
Baltic J. Modern Computing, Vol. 4 (2016), No. 3, pp. 508–522

Ontology-Driven Scheduling System for
Manufacturing ?

Jelena SANKO, Vahur KOTKAS

Institute of Cybernetics at TUT, Tallinn, Estonia
{jelena,vahur}@cs.ioc.ee

Abstract. This paper presents an approach of scheduling software development for orders-oriented
and lean mass customization based manufacturing. To describe the various concepts of the man-
ufacturing scheduling domain and their relationships an ontology for the scheduling domain is
proposed. The scheduling software development and top-level architecture of the software are
driven by this ontology.
The software is targeted at small and medium sized enterprises to solve their resource-constrained
scheduling problems and fit well to their manufacturing process, allowing easy definition of new
products and their production management. The software includes the customized scheduling
algorithm for optimization of assigning of resources to operations and visual representation of
workflow of manufacturing processes. The scheduling system for manufacturing is implemented
in the CoCoViLa system.

Keywords: ontology, manufacturing scheduling, algorithm, software development

1 Introduction

Scheduling is a decision-making process that plays a crucial role in most manufacturing,
production, and transportation systems, as well as in information processing systems,
communication and other types of service industries.

Scheduling deals with the allocation of resources to tasks over given time periods
and its goal is to optimize one or more objectives (Pinedo, 2008). The resources, tasks
and objectives can take many different forms. The resources may be, for example, ma-
chines, materials or operators. The tasks may be operations (in a plant), take-offs and
landings (at an airport), stages (in a construction project) or computer programs. Each
task has a certain priority level, an earliest possible starting time, a committed ship-
ping due date, a deadline. The objectives may be, for example, minimizing the time of

? This research was supported by the Estonian Ministry of Research and Education institutional
research grant no. IUT33-13.

Ontology-Driven Scheduling System for Manufacturing 509

completing all tasks or minimizing the number of tasks that are completed after their
respective due dates.

Scheduling has been studied in detail by several authors (see, for instance, Pinedo
(2009), Brucker (2001), etc). The main focus of research is on developing of specific
applications and algorithms. Because of different scheduling objectives and additional
constraints, such as priorities, sequent dependent set-up times or parallel resources,
there is a huge number of scheduling problem classes. A widely used classification
scheme of scheduling problems can be found in Brucker (2001). For each class of
scheduling problems, sophisticated scheduling algorithms have been developed (see,
for instance, Brucker (2001)).

We consider a scheduling problem as a constrained optimization problem, where
time-constrained resources should be assigned to time-constrained operations at a par-
ticular time within a predefined time horizon of a schedule in accordance with prede-
fined constraints and scheduling objectives.

The main contribution of the paper is the scheduling domain ontology-driven ap-
proach of design and development of scheduling software for order-oriented and lean
mass customization based manufacturing. The software includes the following novel
features: scheduling system architecture, visual representation of workflow of manu-
facturing processes and customized scheduling algorithm. For that we have elaborated
a scheduling ontology that meets the requirements of order-oriented and lean mass cus-
tomization based manufacturing.

The goal is to get rich and easily customizable scheduling system that could be ex-
ploited in different manufactures. Software elaboration and evaluation have been done
in collaboration with Bolefloor1 Ltd that produce novel wooden design products (floors,
furniture plates etc.) made of boards with naturally curved edges.

The rest of the paper is structured as followed. Section 2 is devoted to the related
work and Section 3 provides an overview of the main concepts of scheduling ontology
used for the order-oriented manufacturing systems and their relationships. Section 4
gives an overview of the system top-level architecture, main modules supporting the
proposed approach, and the scheduling algorithm. Section 5 concludes the paper.

