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Abstract: Database normalization theory offers formalized guidelines how to reduce data 

redundancy and thus problems that it causes in databases. More lately, researchers have started to 

formalize ideas that the problems caused by unwanted dependencies and redundancy can be 

observed in case of any modular system like software, hardware, or organization. To tackle these 

problems, they have proposed the theory of normalized systems that complete application frees 

systems of combinatorial effects and thus the impact of a change in a system does not depend on 

the system size. At the time of writing this paper, the explanations of the theory of normalized 

systems do not say much about database normalization. We think that the theories are deeply 

related. In this paper, we search a common ground of the database normalization theory and the 

theory of normalized systems. 
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1. Introduction and Related Works 

Normalization theory of relational databases dates back to the E.F. Codd’s first seminal 

papers about the relational data model (Codd, 1970). Since then it has been extended a 

lot (see, for instance, Date (2007, Chap. 8)) and the work is ongoing. There are proposals 

how to apply similar principles in case of other data models like object-oriented data 

model (Merunka et al., 2009), (hierarchical) XML data model (Lv et al., 2004), or 

(hierarchical) document data model (Kanade et al., 2014). Database normalization 

process helps database developers to reduce (not to eliminate) data redundancy and thus 

avoid certain update anomalies that appear because there are combinatorial effects (CEs) 

between propositions that are recorded in a database. For instance, in case of SQL 

databases each row in a base table (table in short) represents a true proposition about 

some portion of the world. CEs mean in this context that inserting, updating, or deleting 

one proposition requires insertion, update, or deletion of additional propositions in the 

same table or other tables. The more there are recorded propositions, the more a data 

manager (human and/or software system) has to make this kind of operations in order to 

keep the data consistent. Thus, the amount of work needed depends on the data size and 

increases over time as the data size increases. Failing to make all the needed updates 

leads to inconsistencies. The update anomalies within a table appear because of certain 

dependencies between columns of the same table. Vincent (1998) shows how these 
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dependencies lead to data redundancy. Informally speaking, these anomalies appear if 

different sets of columns of the same table contain data about different types of real-

world entities and their relationships. By rewording a part of third normal form 

definition of Merunka et al. (2009), we can say that these sets of columns have 

independent interpretation in the modeled system. According to the terminology in 

(Panchenko, 2012) these sets of columns have different themes. Thus, the table does not 

completely follow the separation of concerns principle because database designers have 

not separated sets of columns with independent interpretations into different software 

elements (tables in this case). The update anomalies across different tables within a 

database may occur because of careless structuring of the database so that one may have 

to record the same propositions in multiple tables. The update anomalies across different 

databases (that may or may not constitute a distributed database) may occur if one has 

designed the system architecture in a manner that forces duplication of data to different 

databases. 

Conceptually similar update (change) anomalies could appear in the functionality of 

any system or its specification and these make it more difficult and costly to make 

changes in the system or its specification. Pizka and Deissenböck (2007) comment that 

redundancy is a main cost driver in software maintenance. The need to deal with the 

update anomalies in the systems that are not designed to prevent them is inevitable 

because the systems have to evolve due to changing requirements just like the value of a 

database variable changes over time. For instance, some of the changes are caused by the 

changes in the business, legal, or technical environment where the system has to operate, 

some by changing goals of the organization, and some by the improved understanding of 

the system domain and requirements by its stakeholders. The theory of normalized 

systems (NS) (Mannaert et al., 2012b) reflects understanding of the dangers of the 

update anomalies and offers four formalized design theorems that complete application 

helps developers to achieve systems that are free of CEs and are thus modular, highly 

evolvable, and extensible.  

The NS theory speaks about modules and submodular tasks. The work with the NS 

theory started after the invention of the database normalization theory. Its proponents see 

it as a general theory that applies to all kinds of systems like software, hardware, 

information system, or organization or specifications of these systems. Like the database 

normalization theory, its goal is to improve the design of systems and facilitate their 

evolution. In our view, it would be useful to bring these two theories together to be able 

to understand their similarities and differences. Possibly, we can use the ideas that have 

been worked out for one theory in case of the other theory as well. Nowadays there is a 

lot of talk about object-relational impedance mismatch between highly normalized 

relational or SQL databases and object-oriented applications that use these. Thus, 

researchers and developers look these as quite distinct domains that require different 

skills and knowledge as well as have different associated problems, theories, methods, 

languages, and tools. Hence, in addition to technical impedance mismatch there is a 

mental one as well. We support the view that database design is programming and has 

the same challenges as the programming in the “traditional” sense like ensuring quality 

and high evolvability, separating concerns, managing redundancy and making 

redundancy controlled, testing the results, versioning, and creating tools that simplify all 

this.  

Database and application developers sometimes have antagonistic views to the 

normalization topic. Merunka et al. (2009) mention a common myth in object-oriented 

development community that any normalization is not needed. Komlodi (2000) 
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compares object-oriented and relational view of data based on the example of storing a 

virtual car in a garage. He compares a design that offers a large set of highly normalized 

tables with an object-oriented design where there is class Car that describes complex 

internal structure and behavior of car objects. Readers may easily get an impression that 

normalization is something that one uses in case of databases but not in case of 

object-oriented software. 

On the other hand, there are ideas of using the relational model, relational database 

normalization theory, and dependency theory, which is the basis of the normalization 

theory, to facilitate understanding of evolving systems. De Vos (2014) uses the relational 

model as a metalanguage and the relational database normalization theory as a 

theoretical tool to explain and predict language evolution in terms of gradual lexicon 

development as well as explain the levels of language ability of animals. We have found 

the work of Raymond and Tompa (1992), Lodhi and Mehdi (2003), and Pizka (2005) 

that apply the dependency theory to the software engineering. Raymond and Tompa 

(1992) analyze text editor and spreadsheet software. They describe functionality in terms 

of tables, investigate dependencies between the columns, and discuss implications of the 

dependencies to the design of data structures and software as well as end-user 

experience. They show how decomposing the tables along the dependencies, based on 

the rules of database normalization, reduces redundancy in software design and thus 

makes it easier to update the software. They suggest that it would be possible to teach 

object-oriented design in terms of multivalued dependencies. The authors note that users 

could tolerate certain amount of data redundancy but the goal to ensure data consistency 

leads to software that is more complex. Having different approaches for dealing with 

redundancy within the same software may reduce its usability. Lodhi and Mehdi (2003) 

describe and illustrate the process of applying normalization rules to the classes of 

object-oriented design. Pizka (2005) considers maintainability of software and discusses 

difficulties of maintaining code due to change anomalies, which are conceptually similar 

to the update anomalies in not fully normalized relational databases. He transfers the 

idea of normalization from data to code and defines two code normal forms in terms of 

semantic units and semantic dependencies. In principle, there is such dependency 

between program units (for instance, functions), if these units are equivalent or 

semantically equivalent. The latter could mean that the operations fulfill the same task 

but perform their task based on differently represented input data. He uses the defined 

normal forms for reasoning about, finding, and removing change anomalies in code to 

improve its maintainability. However, none of these ideas has achieved widespread 

attention. In October 2015, the paper (Raymond and Tompa, 1992) had six, the paper 

(Lodhi and Mehdi, 2003) had one, and the paper (Pizka, 2005) had two papers that 

referred to it according to the Google Scholar™. None of these references has the topic 

of the referenced papers as its main topic.  

Software systems contain a layer that implements business logic, which is guided by 

the business rules. It is possible to represent these rules in decision tables. The works of 

Vanthienen and Snoeck (1993) as well as Halle and Goldberg (2010) are examples of 

research about normalizing decision tables to improve their understandability and 

maintainability. They derive the normalization process from the database normalization 

process and define different normal forms of business rules. Halle and Goldberg (2010) 

comment that the normalization leads to a decision model structure that causes the 

removal of duplicate atomic statements and delivers semantically correct, consistent, and 

complete rules. 
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In case of the database normalization theory there is a well-known technique of 

denormalization that requires reduction of normalization level of one or more tables (if 

we speak about SQL databases) to achieve pragmatic goals like better performance of 

some queries in a particular environment. Whether and how much to use it depends on 

context. For instance, Helland (2011) gives an impression that that in large-scale systems 

do not need database normalization because users add new facts instead of updating 

existing facts. Kolahi and Libkin (2010) provide formal justification that databases with 

good third normal form design (there are higher normal forms) offer the best balance 

between redundancy reduction and efficiency of query answering. Grillenberger and 

Romeike (2014) argue that computer science has to “rethink the idea of redundancy from 

something that generally should be avoided to a method that is applied in order to 

achieve certain specific goals” due to the emergence of NoSQL systems and Big Data. 

One starts to wonder, does it mean that these ideas also apply to the redundancy of 

functionality. 

