

De Bruyn, P., Dierckx, G., Mannaert, H. (2012). Aligning the normalized systems theorems with

existing heuristic software engineering knowledge, In: Mannaert, H., Lavazza, L.,

Oberhauser, R., Troubitsyna, E., Gebhart, M., Takaki, O. (Eds.), Proceedings of ICSEA,

International Conference on Software Engineering Advances (18-23 Nov. 2012, Lisbon,

Portugal), 84–89.

32 Eessaar

De Bruyn, P., Mannaert, H., Verelst. J. (2014). Towards organizational modules and patterns

based on normalized systems theory, In: Jäntti, M., Weckman, G. (Eds.), Proceedings of

ICONS, International Conference on Systems (23-27 Feb. 2014, Nice, France), 106–115.

De Vos, M. (2014). The evolutionary origins of syntax: optimization of the mental lexicon yields

syntax for free. Lingua 150, 25–44.

Eessaar, E. (2006). Relational and object-relational database management systems as platforms

for managing software engineering artifacts. PhD thesis, Department of Informatics, Tallinn

University of Technology, Tallinn, Estonia.

Eessaar, E. (2014). On applying normalized systems theory to the business architectures of

information systems. Baltic J. Modern Computing 2, 132–149.

Fagin, R. (1979). Normal forms and relational database operators, In: Bernstein, P.A. (Ed.),

Proceedings of ACM SIGMOD ICMD, International Conference on Management of Data (30

May - 1 June 1979, Boston, Massachusetts), ACM, New York, NY, USA, 153–160.

Fotache, M. (2006). Why normalization failed to become the ultimate guide for database

designers?, available at http://papers.ssrn.com/

Fowler, M. (a). IntegrationDatabase, available at

http://martinfowler.com/bliki/IntegrationDatabase.html

Fowler, M. (b). ApplicationDatabase, available at

http://martinfowler.com/bliki/ApplicationDatabase.html

Godfrey, M.W., German, D.M. (2014). On the evolution of Lehman’s Laws. J. Softw. Ev. Process.

26, 613–619.

Grillenberger, A., Romeike, R. (2014). Big data–challenges for computer science education, In:

Gülbahar, Y., Karataş, E. (Eds.), Proceedings of ISSEP, Conference on Informatics in

Schools: Situation, Evolution, and Perspectives (22-25 Sept. 2014, Istanbul, Turkey),

Springer International Publishing, 29–40.

Halle, B. von, Goldberg, L. (2010). The Decision Model: A Business Logic Framework Linking

Business and Technology. CRC Press.

Helland, P. (2009). Normalization is for sissies. Conference on Innovative Data Systems Research,

available at http://www-db.cs.wisc.edu/cidr/cidr2009/gong /20Helland.ppt

Helland, P. (2011). If you have too much data, then “good enough” is good enough. C. ACM 54,

40–47.

Hürsch, W.L., Lopes, C.V. (1995). Separation of concerns. Technical report by the College of

Computer Science, Northeastern University.

Kanade, A., Gopal, A., Kanade, S. (2014). A study of normalization and embedding in MongoDB,

In: Batra, U., Sujata, Arpita (Eds.), Proceedings of IACC, IEEE International Advance

Computing Conference (21-22 Feb. 2014, Gurgaon, India), IEEE, 416–421.

Kolahi, S., Libkin, L. (2010). An information-theoretic analysis of worst-case redundancy in

database design. ACM T. Database Syst. 35, 5.

Komlodi, J.T. (2000). Technical and market viability of object database technology, In: Gibson,

R.G. (Ed.), Object Oriented Technologies: Opportunities and Challenges, Idea Group

Publishing, 58–76.

Linden, D. van der, De Bruyn, P., Mannaert, H., Verelst, J. (2013). An explorative study of

module coupling and hidden dependencies based on the normalized systems framework.

Intern. J. on Adv. Syst. and Meas. 6, 40–56.

Lodhi, F., Mehdi, H. (2003). Normalization of object-oriented design, In: Proceedings of INMIC,

International Multi Topic Conference (8-9 Dec. 2003, Islamabad, Pakistan), IEEE, 446–450.

Lv, T., Gua, N., Yanb, P. (2004). Normal forms for XML documents. Inform. Software Tech. 46,

839–846.

Maes, K., Bruyn, P.D., Oorts, G., Huysmans, P. (2014). On the need for evolvability assessment in

value management, In: Sprague, R.H. Jr. (Ed.), Proceedings of HICSS, Hawaii International

Conference on System Sciences (6-9 Jan. 2014, Hawaii, USA), IEEE, 4406–4415.