2 Related Work

2.1 Scheduling Systems in Manufacturing

During the last years, a large number of different scheduling systems has been devel-
oped. Some of scheduling systems are generic, which can be applicable to any schedul-
ing problem with only small customization, others are application-specific systems and
research systems (academic prototypes). For example, there is the Production Planning
and Detailed Scheduling System (PP/DS), which is a part of the Advanced Planning
and Optimization (APO) software developed by SAP, is a flexible system that can be
adapted easily to many industrial settings. A Production Scheduler system developed
by i2 Technologies is quite generic and can be adapted to many different manufacturing

1 http://www.bolefloor.com/

510 Sanko and Kotkas

settings. The Taylor Scheduling Software has a number of generic optimization proce-
dures and heuristics built in, including priority rules and local search procedures and
provides scheduling solutions to manufacturers worldwide. Other known scheduling
software solution providers to refer are Preactor, Orchestrate, Global Shop, Cybertec,
ASPROVA (an Advanced Planning and Scheduling (APS) system). Our current expe-
rience shows that introduction and maintenance of these scheduling systems into an
operational (small-scale) manufacturing needs too much effort. For detailed informa-
tion see an overview and examples of scheduling systems in Pinedo (2008).

There have also been some attempts to develop ontologies for scheduling.

2.2 Scheduling Ontologies

Ontology is considered as a framework (a model building tool) for specifying models in
a particular problem domain – that is, the scope of an application domain, various enti-
ties (concepts) in this domain along with their properties (attributes) or desired system
functionalities and features.

The most known ontology that can be considered a classical scheduling ontology
and provides a reusable and extensible base of concepts for specifying and represent-
ing constrained-based scheduling models for a range of applications in manufacturing,
transportation logistics, etc is the OZONE ontology (Smith et al., 1997). The OZONE
ontology provides a model of scheduling tasks, which are defined in terms of five base
concepts: demand, activity, resource, product and constraint. An activity is a process
that can be executed over a certain time interval and uses resources to produce goods or
services required. Scheduling is defined as a process of feasibly synchronising the use
of resources by activities to satisfy demand over time. The concept demand and activity
in OZONE have attributes such as time range and assigned-resource, but they do not
specify the number of resources that are required by each demand or activity.

The OZONE scheduling domain ontology is applied for constructing domain mod-
els in a system COMIREM (Smith et al., 2003). COMIREM is a web-based system
devoted to the problem of interactive and dynamic allocation of resources to activities
over specific time interval. COMIREM is designed for solving scheduling problems,
where assigning of complex, heterogeneous sets of resources to the planned activities
must be synchronized to satisfy complex constraints. In COMIREM activities can be
organized hierarchically into multi-level activity networks.

In contrast to the OZONE ontology, Rajpathak et al. (2001) propose a task ontology,
which formally describes scheduling problems, independently of particular application
domains and independently of how the problems can be solved. That is, Rajpathak
et al. (2001) provide a domain-independent and formally specified reference model
for scheduling applications. This can be used as the basis for further analysis of the
class of scheduling problems and also as a concrete reusable resource to support system
development in scheduling applications.

We consider the specific application domain of scheduling — discrete manufactur-
ing that is an order-oriented manufacturing for product lines, where there is frequent
switching from one product to another. In particular, we consider an experimental lean
mass customization based manufacturing system (Ojamaa et al., 2013), the goal of

Ontology-Driven Scheduling System for Manufacturing 511

which is the mass product of unique and personalized products and elimination of the
waste from the manufacturing.

3 Ontology for Scheduling of Manufacturing Systems

A generic manufacturing process can be described by the following scheme. Customer
orders have to be translated into operations with associated due dates (committed ship-
ping or completion dates) or deadlines (dates, when the due dates absolutely must be
met). Completion of Orders after their due dates is allowed, but penalty may be im-
posed. These operations often have to be processed on machines or in a workcenter
by workers in a given order or sequence. The processing of operations may some-
times be delayed if individual machines are busy. When high-priority operations have
to be processed at once, pre-emptions may occur. Unexpected events, such as machine
breakdowns or longer than expected processing times, may have an essential effect on
the schedules (Pinedo, 2009).