Perhaps understanding universalness of normalization principles, similarity of 

concepts, potential problems of redundancy, and situations when redundancy is tolerable 

or even desirable helps us also reduce the mental gap between the application 

development and database development domain. Fotache (2006) observes that database 

normalization theory has failed to become universal practical guide of designing 

relational databases and points to different reasons of that. Badia and Lemire (2011) 

mediate a report that in a typical Fortune 100 company database normalization theory is 

not used. There are even such provocative calls like “normalization is for sissies” 

(Helland, 2009). If one understands better the relationship between the NS theory and 

the database normalization theory, then one can learn from the problems of one theory 

how to make things better in case of the other. Badia and Lemire (2011) observe with 

regret that traditional database design (thus, also normalization) “is not a mainstream 

research topic any more” and is often considered “a solved problem.” One could hope 

that the interest towards the NS theory will also increase the interest towards the 

database normalization. Grillenberger and Romeike (2014) suggest that at the age of Big 

Data the topic of strictly normalizing data schema is not any more a broadly influential 

fundamental database concept that deserves teaching in the general education. They also 

call for discussion as to whether (data) redundancy is such general concept any more. 

However, understanding fundamental similarities between the NS theory and the 

database normalization theory would strengthen the understanding that redundancy is an 

important concept of both data and management. It influences systems in general and 

thus certainly deserves teaching. 

Thus, the goal of the paper is to bring together and search a common ground of the 

theory of NS and the theory of database normalization. We pointed to some observable 

similarities and differences between the theories in our earlier paper (Eessaar, 2014). 

However, the topic deserves a deeper analysis. To our knowledge, there has not been this 

kind of analysis yet in the literature. Since the NS theory is independent of any 

programming language, platform, or technology, we want to understand as to whether 

the theory of database normalization could be seen as a specialization of the NS theory 

in the domain of databases.  

We organize the rest of the paper as follows. Firstly, we present an additional 

explanation of the main principles and reasons behind database normalization and the 

NS theory. After that, we explore what existing NS literature says about databases and 

the database normalization theory. Thirdly, we explore a common ground of the 

normalization theories. We name some problems of SQL databases and database 
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management systems (DBMS) that are caused by the insufficient separation of concerns, 

which is a violation of the NS theory. We present a conceptual model that offers a 

unified view of the theories. Finally, we conclude and point to the further work with the 

current topic. 

2. Normalization Theories 

Here, we further explore the theories to explain the context and improve understanding.  

2.1. Theory of Database Normalization 

The normalization theory provides a formalized theoretical basis for the structuring of 

databases. The goal of its application is to reduce data redundancy in databases and 

hence avoid certain update anomalies. Although this is desirable in case of any data 

model, we refer to the relational data model in our discussions because the theory is 

probably the best known in this domain. Of course, one may choose to allow redundancy 

for the sake of improving some other aspects of the system but in this case it is a 

conscious design decision and one must take into account all of its good and bad results. 

Technical limitations of data management platforms often cause decisions to permit 

certain degree of data redundancy. Because of these, allowing the redundancy is the best 

possible way to speed up certain queries or, in case of data models that do not provide an 

operation that is similar to relational join, to make possible certain operations in the first 

place. 

Our understanding of the relational data model, which is also the basis of the SQL 

database language, is based on The Third Manifesto (Date and Darwen, 2006). It differs 

from the underlying data model of SQL in many crucial details. However, in the 

discussions of the database normalization theory, we will use the terminology of SQL – 

table, column, and row. We will do it because SQL is well known and we hope that it 

will make the discussion more understandable. We will point to the differences of the 

underlying data model of SQL and the relational model where we need it.  

Data redundancy in a database means that there is at least one proposition that has 

two or more distinct representations in the database (two or more separately registered 

propositions) (Date, 2006a). The update anomalies make data modification operations 

more time consuming and error prone. If one wants to insert, update, or delete a 

proposition, then the DBMS or its invoker have to make more work (how much more 

depends on the level of normalization and the number of already registered propositions) 

to complete the operation and to ensure consistency of propositions. If the system design 

determines that applications that use data have to be aware of the redundancy and ensure 

consistency, then it increases coupling between the applications and the database. In 

addition, data structures that feature data redundancy and update anomalies restrict 

propositions that one can record in the database because the system treats independent 

propositions at the database level as dependent propositions. Carver and Halpin (2008) 

note that NULLs in a fact (proposition) indicate that the fact is not atomic. Contrary to 

SQL, The Third Manifesto does not permit us to use NULLs to depict missing values. 

Thus, one cannot bundle together propositions to a row as a composite proposition if 

some parts of the composite proposition are missing.  

Normalization is a multi-step process where each step takes the involved tables to a 

higher normal form that is defined in terms of certain well-formedness rules. In other 
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words, the process describes how to evolve the database schema. To take a table T to 

first normal form, one must be able to represent data in T so that in each row of T each 

field contains exactly one value that belongs to the type of the corresponding column 

(and not sets of such values known as repeating groups). Moreover, the table also has to 

have at least one (candidate) key to exclude duplicate rows because the table must satisfy 

all the requirements of the relational model to tables. It is said that each table that is in 

first normal form is normalized. In this paper, further database normalization means 

projection-based decomposition of tables. Thus, further normalization of T means 

searching certain dependencies between the columns of T and decomposition of T into 

smaller tables in a nonloss manner based on the dependencies by using projection 

operation. Further normalization process is often informally called normalization. 

Nonloss decomposition of a table T means in this case that a database designer replaces 

T with certain of its projections so that it is guaranteed that one can restore the original 

table T by joining all the projections and all the projections are needed to provide such 

guarantee. The process recursively applies also to all the newly created tables. 

As a by-product, the result of the normalization process simplifies enforcement of 

certain integrity constraints because we can now enforce these by simply declaring keys 

to the tables. Enforcement of the integrity constraints means that the system has more 

information to check consistency of data and optimize operations. Another by-product is 

that the observer of the schema that contains tables will get gradually better 

understanding of the concepts and relationships of the real world (domain) that are 

reflected by the schema. Tables reflect more and more fine-grained concepts of the real 

world and declared keys and referential constraints explain the nature of relationships. 

De Vos (2014) draws parallel between normalization of tables and gradual expansion of 

lexicon to depict new concepts. Depending on the implementation of a particular DBMS, 

the normalization process could lead to the reduction of data storage costs due to the 

reduced redundancy. 

The reverse process of normalization is denormalization. Database designers use it to 

achieve pragmatic goals like improved performance of certain queries or offering data to 

applications in an aggregate form so that it is easier for them to read the data. The latter 

can be achieved in databases by using viewed tables (views in short) (assuming that the 

DBMS supports them and supports operators needed to convert data to aggregate form) 

and thus avoiding the negative effects of data duplication (Burns, 2011).  

In general, we can say that the normalization theory teaches us how to improve the 

design of databases in certain aspects. In addition, its formal and precise definition 

makes it possible to semi-automate the process and checking existing databases or 

database design models against its defined levels of normalization. On the other hand, 

the theory does not cover all the aspects of database design and hence its following does 

not guarantee a good database design in every aspect. Hence, the normalization theory is 

only one tool in the toolset of database designers. The application of the database 

normalization theory cannot even guarantee that a database is free of all kinds of data 

redundancies. We actually even do not need this because, for instance, duplication of 

data in a distributed database to several locations helps us to improve availability of the 

system as well as the speed of answering certain queries. On the other hand, this 

duplication introduces new level of complexity to the system because it must control the 

redundancy. Date (2006a) explains that in case of controlled redundancy the DBMS and 

not its users must take care of propagating (at least eventually) updates to avoid 

inconsistent or contradictory propositions in different parts of the database. Of course, 
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someone has to instruct the DBMS how to propagate the updates and thus there is more 

work for the developers.  

The principle of orthogonal design addresses data duplication across multiple tables. 

It is not a part of the normalization theory. It requires that no two tables in a database 

should have overlapping meanings (Date, 2006a). 

The definitions of normal forms, except first normal form, depend on the existence of 

keys in the tables, thus eliminating the problem of repeating rows in the tables. However, 

definition of first normal form does not require the existence of keys in tables according 

to the interpretation of SQL but does require the existence of at least one key in each 

table according to the interpretation of the relational model. Keyless tables lead to 

possible repeating rows in the tables that is another form of redundancy. As Date (2006b, 

Chap. 10) shows, it leads to, for instance, problems with interpreting the query results as 

well as optimizing the queries by the system. 

Carver and Halpin (2008) argue that the previously described normalization process 

is inadequate because a table (as a variable) may have different values (sets of rows), 

some of which do not have multivalued or join dependencies but still have fact-

redundancy. They do not question the need of normalization but the process of achieving 

fully normalized tables. They argue that if one creates a conceptual model that represents 

atomic fact types, then one can synthesize fully normalized tables from it. They 

comment that the process of deciding as to whether a fact type is atomic or not requires 

knowledge about the domain and is informal. Fotache (2006) also points out that 

alternatively one could use normalization to check the results of deriving database 

structure from a conceptual model. 

2.2. The Theory of Normalized Systems (NS) 

Databases are only one, albeit often very important, component of information systems. 

Intuitively, it is understandable that some design problems that appear in databases can 

appear in some form in any type of systems. These systems could be technical, 

sociotechnical, social, or natural. For instance, there could be multiple software modules 

in a software system that implement the same task, multiple forms in the user interface 

of the same actor providing access to the same task, multiple process steps, 

organizational units or organizations that fulfill the same task, or identical or 

semantically similar models that describe the same tasks. These examples potentially 

mean unnecessary wasting of resources and more complicated and time-consuming 

modification of tasks and their models. Being duplicates of each other, the parts have 

undeclared dependencies, meaning that changing one requires cascading modifications 

of its duplicates to keep consistency. The more there are such duplicates, the more 

changes we need to keep consistency.  