Mannaert, H., De Bruyn, P., Verelst. J. (2012a). Exploring entropy in software systems: Towards a

precise definition and design rules, In: Kaindl, H., Koszalka, L., Mannaert, H., Jäntti, M.

 Database Normalization Theory and Theory of Normalized Systems 33

(Eds.) Proceedings of ICONS, International Conference on Systems (29 Feb. - 5. Mar. 2012,

Saint Gilles, Reunion), 93–99.

Mannaert, H., Verelst, J., Ven, K. (2012b). Towards evolvable software architectures based on

systems theoretic stability. Software Pract. Exper. 42, 89–116.

Merunka, V., Brožek, J., Šebek, M., Molhanec, M. (2009). Normalization rules of the object-

oriented data model, In: Barjis, J., Kinghorn, J., Ramaswamy, S. (Eds.), Proceedings of

EOMAS, International Workshop on Enterprises & Organizational Modeling and Simulation

(8-9 June 2009, Amsterdam, The Netherlands), ACM New York, NY, USA.

Panchenko, B.E. (2012). Framework design of a domain-key schema of a relational database.

Cybern. Syst, Anal. 48, 469–478.

Pizka, M. (2005). Code normal forms, In: Proceedings of SEW, Annual IEEE/NASA Software

Engineering Workshop (6-7 Apr. 2005, Greenbelt, Maryland), IEEE, 97–108.

Pizka, M., Deissenböck, F. (2007). How to effectively define and measure maintainability, In:

Proceedings of SMEF, Software Measurement European Forum (9-11 May 2007, Rome,

Italy).

Raymond, D.R., Tompa, F.W. (1992). Applying database dependency theory to software

engineering. University of Waterloo, Dept. of Computer Science & Faculty of Mathematics.

Rönnbäck, L., Regardt, O., Bergholtz, M., Johannesson, P., Wohed, P. (2010). Anchor modeling

—agile information modeling in evolving data environments. Data & Knowl. Eng. 69,

1229–1253.

Tarr, P., Ossher, H., Harrison, W., Sutton Jr, S.M. (1999). N degrees of separation: multi-

dimensional separation of concerns, In: Boehm, B.W, Garlan, D., Kramer, J. (Eds.),

Proceedings of ICSE, International Conference on Software Engineering (16-22 May 1999,

Los Angeles, CA, USA), ACM New York, NY, USA, 107–119.

Vanthienen, J., Snoeck, M. (1993). Knowledge factoring using normalization theory, In:

Proceedings of ISMICK, International Symposium on the Management of Industrial and

Corporate Knowledge (27-28 Oct. 1993, Compiègne, France), EC2, Paris.

Verelst, J., Silva, A.R., Mannaert, H., Ferreira, D.A., Huysmans, P. (2013). Identifying

combinatorial effects in requirements engineering, In: Proper, H., Aveiro, D., Gaaloul, K.

(Eds.), Proceedings of EEWC, Enterprise Engineering Working Conference (13-14 May

2013, Luxembourg), Springer Berlin Heidelberg, 88–102.

Vincent, M.W. (1998). Redundancy elimination and a new normal form for relational database

design. In: Thalheim, B., Libkin, L. (Eds.), Semantics in Databases. Springer Berlin

Heidelberg, 247–264.

Voorhis, D. (2015). Codd’s twelve rules, available at

http://computing.derby.ac.uk/wordpress/codds-twelve-rules/

Wilson, G., Aruliah, D.A., Brown, C.T., Chue Hong, N.P., Davis, M., et al. (2014). Best practices

for scientific computing. PLoS Biol 12.

WEB (a). Once and only once. http://c2.com/cgi/wiki?OnceAndOnlyOnce

WEB (b). Dont repeat yourself. http://c2.com/cgi/wiki?DontRepeatYourself

WEB (c). Separation of concerns. http://trese.cs.utwente.nl/taosad/separation_of_concerns.htm

Authors’ Information

Erki Eessaar, dr., is a full-time Associate Professor at the Department of Informatics in Tallinn

University of Technology. He teaches courses about database design and database development.

He is the author or a co-author of about 40 research papers and the author of one book in the field

of databases and information systems development. Research interests: data models, automation of

the evaluation of database design, model- and pattern-driven development and evolution of

information systems (including databases) with the help of domain-specific languages,

metamodeling, metadata, and software measures.

Received November 18, 2015, revised February 7, 2016, accepted February 8, 2016