We define a scheduling problem as a constrained optimization problem, where time-
constrained resources should be assigned to time-constrained operations related to par-
ticular orders, at a particular time within a predefined time horizon of a schedule in
accordance with predefined constraints and scheduling objectives. A time horizon of a
schedule defines a time range for which a schedule for all orders to be scheduled has
to be constructed. A scheduling objective of a scheduling task is, for example, mini-
mizing the makespan (i.e., completion time) of each order considered in the scheduling
problem or minimizing the number of orders that are completed after their respective
due dates or to schedule operations in such a way as to use available resources in an
efficient way.

Thus, basic concepts that define ontology of a manufacturing scheduling domain
are: Order, Operation, ProcessTemplate, ProcessModel, Resource, Sche-

dule and Constraint. By convention, we use Computer Modern Typewriter font to
distinguish the specific concepts.

Diagrammatically, we can represent a manufacturing scheduling ontology with the
following data structure (see Fig. 1): the rectangles are concepts and arrows between
them are semantic relationships between these concepts. The arrowheads indicate the
direction of the relationships (i.e. their range), the name of a relationship is written next
to the arrow and numbers near the arrowhead represent the minimum and maximum
cardinality for that relationship. Single number represents exact cardinalities (e.g., ”1”
for a cardinality of exactly 1), while the asterisk (*) denotes an unrestricted cardinality
(e.g., ”1..*” means a minimum cardinality of 1). We assume, that by default the car-
dinality of the relationship is one or more (1..*) and this cardinality is not shown in a
scheme of manufacturing scheduling ontology.

Let us specify basic concepts of the manufacturing scheduling ontology in more
detail. For the shake of readability only informal definitions of concepts are given.

Order. Each Order refers to the manufacturing of one particular (type of) product. Each
Order has ProductData that describes the product by defining several user-defined
attributes, such as type (or production class), material, quantity, size.

512 Sanko and Kotkas

minimum 0

1..*

exactly 11

minimum 1

«ProductData»

LEGEND

0..*

Cardinality

«Concept A»«Name of Concept»

Relationship
Concept

«Concept B»

«ScheduledItem»

«Constraint»

«Resource»

«ResourcesToOperation-»
«-Assignment»

«Schedule»

«SchedulingObjective»«ProcessModel»

«Operation»«ProcessTemplate»

«Order»

1

Oder-
-has-
-ProductData

1

ProductData-
-is-associated-with-
-ProcessTemplate

ProcessTemplate-
-specifies-
-ProcessModel

ProcessModel-
-is-consistent-with-

-Constraints

1

Resources-
-ToOperationAssignment-

-refers-to-
-Operation

2

-Constraint-
-specifies-
-relationships-between-
-Operations

Order-is-related-to-SchedulingItems

1..*
Relationship name

ScheduleTimeHorizon-
-is-specified-
-by-Orders

Schedule-
-is-specified-by-
-Constraints

Schedule-
-is-specified-by-
-SchedulingObjectives

Schedule-
-has-

-ScheduledItems

ProcessTemplate-
-is-consistent-with-

-Constraints

Constraints-
-specify-

-ResourceToOperation-
-Assignments

Schedule-
-is-specified-by-
-ProcessModels

1

ScheduledItem-
-refers-to-
-ResourcesTo-
-Operation-
-Assignments

0...*

ResourcesTo-
-Operation-
-Assignment-
-refers-to-
-Resources

1

ProductData-
-specifies-

-ProcessModel

ProcessTemplate-
-includes-

-Operations

Fig. 1. Main concepts of scheduling ontology

Resource. In general, Resources specify something or somebody needed to process
the Operations (i.e., to manufacture the ordered product). At the moment, we take into
account only the time-constrained Resources specified by availability periods (called
Availabilities), when they are available to perform assigned Operations, and by
their abilities (called Capabilities) to do a particular type of work, such as skills for
workers and functions for machines.

To ensure that Resources that are already assigned to an Operation will not be
assigned to another Operation, these Resources should be subsequently allocated.
Each Resource has a status — a changeable attribute indicating the current status of
the Resource.

Operation. An Operation represents a technological operation performing in a man-
ufacture that requires a certain time for its processing (i.e., has a duration).