If there are multiple unrelated or weakly related tasks put together to a module, then 

it is more difficult to understand, explain, and manage the module. Such modules have 

more dependencies with each other, meaning that changes in one require examination 

and possible modifications in a big amount of dependent modules. The less the general 

information hiding design principle is followed, the more cascading changes are needed. 

For instance, intuitively, one can understand how difficult it would be to understand 

places of waste and duplication in a big organization and after that reorganize it. In 

organizations, the more fine-grained are its tasks, the easier it is to distribute these 

between different parties and in this way achieve separation of duties and reduce the 

possibility of fraud.  
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Observers have noticed the same general problems in case of user interface design as 

well. Cooper et al. (2014, p. 274) write that navigation is “any action that takes the user 

to a new part of the interface or that requires him or her locate objects, tools, or data 

elsewhere in the system” and that the need of such actions should be minimized or 

eliminated. From the end users perspective, one could see it as a call to denormalize by 

bundling tasks together to one form or page. From the perspective of the developers, it is 

a warning of dangers because if there are duplicated tasks in different places, then they 

have to navigate to modify these. The latter demonstrates conflicting interests of 

different stakeholders and possibly the need to have different decomposition principles 

at the different system layers.  

Thus, this knowledge is not new and the authors of the NS theory are not its 

discoverers. For instance, “Once and only once” software development best practice 

requires that there should not be duplication of behavior in a system (WEB, a). “Don’t 

repeat yourself” best practice is a little bit more relaxed, meaning that each data element 

or action element (functionality) must have single authoritative representation in the 

system (Wilson et al., 2014). If there is duplication, then it must be controlled 

(automated) (WEB, b). Similarly, De Bruyn et al. (2012) refer to different code smells. 

Many of these indicate code duplication. Their analysis shows that avoidance of most of 

the smells (14 out of 22) contribute towards achieving NS. However, the NS theory tries 

to offer more formalized approach how to achieve the system that is free of such 

problems. 

The Lehman’s laws of software evolution state that E-type evolutionary software 

degrades over time unless it is rigorously maintained and adapted as well as its 

functional content is increased to maintain satisfaction of users (Godfrey and German, 

2014). The NS theory assumes unlimited system evolution over unlimited time 

(Mannaert et al., 2012b). Of course, the stakeholders of the system want the evolution 

process to be as easy and problem-free as possible. However, this is not the case if the 

system grows larger and more complex over time. The bigger it gets, the more there are 

dependencies so that changing one part of the system requires changes in other unrelated 

parts as the ripple effect. Unfortunately Mannaert et al. (2012b) remain vague about 

what does “unrelated” mean here. The theory of NS calls such dependencies 

combinatorial effects (CEs) and calls for their complete elimination. Only if this is 

achieved, then the impact of change will not depend on the size of the system any more 

but only on the nature of the change itself. Thus, the system becomes stable with respect 

to a set of anticipated changes. Mannaert et al. (2012b) define a minimal set of such 

changes. The theory suggests four prescriptive design theorems to constrain the modular 

structure of systems and to guarantee that the system is free of CEs and thus highly 

evolvable. The Lehman’s law of increasing complexity states that each E-type software 

system grows increasingly complex over time, unless stakeholders explicitly work to 

reduce its complexity (Godfrey and German, 2014). In this case, explicit work means 

work that is needed during the creation or modification of the system to achieve 

conformance to the theorems. 

The theory is generic in the sense that according to the authors one could apply it to 

any modular system. To achieve this, the theory is described in terms of very generic 

primitives like data elements and action elements that configuration forms a system. 

Anticipated changes of the system mean changes in the configuration of these elements. 

The design theorems that proofs Mannaert et al. (2012b) present in their paper have the 

following informal descriptions (Eessaar, 2014). 
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 Separation of Concerns means that each change driver (task, including the use 

of an external technology) of a system must be put into a separate module.  

 Data Version Transparency means that there could be multiple versions of data 

elements without affecting action elements that produce or consume these.  

 Action Version Transparency means that it must be possible to modify action 

elements without affecting action elements that call these. 

 Separation of States means that system has to keep state after every action that 

belongs to a workflow to be able, for instance, to handle unexpected results. 

For instance, there are examples of application of the theory to software (Mannaert et 

al., 2012b) and business architecture of information systems (Eessaar, 2014). It is 

possible to apply the theory to system development artefacts like requirements (Verelst 

et al., 2013) or code. If one uses model driven development to create code based on 

models by using transformations, then one must consider the theorems right from the 

first artefacts.  

The systems that completely follow all the design theorems are free of CEs and are 

thus stable in the sense that small initial changes in the system will not lead to big 

cascading changes as the ripple effect. Thus, the effort to change the system will be 

similar or even constant over time. The theory calls such systems as normalized systems. 

The separation of concerns theorem is nicely in line with the code normal forms 

proposed by Pizka (2005). The requirement of first code normal form that the basic 

building blocks of code must be indivisible atoms means that each block must have one 

task. Like the separation of concerns principle, it gives freedom in deciding the 

granularity of blocks and hence tasks. Akşit et al. (2001) and WEB (c) require that each 

separated concern must have canonical form property, meaning that it should not include 

irrelevant and/or redundant abstractions. Similarly, second code normal form requires 

that there must not be direct or transitive semantic dependencies between blocks, 

meaning essentially that there should not be blocks that are duplicates of each other. 

In databases, a design decision could be to have some level of controlled data 

redundancy to improve, for instance, performance of some queries due to the technical 

limitations of the used platform (in this case a DBMS). Similarly, in systems in general 

the redundancy maybe needed and encouraged in order to achieve, for instance, some 

level of competition. For instance, in this reason it is useful to have multiple universities 

in a country. However, in order to achieve controlled redundancy they should ideally 

have some sort of agreement how to best share the common task to offer good education. 

3. Databases According to the NS Literature  

One of the questions that interests us is how much the database normalization theory has 

influenced the NS theory. The reverse process of normalization is denormalization. 

Therefore, it interests us how the NS theory regards the possibility of not completely 

enforcing all the theorems of NS and thus not achieving a NS. The database 

normalization theory stresses the concept of redundancy. Thus, it is interesting to know 

how the NS theory treats the concept. Finally, we want to know about the treatment of 

databases in general, DBMSs, and database design according to the NS theory.  

To find answers to these questions, we conducted a small literature review. Firstly, 

we selected the key publication that is a journal paper (Mannaert et al., 2012b), which 

explains the NS theory and offers proofs of its theorems. Next, we selected the journal 

paper and all the papers that refer to this paper according to Google Scholar™ (at the 
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beginning of March 2015) into the initial set of papers. We also added to the initial set 

the earlier papers of Mannaert and Verelst that the selected journal paper references. For 

the review, we selected papers (from the initial set of papers) that’s main topic is the NS 

theory or its application to some system and full text is available to us. In total, we 

reviewed 40 papers from 2006 to 2014 (all in English) that were available as pdf files. 

We used the following case insensitive search keywords to search parts of the papers that 

are relevant in terms of the research questions: “normal form”, “relational”, “sql”, 

“denormalize”, “denormalization”, “database”, “database management system”, “update 

anomaly”, “upadate anomalies”, “orthogonal design “, “duplicate”, “duplication”, and 

“redundancy”. In addition, we searched case sensitive word “Codd” as well as “NF” and 

“DBMS” that are the abbreviations of “normal form” and “database management 

system”, respectively. Next, we summarize and discuss our findings. If there are multiple 

publications that present similar claims, then we will not present all the publications but 

make a selection. 

Only Verelst et al. (2013) and our previous work (Eessaar, 2014) mention database 

normalization theory. Verelts et al. (2013) refer to only the paper of Codd (1970) in this 

regard. They say that it is a well-documented approach how to eliminate many CEs in 

case of databases. They correctly point out that the theory does not eliminate all the 

effects and thus does not eliminate all the redundancy. This is a crucial difference 

between the NS theory and the database normalization theory because the former 

requires us to remove all the CEs. None of the reviewed papers explicitly refers to the 

concept “denormalization”. However, Verelst et al. (2013) speak about the need to 

eliminate CEs at the software level but relaxing this requirement at the higher levels. 

This relaxation is nothing else than denormalization in terms of NS. Similarly, in case of 

databases it is possible to denormalize views that constitute the external level of a 

database without denormalizing tables based on that the views have been defined (Burns, 

2011). In case of software systems, the analogy is, for instance, user interface where 

each form/page could offer unrelated or weakly related functionality and thus violate the 

separation of concerns theorem that is one of the founding theorems of the NS theory. In 

case of documentation, an example are diagrams that could couple unrelated or weakly 

related model elements. Thus, denormalization is clearly a topic that the NS theory 

should consider.  

Verelst et al. (2013) incorrectly claim that the CEs that the database normalization 

eliminates are caused by the “redundant definition of attributes.” The definitions are not 

redundant but the attributes are grouped together so that there will be CEs between 

propositions that are represented by the recorded attribute values. Terminology here is 

also imprecise because in SQL columns and attributes are structural components of 

tables and structured types, respectively. Moreover, it is the principle of orthogonal 

design that addresses redundant definition of columns in different tables. The principle is 

related to but not a part of the database normalization theory. Only Eessaar (2014) 

mentions the principle. Only Eessaar (2014) mentions database normal forms and does 

so while giving an example of similarities of the normalization theories. Thus, we 

conclude that the database normalization theory has not been an important basis in 

working out the NS theory and there is a gap in the research, namely search of a 

common ground of these theories. 

There are few mentions of relational databases (three papers), object-relational 

mapping (one paper), database management systems (two papers), and SQL (three 

papers) as examples of possible implementation technologies of systems. The NS theory 

is generic and these are just some possible implementation technologies. Data element is 
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one of the element types of the NS. According to Mannaert et al. (2012b), one can store 

instances of data elements in corresponding relational database tables. They look a 

DBMS as an external technology to applications and do not treat it and its provided data 

model in terms of the NS theory. The lack of references also shows that the research 

regarding database normalization has not been an important basis in working out the NS 

theory.  

Seventeen papers refer to databases. Mannaert et al. (2012b) explain that if a 

transaction fails because, for instance, it violated integrity rules or if a system fails 

during active transactions, then the system must be aware of all actions that it has 

performed for the recovery purposes. Thus, the system needs state keeping and that is 

what the fourth NS theorem prescribes. Mannaert et al. (2012b) do not mention it but 

many DBMSs implement this by using, for instance, rollback/undo segments. Mannaert 

et al. (2012b) comment that over time programming languages have evolved to be more 

consistent with the NS theorems. The design of DBMSs is themselves a subject of the 

NS theory and the systems implement or facilitate independent implementation of many 

of the concerns, which separation the NS theory requires. We did not find analysis of 

DBMSs in terms of how much support they offer in building NS and how it has evolved 

over time. Thus, in our view, the systems deserve more attention in this regard (see 

Section 4.1).  

At the higher level, applications store in databases the general observable states of 

real-world systems. Mannaert et al. (2012a) call these states macrostates. This is another 

manifestation of state keeping, required by the fourth NS theorem. 

Some of the reviewed publications mention databases as a part of architecture of 

information systems. Their authors argue that the architecture would benefit from the 

application of the NS theory. Mannaert et al. (2012b) note that multi-tier architecture 

with a separate layer of database logic is a manifestation of the separation of concerns 

theorem.  

In their examples, the papers concentrate to the application layer. Maes et al. (2014) 

stress that checking based on database as to whether a user has an authorization to use an 

IT application and its different functions is a separate concern. Developers must 

implement it in a separate module for the sake of evolvability. Ideally, all the 

applications will reuse it. Maels et al. (2014) call for reusing such software modules in 

case of developing new applications. De Bruyn et al. (2014) refer to many different 

cross-cutting concerns of systems like authorization policy, logging, integrity checking, 

external communication, and bookkeeping adapter that one should implement in separate 

modules. Integrity checking is a part of the underlying data model of a DBMS. Others 

are services that one can build on top of the model in a DBMS. Modern SQL DBMSs 

provide more or less separation of concerns between the model and the services by 

providing means to manage the services separately of managing elements determined by 

the data model. 

A goal of the use of the NS theory is to reduce dependencies between modules. 

Coupling is a measure of such dependencies. Van der Linden et al. (2013) list seven 

different types of couplings. They name external coupling as the third tightest coupling. 

In this case, two or more modules communicate by using an external database. Access of 

this external resource is a concern that all the modules duplicate, meaning that these 

modules have multiple concerns, which violates the separation of concerns theorem. 

Fowler (a) calls this kind of approach integration database. The loosest types of 

couplings are stamp coupling and message coupling in which case modules 

communicate by passing data structures that they use only partially and messages, 
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respectively. These approaches are in line with the application database approach 

(Fowler, b) when each database is controlled and accessed by a single application. The 

applications share data by exchanging messages via services. In each system, one has to 

find a balance between different requirements. Although application databases reduce 

coupling they could lead to data duplication in multiple databases and thus problems in 

case of performance and ease of use (data needed for some decisions are in multiple 

places and it takes time to put it together). There could be problems of reusability (data 

structures in an application database have been created by taking into account 

requirements of a specific application and not multiple applications that all could need 

this data) and integrity (difficult to enforce constraints that checking requires reading 

data from multiple databases; duplication of data in different databases could lead to 

inconsistencies). In principle, this means CEs because changes in data as well as in the 

requirements to data mean changes in many parts of the system. Mannaert et al. (2012b) 

do not see a problem in that because according to them separation of concerns is only 

about action elements, not data elements. 

Authors often use update anomalies to explain and justify database normalization. 

Similar anomalies exist in systems in general if updating one part of a system causes the 

need to update other parts as the ripple effect and the need increases with the increasing 

of the system size. However, only Eessaar (2014) briefly mentions update anomalies. 

Thus, the NS theory uses different terminology (like combinatorial effects and 

composition of concerns) and does not use update anomalies in the database world to 

explain similar problems in the general domain of systems. 

Interestingly, only three papers, two of which discuss requirements engineering and 

use cases, say something about redundancy in the context of the NS theory. Verelst et al. 

(2013) comment that use cases that describe the same functionality or terminology 

violate the separation of concerns principle. In this case there is redundancy and thus 

also a CE. The redundancy could exist only at the model level but it could also reflect 

redundancy in the real world. In total, we found four papers that mentioned that 

duplication (another word that refers to the concept “redundancy”) (for instance, code or 

processes) causes violation of the separation of concerns principle. De Bruyn et al. 

(2012) analyze different code smells. These smells often indicate duplicate code that is a 

sign of CEs according to De Bruyn et al. (2012). They give an example of two modules 

that share the same code to implement a duplicate functionality but have also additional 

functionality. They comment that in this case there is a violation of the separation of 

concerns theorem because the modules have two change drivers. It is unclear from the 

comment as to whether two identical modules that both have one change driver would 

violate the theorem. In our view, there is still a CE because modification of one copy 

requires modifications of other copies or conscious decisions not to modify and the more 

there are copies, the more work one has to do.  

4. Exploring a Common Ground of the Normalization Theories 

Data version transparency, action version transparency, and separation of states theorems 

are all about encapsulating action elements, which call each other and could have 

multiple versions. The theorems require that each action element should continue 

functioning if new fields are added to its consumed data elements, newer versions of its 

called action elements are created, or called action elements return unexpected results 

(including do not return a result). The database normalization theory does not directly 
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deal with conceptually similar questions but as we later point out, the use of highly 

normalized tables makes it easier to implement data version transparency. Each subtype 

inherits all the properties of its supertype. The database normalization theory does not 

deal with problems that are conceptually similar to the theorems about encapsulation and 

versioning. Thus, it is incorrect to say that the NS theory is its generalization. 

On the other hand, the separation of concerns theorem deals broadly with the same 

questions as the database normalization theory and therefore one can say that these 

theories have an overlap. The NS theory describes systems in terms different primitives, 

including action element and data element. WEB (c) defines concern as “A canonical 

solution abstraction that is relevant for a given problem.” However, the separation of 

concerns, according to the NS theory, applies specifically to the action elements. 

“Essentially, this theorem describes the required transition of submodular tasks—as 

identified by the designer—into actions at the modular level” (Mannaert et al., 2012b). 

On the other hand, users of the database normalization theory apply it to the data 

elements. We argue that database normalization is a domain-specific application of 

separation of concerns theorem to the data elements in the domain of databases. 

We wanted to validate our impression that literature does not explain the database 

normalization theory in terms of separation of concerns (as of October 2015). Firstly, we 

looked all the materials (books and papers) about normalization topic that the current 

paper mentions and did not find any references to the separation of concerns principle. 

Secondly, we searched Google Scholar™ with the search phrases “separation of 

concerns in databases” (one result) and combination of “separation of concerns” and 

“database normalization” (41 results). We also looked the 357 papers (as of October 

2015) that cite the work of Hürsch and Lopes (1995) and searched with phrases 

“normalization” (two results) and “normal forms” (four results) within this set of papers 

by using Google Scholar™. Similar search with the phrase “separation of concerns” 

from the 216 papers citing Fagin (1979) returned four results. We found only one 

previous source (Adamus, 2005) that comments database normalization in terms of the 

separation of concerns. He mentions database normalization only once, claiming that it 

causes tangling, which is not good. He applies the principles of aspect-oriented 

programming to object-oriented databases and defines aspects so broadly that every 

software feature that “can be isolated, named, described and documented at a high 

abstraction level” is an aspect (concern).  