Ontology-Driven Scheduling System for Manufacturing 513

A duration of an Operation depends on a particular Resource or a set of Resources
assigned to the Operation, with exception for Operations that do not require any
Resources for its processing. Thus, a duration is a resource-dependent attribute and
an Operation can have different durations for different combinations of assigned
Resources.

The processing of an Operation (i.e., when an Operationwill take place) depends
on its predecessor Operations. That is, an Operation can be processed if and only if
all its predecessor Operations are finished and it is defined by means of Precedence-
Constraints.

ProcessTemplate. A ProcessTemplate describes a technological workflow (sequence
of Operations) required for the manufacturing of a particular type of a product. A
ProcessTemplate should be specified for each Order. A ProcessTemplate is a pair
〈O,C〉, where O is a set of Operations and C is PrecedenceConstraints on it.

Diagrammatically, a ProcessTemplate can be described by means of the ”activity-
on-node” representation (see, for instance, Pinedo (2009, Chap. 4)), which uses a set of
nodes to denote a set of Operations from within a ProcessTemplate and a set of arcs
to represent a set of PrecedenceConstraints between these Operations. Thereby,
each Operation in the ProcessTemplate is represented by a node and each directed
arc is the symbolic representation of a PrecedenceConstraint between two distinct
Operations.

For example, let us have a manufacturing process (see Fig. 2) consisting of five
technological Operations O2, O3, O4, O5, and O6, and two dummy Operations

O1 (the begintOperation) and O7 (the endOperation). To process Operation O3,
Operation O2 has to be finished, to process Operation O6, Operation O5 and
Operation O4 either can be processed in parallel or in any order and so on.

O1 O2 O3

O4

O5

O6 O7

Fig. 2. Example of a ProcessTemplate

Formally, this ProcessTemplate is defined by the following:

ProcessTemplate = 〈{O1, O2, O3, O4, O5, O6, O7},
{C23 : 〈O2 lO3〉,
C34 : 〈O3 lO4〉,
C35 : 〈O3 lO5〉,
C46 : 〈O4 lO6〉,
C56 : 〈O5 lO6〉}〉,

514 Sanko and Kotkas

where C23, C34, C35, C46, and C56 are PrecedenceConstraints.

ProcessModel. A ProcessModel describes a unique and specific sequence of process-
ing steps (Operations) that must be performed so that the ordered specific product is
manufactured. A ProcessModel is specified by a ProcessTemplate and Product-

Data. There is exactly one ProcessModel for each Order. Therefore, there can be
different ProcessModels for the same ProcessTemplate.

Schedule. A Schedule is a plan for the manufacturing of the ordered products (i.e.,
a fulfilment of the Orders). A Schedule is described by the starting (beginTime) and
finishing (endTime) times of each Operation related to the particular Order consid-
ering the scheduling task and the particular Resources allocated to the Operation

at this time range. In particular, a Schedule is a set of ScheduledItems, where a
ScheduledItem is a quintuple of the following form

〈Operation, Resource(s), beginTime, endTime〉.

A Schedule is complete, if for each Operation related to the particular Order
to be scheduled there exists a unique scheduledItem in the Schedule. A Schedule

is correct if each ScheduledItem has only one allocated time interval [beginTime,
endTime) and if, in addition, it meets objectives of the scheduling (SchedulingObjecti-
ves) and ScheduleConstraints. The SchedulingObjectives may be different and
should be specified by the user.

Constraint. Constraints define properties, rules or specific restrictions that must be
satisfied. We distinguish four main basic types of Constraints:

1. ProcessModelConstraints define the principles for the construction of a Pro-

cessModel for each Order and for the scheduling problem instance,
2. PrecedenceConstraints specify particular relationships between Operations.