Both Adamus (2005) and WEB (c) see concerns as conceptual abstractions that 

implementation involves the creation of one or more elements in the implementation 

environment. Adamus (2005) gives an example that an aspect (concern) Person, which 

one could represent as an entity type in a conceptual data model, could be implemented 

by using multiple tables in a relational or SQL database. Adamus (2005) thinks that 

because of the creation of multiple tables the concern is scattered to multiple places of 

the database. He characterizes such concern as tangling, meaning that due to the 

restrictions of an implementation environment (in this case a SQL DBMS) implementers 

have no other choice than to scatter the concern. Of course, this does not have to be the 

case if the DBMS properly supports definition of new types and using these as column 

types as the relational model requires. Each concern is a conceptual abstraction that 

according to WEB (c) depends on problem at hand. The definitions leave it fuzzy as to 

what is an appropriate abstraction level to consider something as a concern. Hence, in 

this case, one could change the level of abstraction. Instead of looking Person as a 

concern that one must implement with the help of tables Person_detail and 

Person_e_mail, one could consider these tables as data elements that bijectively map to 
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and represent more fine-grained concerns. Based on these two tables, one could create a 

denormalized view (also a data element) that corresponds to the more coarse-grained 

concern Person. Database normalization helps us to achieve more fine-grained tables 

that correspond to more fine-grained concepts (see the work of De Vos (2014)). Thus, 

we can use the database normalization to find conceptual structure of the system and 

define its conceptual (data) model. Usually the order of creation is the opposite. Firstly, 

modelers create a conceptual data model. Based on that they create the database design 

models by using model transformation. 

Very informally speaking, in case of tables the separation of concerns means that 

each table must address the main general concern of a database that is to record data 

corresponding to some entity type or relationship type. In case of tables that are only in 

first normal form, each table is a structure that contains data about multiple types of 

entities and relationships. For instance, it makes it more complex to perform data 

modification operations and enforce certain integrity constraints. The higher is the 

normalization level of tables, the more fine-grained the concerns will become and thus 

the separation of concerns gradually increases. Hürsch and Lopes (1995) note that there 

must be a gluing mechanism that holds the decoupled concerns together. In case of 

relational or SQL databases and “traditional” projection-based normalization these are 

candidate keys and foreign keys of tables. One can use the values of the keys to join the 

decomposed tables back together in the nonloss manner (recouple concerns). 

What about constraints to data, which help us to enforce business rules? In our view, 

one should look these rules as separate concerns as well. Ideally, one could implement 

each such rule by using one declarative database language statement. However, if due to 

the restrictions of a DBMS the implementation of a constraint requires the creation of 

multiple trigger procedures, which have to react to different events and are perhaps 

attached to different tables, then this is an example of tangled database concern. 

Declarative statements and triggers are examples of action elements of the NS theory. 

Implementation platforms of concerns determine what concerns one can and cannot 

separate. According to the terminology of Tarr et al. (1999), data and functionality 

would be different dimensions of concerns along of that to decompose the system. For 

instance, object-oriented systems couple functionality and data because objects contain 

both methods, which implement behavior and attributes, which hold data. The same is 

true in case of user-defined structured types in SQL that couple attributes (data) and 

methods to access the attributes. These methods also have to enforce whatever 

constraints there are to the values of the attributes in addition to the type of the attribute. 

On the other hand, the relational data model takes the approach that it is possible to 

specify separately operators for performing operations with data, constraints to restrict 

data, data structures, and data types. This distinction follows the spirit of the separation 

of concerns principle.  

Hürsch and Lopes (1995) write about the benefits of separating concerns and observe 

that we must separate the concerns at both the conceptual and the implementation level 

to achieve these. Section 4.1 explains that unfortunately current SQL DBMSs have many 

shortcomings in this regard.  

Hürsch and Lopes (1995) note that separating concerns makes it possible to reason 

about and understand concerns in isolation. One could say the same about tables that one 

creates as the result of decomposition during the normalization process. Each table 

heading represents a generalized claim (external predicate) about some portion of the 

world. The lower is the normalization level of a table, the more its predicate contains 

weakly connected sub-predicates as conjuncts. During the normalization process, these 
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predicates are separated to distinct tables. For instance, a table in first normal form might 

have the following external predicate that explains the meaning of the table to its users: 

Client with identifier CLIENT_NO, first name CFNAME, and last name CLNAME rents 

property, which has the identifier PROPERTY_NO, address ADDRESS by paying RENT 

Euros in a month. If one further normalizes the table, then one of the resulting tables 

would contain data about clients and has the following external predicate: Client has 

identifier CLIENT_NO, first name CFNAME, and last name CLNAME. All that the 

current paper writes about separate concerns is true and relevant in case of this table as 

well.  

Hürsch and Lopes (1995) write that separation of concerns makes concerns 

implementable one by one and substantially reduces the complexity of implementing 

individual concerns. In case of database normalization, we can implement the resulting 

tables, which correspond to separate and more cohesive concerns, one by one. If we 

proceed with the normalization process, then it is gradually easier to implement these 

tables because due to the decomposition the tables have gradually less and less columns. 

Moreover, it is easier to update data in these tables due to the reduction of update 

anomalies. If we want to enforce constraints to data, then as the result of normalization 

process more and more constraints must refer to multiple tables. It is complicated to 

enforce these constraints in modern SQL DBMSs because they do not support general 

declarative constraints (assertions) that can refer to multiple tables and multiple rows and 

are not directly connected to any table (separation of concerns at the implementation 

level). However, this is a restriction of implementation environments not a principal flaw 

of the relational data model and the normalization process. 

Dependencies between columns based on that the tables are decomposed are actually 

a type of constraints that should be known and enforced by the system. These constraints 

are also separate concerns. Complexity of their implementation depends on the choices 

during the decomposition process. Sometimes it is possible to decompose a table in 

multiple different nonloss ways. Date (2003) explains that one could classify the 

resulting tables (projections) of each decomposition as independent or dependent. If the 

resulting tables are independent, then it is possible to enforce constraints corresponding 

to functional dependencies by declaring proper keys to the new tables. For instance, in 

case of table Client, one has to declare {client_no} as the key to enforce the rule that 

each client must have exactly one first name and exactly one last name. However, if the 

resulting tables are dependent, then enforcing these constraints requires the creation of 

database constraints that span multiple tables, making the implementation more 

complex.  

Hürsch and Lopes (1995) comment that separating concerns results in a weak 

coupling of the concerns, meaning, “changes to one concern have a limited or no effect 

on other concerns.” Date (2003) comments that in case of two tables that are the result of 

an independent decomposition, one can update data in either of these without updating 

the other (expect the updates that violate referential constraints between the tables). In 

case of two tables that are the result of a dependent decomposition, one must monitor 

data updates of both tables to ensure that they do not violate dependencies that span the 

tables. Understandably, Date (2003) suggests us to prefer independent decompositions.  

Systems usually have a layered architecture that is themselves a manifestation of the 

separation of concerns principle (Mannaert et al., 2012b). Changes in a concern at one 

layer must be propagated to the depending concerns at the upper layers as well. At least 

partially, these changes can be hidden behind interfaces, which elements recouple 

concerns of the interfaced layer but at the same time allow us to avoid tight coupling 
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between the layers. Because each layer (an implementation of a coarse-grained concern) 

has its own responsibilities, avoiding their tight coupling is a direct application of the 

separation of concerns principle. An example of interface is virtual data layer, which can 

contain views that join (recouple) data from different tables (Burns, 2011). There could 

be duplication of tasks at different layers because at different layers they help us to 

achieve different goals. For instance, data validation in user interface gives quick 

feedback and reduces network load whereas database constraints among other things 

express the meaning of data and help the system to optimize operations. However, there 

is a dependency between the tasks and changes in one must be propagated to another. 

Preferably, it must happen automatically to make the redundancy controlled. 

 Hürsch and Lopes (1995) comment that weak coupling of concerns increases their 

reusability. Burns (2011) notes that reusability of data in case of different applications 

and business uses is one of the basic principles of data management. If a table contains 

data about different general business areas (in other words about separate concerns), then 

it could discourage data reuse. For instance, if a program has to register personal data 

about clients but the table Client contains also information about the contracts with 

clients and products or services that the clients consume, then it could increase 

temptation to create a separate table just for this program to register some personal 

details of clients. 

Database normalization deals with separating concerns at the conceptual database 

level according to the ANSI/SPARC layered architecture of DBMSs. The layered 

architecture is themselves an example of separation of concerns. DBMSs separate 

concerns like persistence, checking privileges, speeding up performance of operations, 

failure recovery, and replication in the sense that the DBMS together with its human 

operators deals with these questions in the background and the users of data ideally do 

not have to refer to these in statements of data manipulation language. 

If one wants to achieve the highest separation of concerns in case of designing tables, 

then one must create tables that are in sixth normal form. If a table has the key (a set of 

columns) and in addition at most one column, then it is in sixth normal form. We cannot 

decompose such tables in a nonloss manner to tables that have fewer columns than the 

original. Date (2006a) calls it the ultimate normal form with respect to normalization. 

The use of this kind of tables offers advantages like better handling of temporal data, 

better handling of missing information, and simplification of schema evolution. 

Regarding the last property, Panchenko (2012) notes that modifiability of a database 

schema is one of the most important quality criteria of applications that use the database. 