For example, the best known type of precedence relationships is the finish–start
relationship with a zero time-lag (Demeulemeester (2002, pg.13)),

3. ResourcesAssignmentConstraints represent restrictions, such as the minimal
and maximal number of required Resources and specify all allowed assignments
of Resources to the Operation (ResourcesAssignmentGroups), — that is, define
for each Operation a set of particular Resources that are combined on the base of
their particular Capabilities, such as specific skills of workers and/or functions
of machines, or define a particular name of the Resource (e.g., name of worker),

4. ScheduleConstraints are rules that specify the Schedule (i.e., a sequencing
of ScheduledItems of a Schedule) and check if Resources are assigned to
Operations correctly.

4 Ontology-Driven Scheduling System Description

In this section we shortly describe the CoCoViLa tool used for the software develop-
ment, top-level architecture of the scheduling system, its main modules and how these
relate to the manufacturing scheduling ontology presented in the previous section.

Ontology-Driven Scheduling System for Manufacturing 515

4.1 CoCoViLa - a model-based software development tool

CoCoViLa2 (Compiler Compiler for Visual Languages) is a model-based software de-
velopment platform that provides a framework for developing software. The CoCoViLa
tool supports convenient implementation of components, preferably visual specification
of software models and automatic code generation from a model. CoCoViLa includes
two visual editors — the Class Editor for developing domain-specific concepts and
the Scheme Editor for the visual composition of software models — the specifications.
The core functionality of CoCoViLa is achieved by the usage of the Synthesizer that
automatically generates Java programs from the specifications. CoCoViLa is being de-
veloped in the Software Science Laboratory of the Institute of Cybernetics at TUT.

CoCoViLa allows visual representation of specifications. A concept together with
its visual representation specified in CoCoViLa is called a visual class. Visual classes
are used to compose schemes in the CoCoViLa (Scheme Editor). For each visual class
the following components are defined: Java class, visual image, set of ports (ports indi-
cate which components of the class can be visually connected to other components in
a scheme), icon image (a small raster picture that is shown on a toolbar) and a specifi-
cation. An executed program can show results both in a separate window or display the
feedback directly to the scheme.

The Java class together with the specification is called a metaclass, where the speci-
fication, also called a metainterface, is presented as formulas – axioms with realisations
given by methods of its Java class. These formulas constitute a theory in intuitionistic
logic that is used by structural synthesis of programs (Mints et al., 1982) for automatic
construction of programs in CoCoViLa.

Thus, in CoCoViLa, a software package is a collection of visual classes and schemes
related to an application domain. A description of a package is stored in the XML-based
format. Each package can have its own domain-specific visual specification language
(DSVL). See details of the CoCoViLa system in Grigorenko (2010) and Penjam et al.
(2015).

4.2 The Main Modules of the Scheduling System

The ontology for scheduling of manufacturing systems defines the modular structure
of the architecture of the scheduling system and relationships between modules. The
core of the scheduling system is the Scheduler module that performs the scheduling
task. From the manufacturing scheduling ontology we can also derive the essential data
dependencies, that is to generate a Schedule we need Orders, their ProcessModels,
ScheduleConstraints and SchedulingObjectives — concepts that the Schedule
”is-specified-by”.

The generic top-level architecture (see Fig. 3) is composed of the Data Input mod-
ules (InputData, ProcessTemplates, SchedulingObjectives and ScheduleConstraints),
Data Transformation modules (SchedulerData Modeler and ProcessModeler), Sched-
uler module (Scheduler) and Data Presentation module (Schedule).

Let us describe these main modules in more details.
2 http://www.cs.ioc.ee/cocovila/

516 Sanko and Kotkas

InputData
workers

machines

timeTables and

 schiftCodes

operations

RAGs

orders

SchedulerData

 Modeler

workers

machines

timeTables and

schiftCodes

RAGs

orders

operations

SchedulingObjectives ScheduleConstraints

Scheduler Schedule

 ProcessModeler

ProcessTemplates

schedulingObjectives priorityRules

schedulingObjectives priorityRules

schedule
schedule

processModel

schedulerData

schedulerData

processTemplates

 Names

processTemplatesNames

productData

productData

processModel

processTemplates

processTemplates

operations

Fig. 3. The main modules of the scheduling system

4.2.1 Data Input Modules

InputData Module. The InputData module contains static data, which does not depend
on the Schedule, and dynamic data, which is dependent on the Schedule. The static
data includes resources data, such as machines- and workers data, and orders data,
such as the ordered quantities, due dates, release dates, and the priorities (weights) of
the orders. The dynamic data depends on the Schedule and consists of the starting and
completion times of the operations, the idle and setup times of the machines, the number
of operations that are late, and so on. The InputData module is customer-specific.