Conceptually, this argument is also the driving force behind the NS theory, which offers 

guidance how to create highly evolvable systems, which retain this characteristic over 

time. The sixth normal form tables have been popularized by the anchor modeling 

(Rönnbäck et al., 2010), which is a model-driven development approach for creating 

highly evolvable databases that are well suited for storing temporal data. It results with 

tables that are mostly in sixth normal form. However, the approach also requires the 

creation of views and function that present more denormalized view of data. Thus, there 

are multiple interfaces for working with the data. One provides direct access to tables 

that correspond to anchors and attributes to make it possible to register new true 

propositions about the world. Another contains elements that implement less granular 

concerns (for instance, the latest view in case of anchors that presents the latest values of 

historized attributes). Rönnbäck et al. (2010) do not write about separation of concerns 

in the context of their approach. 
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In relational databases, first normal form requires that each field of a row must 

contain exactly one value that belongs to the type of the corresponding column. 

Although this is not a part of the database normalization theory, one must be able to use 

any type (including types that have complex internal structure; only excluding the type 

pointer) as a column type. Selection of column types determines the granularity of 

values that database users and DBMS can process (read from and write back to the 

system) as one value. Thus, one could decide that in case of the entity type Person there 

is a table Person with the columns first_name and last_name with type VARCHAR or 

perhaps user-defined type Name_T. It means that one wants to treat values in these 

columns as the main units of processing (reading and writing) data of persons. On the 

other hand, one can decide to create the user-defined type Person_T with components of 

its possible representation first_name and last_name and to create a column with this 

type to be able to record values with this type. In this case, one treats values with the 

type Person_T as the main units of processing. The relational normalization theory does 

not look inside the recorded values of the column types and does not deal with possible 

data redundancy within these values. 

Mananert et al. (2012b) state that the identification of tasks that one should treat as 

separate concerns and should place to different modules is to some extent arbitrary. In 

relational databases, the use of tables in sixth normal form together with the possibility 

to use simple or complex types as column types offers a flexible model in determining 

the granularity of concerns. One could design tables so that dealing with first names and 

last names are separate concerns, and the corresponding data is in separate tables. On the 

other hand, one may decide to consider dealing with data about persons as one concern 

and register data of persons in a table that has exactly one column, which has the type 

Person_T. This column is also the key column of the table. The latter design is less 

flexible, just like we expect from less-separated concerns. It is more difficult to 

implement recording historic attribute values in case of some attributes (but not all 

attributes) of Person. Difficulties in database evolution like starting to register data 

corresponding to new attributes or making constraints to attributes stronger or weaker 

depend on the inheritance model of types that the DBMS offers. For instance, a new 

requirement is to start registering national identification numbers of persons. It could be 

that the system does not support type inheritance or its inheritance model does not permit 

definition of subtypes that values the system cannot represent in terms of the possible 

representation of its supertype. In other words, we cannot add to the possible 

representations of the subtype a new component national identifier. In this case, we have 

to create a new type without inheritance and have to create a new table that has the 

column with the new type. Now there are two places (tables) in the database where the 

names of persons are registered.  

Developers could externally couple modules (action elements) by using an 

integration database (Van der Linden et al., 2013). In this case, they can implement data 

elements as relational database tables. NSs must exhibit data version transparency, 

meaning that action elements must function even if there are multiple versions of data 

elements. Mannaert et al. (2012b) describe anticipated changes in systems in terms of 

very generic primitive elements. Two of these changes are addition of a data 

attribute/field and addition of a data element. If we use the anchor database approach, 

then both these modifications are non-invasive to existing tables, meaning creating new 

tables, not altering the existing tables. Thus, every old database conceptual schema 

version is a proper subset of the latest schema. We can hide such changes in the schema 

behind the interface of views and functions that encapsulate the database. Anchor 
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database offers an interface that denormalizes data and presents it in terms of different 

temporal perspectives. Adding tables means that we have to recreate the functions and 

views but the action elements that use these can continue function normally. Until the 

creation of new version of the action elements, they just do not use the new data 

presented through the database interface. 

Publications about database normalization theory state explicitly that its objective is 

to reduce data redundancy. The papers about the NS theory (Mannaert et al., 2012b) as 

well as separation of concerns that is a founding principle of the NS theory (Hürsch and 

Lopes, 1995), (Tarr et al., 1999), (Akşit et al., 2001) pay less attention to this objective. 

Still, Mannaert et al. (2012b) offer a proof of the separation of concerns theorem in 

terms of redundant implementations of a task (let’s call it A) in different action elements 

(see part a1 of Fig. 1), showing how it leads to unbounded amount of coding changes 

during system evolution. If the task A needs modification, then one has to make changes 

in multiple modules. The more modules that contain A there are, the more difficult and 

time consuming the work will become. Thus, there is a CE, which we must eliminate 

according to the NS theory. In essence, it is an example of update anomaly. By the way, 

conceptually similar situation could appear within one module as well (see part a2 of 

Fig. 1). 
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Fig. 1. Different design options to combine and separate concerns 

The solution to the problem depicted in the proof of separation of concerns theorem 

in Mannaert et al. (2012b) is separation of the tasks A to a separate module (see part b of 

Fig. 1). However, one could do this in a way that actually does not reduce redundancy 

and hence does not avoid a CE (see part c of Fig. 1). The principle of nonloss 

decomposition in case of the database normalization theory (Date, 2006a) requires 

among other things that one needs all the resulting components to restore the original 

table. This would correspond to the design b on Fig. 1. The canonical form property of 

concerns also means that one must avoid such redundancy. However, what should 

happen if there is already a separate module that implements the same version of Task A 

as in case of Fig.1 parts a1 or a2? Clearly, there is no need to create a new module 

(Module Z in Fig.1 part b) but instead the redesigned modules should refer to this 

existing module. Unfortunately, both normalization theories look one element at a time 

during the decomposition and do not consider other already existing elements in the 

system, possibly leading to the creation of redundant elements. At least in case of 

relational or SQL databases, there is the principle of orthogonal design to search and 

reduce redundancy across tables whereas in case of the NS theory there is no explanation 

about what to do with CEs that appear because of the duplication of action elements, 

each of which separately conforms to the separation of concerns theorem. Just like 

different names of action elements make it more difficult to discover redundancy, 

different column names make it more difficult across tables. 
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Merunka et al. (2009) address the same problem in the definition of second and 

fourth normal form for the object-oriented data model and require elimination of such 

CEs.  

Aspect-oriented software development describes cross-cutting concerns as concerns 

that are scattered to multiple other concerns leading to duplication or significant 

dependencies. They could exist because of the restrictions of the implementation 

environments that do not allow implementation of such concerns in any other way. 

Adamus (2005) characterizes such concerns as tangled aspects.  However, 

implementation in a manner that increases dependencies and duplication could also be a 

choice of designers. This is the case in case of violations of the orthogonal design 

principle in databases. It means that two or more tables do not have mutually 

independent meaning in the sense that the same row can satisfy the predicates of 

multiple tables and thus appear in multiple tables. The choice to violate the principle is 

not from absolute technical necessity. The reason could be an expectation of better 

performance of some read operations. 

In case of the NS systems, denormalization would mean knowing violation of one or 

more design theorems in at least one part of the system to improve the overall 

satisfaction with the system. The database normalization theory defines intermediate 

levels of normalization (normal forms) whereas the NS theory only states the end goal 

that the system must satisfy all the design theorems. It means that if one wants to reverse 

the normalization process after its completion or perhaps not to complete it in the first 

place, then the database normalization theory offers possible levels where to stop but the 

NS theory does not. The proponents of the NS theory promote full normalization at the 

software level but allow relaxation of the rules at the higher levels (Verelst et al., 2013) 

without exact guidelines where to stop. Both theories offer normalization as a tool that 

one should use according to his/her best understanding and the needs of a particular 

context. 

Different levels of database normalization make it possible to do database 

normalization iteratively in a manner that different iterations take tables to different 

normal forms. The NS theory also suggest possibility of iterative normalization 

(Mannaert et al., 2012b) in the same way. Because of the lack of different levels, the 

authors have to use vague descriptions like “making the elements ever more fine-grained 

over time.” 

One could say that denormalization in terms of separation of concerns appears in 

layered architectures. For instance, Pizka (2005) notes that normalizing (and thus 

reducing update/change anomalies) on one level of abstraction does not guarantee that 

higher levels of abstraction are free from these anomalies. For instance, a page or a form 

in a user interface is a user connector element in terms of the NS theory. This element 

may combine different tasks (functionality) and thus recouple concerns of the lower 

system layers. Moreover, it may present data about different entity types and relationship 

types that one considers separate concerns at the database level and thus recouple these 

concerns. Another example is that in the database one can implement the virtual data 

layer (Burns, 2011), which consists of functions and procedures that are both action 

elements as well as views that are data elements. Again, these elements could recouple 

concerns of the lower system layers. Yet another example are macros in many 

applications that recouple lower-level actions and considerably improve the usability of 

the system. Thus, we see that denormalization at the higher system layers in terms of 

lower layers is even desirable to ensure usability of the system. In this context, we 

cannot speak about total separation of concerns as required by the NS theory but only 
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about a goal to increase the separation within and between layers but not necessarily in 

the interfaces of these layers. 

“Concern” concept is very flexible. Thus, an interpretation of the previous section is 

that in case of different layers the completely separated (atomic) concerns have different 

granularity. It is the general property of the layered architecture that elements at the 

higher layers “abstract away” and hide elements at the lower layers. Thus, they recouple 

concerns that are separate at the lower layers. For instance, if we create tables in a SQL 

database, then it abstracts away from the users of the tables things like internal data 

storage, indexing to improve query performance, algorithms for checking integrity 

constraints, and logging data modifications to be able to roll them back. At the internal 

database level (layer), one would consider these as separate concerns but at the 

conceptual level of databases one recouples these concerns and works with a higher-

level concept that is a table.  

Moreover, denormalization at one layer may lead to denormalization at the upper 

layers. Raymond and Tompa (1992) write that data redundancy leads to redundant 

processing in applications. Because such redundancy violates the canonical form 

property of concerns it means that CEs in data lead to the CEs in applications. One can 

mitigate the effect with the help of views, which can give impression of data redundancy 

to readers while reducing redundant processing because there is no need to update data 

in multiple places. Tarr et al. (1999) explain the concept of one single, dominant 

dimension of separating concerns at a time in typical software environments. Data 

models (like the relational data model) that support creating views and thus 

implementing virtual data layer break the “tyranny of the dominant decomposition” 

within the data dimension of concerns. 

Akşit et al. (2001) describe six “c” properties that each concern should have. The 

database tables (as implementations of concerns) have all the six properties. Tables 

correspond to solution domain concerns that describe parts of systems that one creates to 

solve problems of clients. Nonloss decomposition of tables ensures that the resulting 

tables have canonical form property, meaning that in the result of decomposition there 

are no redundant tables, which one does not need to restore the original table. Tables are 

composable by using join operator. Moreover, the closure property of relational algebra 

ensures that one could further compose the composed tables by again using join 

operation because output from one such operation could be an input to another relational 

algebra operation. Tables are computable, meaning that they are first class abstractions 

in the implementation language (for instance, SQL) and thus one could create them in 

the implementation environment (DBMS). Tables have closure property, meaning that 

both separated and composed tables have all the same general properties (no duplicate 

rows, each column has a type and unique name within the table, etc.). Concerns must 

also have certifiability property, meaning that it must be possible to evaluate and control 

their quality. There are certainly methods for evaluating and improving table design (one 

of them is the database normalization theory) but it would be a topic of another paper. 

Hürsch and Lopes (1995) note that redundant system elements help us to achieve 

fault-tolerance in computing. The database normalization theory does not deal with the 

data redundancy caused by the need to protect data assets by making distinct copies of 

them (by using replication or by making backups). Similarly, we want to protect source 

code or documents by making copies of them, thus increasing redundancy and CEs. This 

is outside the scope of the NS theory as well. In both cases, we need appropriate tools 

and processes for version control. Please note that this example also shows that there are 

types of redundancies that are outside the scope of the theories. 
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To summarize, the look to the separation of concerns in the NS theory is too narrow. 

We propose to treat database data structures (for instance, tables) as data elements of the 

NS theory and argue that normalization process separates concerns in case of these 

elements. A table as a data element might couple multiple more fine-grained concerns 

that we separate as the result of the process. One can recouple these concerns with the 

help of views that are also data elements and are a part of database interface. Constraints 

to data are also concerns. Declarative statements for enforcing constraints and database 

triggers are action elements of the NS theory. If, despite technical restrictions of a 

DBMS, one manages to enforce a constraint by using a declarative statement, then the 

concern maps to exactly one action element. One may need multiple triggers to enforce a 

constraint and it is an example of tangled concern. If a constraint is a logical conjunction 

of more fine-grained constraints, then it couples more fine-grained concerns. Designers 

have to decide, based on the context, what is the best level of separation of these 

database-related concerns. The NS theory dictates that the concerns must be as separated 

as possible. 

Following of the separation of concerns principle clearly offers advantages. If one 

chooses to follow it only in case of functionality of the system, then one can compare the 

resulting system with a factory that has machinery (functionality) that has to be easy to 

maintain and extend and needs a lot of inexpensive raw material (data) to produce 

products that quality is not so important. Perhaps the only requirement is that the factory 

must fulfill orders as quickly as possible. If the system follows separation of concerns 

principle in case of functionality and data, then, in addition to machinery, the factory and 

its owners also value more the quality of material that it consumes and products that it 

produces.  

4.1. Some Violations of Separation of Concerns in the SQL Database World 

1970-ties saw separation of database management functionality from applications to 

separate database management systems (Van der Aalst, 1996). This is a good example of 

the application of the separation of concerns principles.  

It is unfortunate that in the domain of databases, researchers and developers often 

overlook the separation of concerns principle and do not describe problems that its 

violations cause in terms of the principle. For instance, Badia and Lemire (2011) only 

recently raised a question as to whether it is time that database design science should 

start to look relations as purely conceptual entities that in other words means completely 

separating concerns between the conceptual and internal levels of databases. However, 

this is something that already Codd’s 12 Rules (Voorhis, 2015) desired in terms of 

physical data independence. Hürsch and Lopes (1995) also note that the benefits of 

separating concerns (like higher level of abstraction, better understanding, weak 

coupling, and also more creative freedom because of less dependencies) appear if it is 

applied at both conceptual and implementation level. 

Here, we present a non-exhaustive list of such problems in SQL DBMSs. Many of 

these support the observation of Hürsch and Lopes (1995) that separation of concerns is 

often practiced at the conceptual level, but not at the implementation level. 

Unfortunately, instead of demanding to fix the problems, there are calls to scrap the 

relational model and start to use technologies that have even more such problems. For 

instance, the need to enforce integrity constraints and access rights to data elements are 

cross-cutting concerns. Database languages should support separation of these concerns 

by providing dedicated sub-languages that one can use to implement these concerns in 



26  Eessaar 

 

one place (in a DBMS). Coupling the concerns with application code or procedural 

database interface leads to scattering of the functionality across the code base and 

significant dependencies. For instance, there could be a requirement to restrict access of 

certain users to data about certain entities or their specific attributes or relationships. If 

the applications have a task to save data with security labels and a task to ask data by 

explicitly referring to the labels, then now this mechanism is coupled with the database 

application code and is scattered to multiple places in one or more applications. The 

same thing happens if one uses a DBMS that does not require explicit definition of 

database schema at the database level. In this case, the developers of database 

applications have to define the schema implicitly within algorithms (procedures) of 

applications across the code base of applications. 

Does it mean that application developers themselves do not believe the principle? We 

do not think that it is the case. Instead, a problem seems to be that application developers 

have not thought about these problems in terms of the separation of concerns principle. 

We think that understanding the root causes of the problems and similarities with the 

problems of their own domain (for instance, application development) could ideally lead 

to the increased understanding of the logical difference between a model and its 

implementations. In the longer run, it could ideally lead to technology improvement 

because customers start to demand it from vendors. In case of solving the separation of 

concerns problems, SQL DBMSs and their offered model of data management could be 

a good example and success story of applying the separation of concerns principle. 

Next problems occur because the DBMSs do not provide sufficient separation of 

different database levels (layers, tiers) that the ANSI/SPARC DBMS model (Date, 2003) 

defines and thus these have multiple change drivers. 

• One can denormalize tables, which are the elements at the conceptual level of a 

database, to improve the performance of certain queries. With the changes at 

the conceptual level, one hopes to influence the organization of data at the 

internal level of the database. One could also denormalize to offer data to 

applications in an aggregate form so that it is easier for them to read the data, 

thus fulfilling a task of the external level. The reason could be that the DBMS 

does not support building virtual data layer (Burns, 2011) or because it does not 

provide suitable operators (or means to create these) to aggregate data on the 

fly. Moreover, one could denormalize to make possible or simplify enforcement 

of some constraints in a database because the DBMS does not support 

assertions or subqueries in table constraints. Thus, depending on circumstances, 

the conceptual database level couples the following concerns: reflecting the 

concepts, relationships, and rules of the domain in the scope of the functional 

requirements; read operations of applications; data integrity; performance; data 

storage.  

• Horizontal partitioning of tables at the conceptual database level to improve 

performance of queries makes the conceptual database level to couple the 

following concerns: reflecting the concepts, relationships, and rules of the 

domain in the scope of the functional requirements; performance; data storage. 

Moreover, if a statement of data manipulation language refers directly to 

partitions at the conceptual or internal level, then the statement couples the 

following concerns: functional requirements; performance; data storage. 

• One can use views to implement the external level of databases. If the 

possibility of updating data in the database through a view or performance of 

queries based on a view depends on how one writes its subquery, as it 
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unfortunately does in modern SQL DBMSs, then the external level couples the 

following concerns: fulfilling functional requirements; the use of language 

constructs; performance. 

Next problems occur because the SQL Data Manipulation Language is not 

sufficiently declarative. Therefore, one has to take into account low-level 

implementation details of the DBMS while writing the statements and the statements 

have multiple change drivers. 

• In case of declarative database language statements, the system has to produce 

the execution plan that specifies the best low-level algorithm for achieving the 

desired results of the statement in case of current data. If the proposed plan and 

thus, also, the efficiency of executing the statement depends on how one writes 

the statement, then the system couples the following concerns: functional 

requirements; the use of language constructs; performance. 

• If a SQL dialect provides an option to use hints in the SQL Data Manipulation 

Language statements that guide the selection of its execution plan, then the 

statements that use the hints couple the concerns: functional requirements; 

performance. As a result, the code to improve performance is scattered across 

triggers, database routines, and applications, making its maintenance difficult 

and causing potential performance problems if the hints do not take into 

account the current amount and distribution of data in the database. 

• If a DBMS implements the Multiversion Concurrency Control method and 

provides snapshot isolation instead of serializable snapshot isolation, then the 

database users have to lock explicitly data elements to avoid read phenomena of 

concurrent transactions and the resulting data inconsistencies. The locking 

policy depends on the internal implementation of DBMS. Thus, the system 

couples the following concerns: functional requirements; concurrency control; 

data integrity.  

Next problems occur because DBMSs provide inadequate support for creating 

declarative constraints that leads to the scattering of constraint checking to multiple parts 

of the system. The elements that implement the constraints have multiple change drivers. 

In our view, functional requirements and data integrity are separate concerns because 

data integrity comes from the business rules that are determined by the domain, are 

universal for applications, and thus do not depend on a particular application that uses 

data. 

• The creation of trigger procedures instead of a declarative integrity constraint 

may mean scattering integrity enforcement code to multiple parts of a database 

because the triggers have to react to all the possible events that could lead to the 

violation of the constraint. The same trigger procedure could couple 

enforcement of multiple integrity constraints in addition to other tasks. The 

triggers couple the following concerns: functional requirements; data integrity; 

concurrency control.  

• In SQL user-defined structured types, one cannot enforce declarative 

constraints to the values of attributes, except the type of attribute. Thus, one has 

to implement these constraints in the methods that modify the values of the 

attributes. The same method could couple enforcement of multiple constraints 

as well as business logic for retrieval and manipulation of data. The methods 

couple the following concerns: functional requirements; data integrity. If there 

are multiple methods that change the value of the same attribute, then these 

duplicate constraint-checking code.  
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Fig. 2. A conceptual model of a holistic view to the separation of concerns principle 

• The enforcement of constraints in procedures or functions (routines) that are a 

part of virtual data layer (Burns, 2011) may be inevitable due to the technical 

restrictions of a DBMS. It makes the routines to couple following concerns: 

functional requirements; data integrity; concurrency control. The same routine 

could couple enforcement of multiple integrity constraints as well as business 

logic for retrieval and manipulation of data. If there are multiple routines that 

modify data in the same table, then these duplicate constraint-checking code. 

• Explicitly created unique index (an internal level element) to enforce 

uniqueness (a constraint at the conceptual level) couples the following 

concerns: data integrity; data storage; performance. Unfortunately, SQL does 

not provide means to declare uniqueness to a subset of table rows but some 

DBMSs permit the creation of partial unique index to a subset of table rows. 

Next problems do not belong to the previous categories. 

• In SQL, one can create user-defined structured types that group attributes 

(structure) and methods (behavior) to access and modify their values. These 

types couple concerns of structure and behavior whereas The Third Manifesto 
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(Date and Darwen, 2006) offer a model that separates types (with possible 

complex internal structure), operators that one can use to perform operations 

with the values of these types, and integrity constraints.  

• In some SQL dialects, if one creates a table (an element at the conceptual 

database level), then one has various options how to guide the internal storage 

of the table data by using the same statement. Thus, the statement couples 

concerns of representing data at the conceptual and internal level.  

• If a SQL dialect permits inline functions in data manipulation statements to 

improve performance, then the statements couple declarative and procedural 

processing as well as performance concern. The statements duplicate functions. 

• SQL terminology speaks about tables. The Third Manifesto (Date and Darwen, 

2006) points that table as a variable and table as a possible value of this variable 

are two distinct concepts. If one uses one concept instead of two distinct 

concepts, then it is a violation of the separation of concerns principle at the 

semantic level. Another example is the use of the word “database” to refer to 

databases as well as DBMSs. One can notice similar problem in case of the NS 

theory where it is unclear when and where data element means value or 

variable.  

• The SQL data model violates orthogonality principle in language design 

(Eessaar, 2006). A complex web of dependencies between model elements 

means that a localized change in a database design can lead to other cascading 

design changes. This is a violation of the separation of concerns at the language 

level. 

• If the specification of the underlying data model of a database language couples 

the description of its concrete syntax like in case of SQL, then one firstly has to 

separate the description of the data model (Eessaar, 2006) to be able to reason 

about, analyze, and compare the data model with other data models. 

4.2. Towards a Holistic View of Separation of Concerns 

Based on the previous discussion, we propose a conceptual model of a holistic view of 

separation of concerns principle where action elements are not the only focus (see Fig. 

2). It takes into account the ideas of Mannaert et al. (2012b), Adamus (2005), WEB(c) as 

well as our understanding of the principle. The NS theory describes different types of 

elements, and all these could correspond to different types of concerns. 

5. Conclusions and Future Work 

Data and functionality are two fundamental aspects of systems. Unfortunately, there is a 

mental gap between these aspects. Therefore, nowadays many look the corresponding 

research and development fields as quite distinct with different terminology, tools, 

problems, processes, and best practices. We think that it should not be the case and that 

the fields have many similar problems and solutions. One of these is the principle of 

separation of concerns that WEB (c) calls “ubiquitous software engineering principle.” 

In reality, researchers and developers rarely discuss it in the context of data. Although 

the ideas about concerns in databases and applying the principles of database 

normalization to software engineering are not new, there is very little literature about 

this. 



30  Eessaar 

 

Recently the theory of normalized systems (NS) has started to gain attention. By 

using four design theorems, it declares the conditions that systems must fulfill in order to 

be free of combinatorial effects and thus be highly evolvable. The theory is general and 

should be applicable to all kinds of systems. Database normalization is older and more 

mature theory. In this paper, we wanted to gain understanding what the relationship 

between the theories is. We conducted a literature review of 40 papers about the NS 

theory and found that the papers had little to say about databases and almost nothing to 

say about the database normalization. We found a comment that database normalization 

resolves many combinatorial effects in databases. Papers of the NS theory treat 

databases as external services used by applications and concentrate attention to the 

application design.  

The lack of references between the theories is not surprising because the NS theory 

defines “separation of concerns”, which is one of its central pillars, in terms of the action 

elements but not data elements. We analyzed the theories and concluded that the 

database normalization theory actually helps us to achieve separation of concerns in case 

of data elements, meaning that data about different entity types and relationships and in 

extreme cases data corresponding to different attributes of entity types is in different data 

structures (for instance, tables). On the other hand, the NS theory is not a generalization 

of the database normalization theory, because the database normalization theory does not 

deal with the questions of encapsulation and versioning.  

We observed that methods of coupling that allow us to achieve higher separation of 

concerns in action elements could reduce separation of concerns in case of data. If we 

treat data and functionality as equal partners, then we have to find a balance. The 

advantages of database normalization are conceptually very similar to the advantages 

that the following of the separation of concerns principle helps us to achieve in case of 

action elements (for instance, modules or use cases). The respective processes are also 

quite similar. Both can be done iteratively, look system one element at a time, increase 

the number of elements in the system, make elements more cohesive and understandable, 

make it easier to evolve the resulting system, and are not silver bullets in terms of 

removing redundancy. A difference is that the database normalization offers different 

levels of normalization (normal forms) whereas the NS theory only declares the end goal 

that all the concerns must be separated. However, literature does not explain database 

normalization theory in terms of separation of concerns. We pointed to the problems of 

lack of separation of concerns in SQL databases and SQL DBMSs. We proposed a 

conceptual model of a holistic view to the separation of concerns principle that considers 

both action and data elements as well as other elements proposed by the NS theory. For 

instance, in the education process it is important to facilitate understanding that 

redundancy and coupling weakly related elements is a fundamentally similar challenge 

to both data and functionality. Thus, if one teaches database normalization to people 

with business analysis, system analysis, or application development background, or, for 

instance, application design to database developers, then one can and should point to the 

conceptually similar problems and solutions in different domains.  

To conclude, the paper is a step towards understanding that problems and solutions 

of data and functionality management are not so different after all. One should not 

declare that database normalization is old fashioned, nowadays almost unimportant, and 

a product of a legacy technology but instead learn and apply its lessons. We agree with 

Raymond and Tompa (1992), who write that “the update implications of systems are 

important, and that they can be profitably studied in a formal setting taken from 

dependency theory.”  
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Future work could include the use of the database normalization theory for the 

normalization of action elements (for instance, use cases). To do this, one firstly has to 

find the most suitable way to represent the action elements in terms of data elements 

(tables). To allow bigger separation of concerns in case of both action and data elements 

there is a need to improve technology. Otherwise, there is a continuous need to find a 

proper balance between normalization of action and data elements. It would be 

interesting to analyze modern NoSQL systems as well as systems that implement the 

relational model according to the principles of The Third Manifesto to find how they 

support achieving NS, including separation of concerns. It would also be interesting to 

analyze as to whether the use of tables in sixth normal form together with the type 

inheritance model proposed by Date and Darwen (2006) would help us to implement NS 

and if not, then what changes in the model are needed. Perhaps the most important is to 

create a teaching program that emphasizes fundamental similarities as well as 

differences in the application and database design. 
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