ProcessTemplates Module. The ProcessTemplates module comprises a ”library” of
ProcessTemplates that describe the technological workflows required for the manu-
facturing of products. To compose a ProcessTemplate, an additional system for com-
posing ProcessTemplates visually is used.

If needed, a ProcessTemplate can be modified by adding or excluding some
Operations and so creating a new ProcessTemplate that corresponds to the new
technological workflow required for the manufacturing of the particular type of a prod-
uct.

SchedulingObjectives Module. The SchedulingObjectives module allows the user to
specify various scheduling objectives like minimize a makespan of each Order or min-
imize a makespan of the Order with higher priority or minimize the number of Orders
completed after their due date or minimize the number of Orders completed after their
deadline or use Resources in efficient way or maximize the loading of the specific
Resource.

ScheduleConstraints Module. The ScheduleConstraints module allows the user to spec-
ify a Schedule by defining the PriorityRules, which specify a priority in which
a particular Operation related to the Order should be scheduled. For example, the

Ontology-Driven Scheduling System for Manufacturing 517

following PriorityRules can be specified: the Earliest DueDate First (EDDF), the
Highest Priority First (HPF), Sort In Random Order (SIRO).

4.2.2 Data Transformation Modules

ProcessModeler Module. The ProcessModeler module generates a ProcessModel for
all Orders to be scheduled (i.e., for the scheduling problem instance), knowing the
ProcessTemplates and ProductData (data related to the ordered product such as
size or quantity) associated to each Order to be scheduled.

SchedulerData Modeler Module. The SchedulerData Modeler module converts data
from InputData module (operations data, process templates data, resources data, such as
machine- and worker data, and order data, such as ordered quantities, due dates, release
dates, the priorities (weights) of the orders, etc) into data required for the scheduling
process.

4.2.3 Scheduler Module

Scheduler Module. The Scheduler module generates Schedules (the plans for pro-
cessing Operations related to the Orders to be scheduled). The Scheduler module
allows the user to specify the scheduling process by selecting the scheduling strategy,
which defines the way of adding Operations in the case of gradual construction of
the Schedule (e.g., a forward-, a backward or a multi-pass way) and a time horizon of
the Schedule (i.e., the begin- and the endTime of the scheduling process). The Sched-
uler module is the core of the scheduling software, it is developed strictly based on the
manufacturing scheduling ontology. Having the manufacturing scheduling ontology at
hand the development of the Scheduler can be done semi-automatically as described
in Ojamaa et al. (2015) and Haav et al. (2015). The algorithm used in the Scheduler
module is presented in Section 4.3.

4.2.4 Data Presentation Modules

Schedule Module. The Schedule module presents Schedules in the form of Gantt
charts. The Gantt chart is the usual horizontal bar graph, where the horizontal axis
represents time, and the vertical axis represents various resources, such as machines or
workers, or orders. For example, if the horizontal bar represents an operation, then the
length of the bar corresponds to the time required to complete this operation.

The Schedule module allows the user to select the view of the Gantt chart. We use
two different kinds of Gantt charts: the resource-oriented (see Fig.4 for workers) and
the order-oriented.

518 Sanko and Kotkas

Fig. 4. Example of Gantt Chart for Workers

4.3 Scheduling Algorithm

Different scheduling objectives and additional constraints, such as priorities, sequence
dependent set-up times or parallel resources divide scheduling problems into a huge
number of classes. A widely used classification scheme of scheduling problems and so-
phisticated scheduling algorithms that have been developed for each class of scheduling
problems can be found in Brucker (2001).

In this subsection we describe a customized Scheduling Algorithm for constructing
a feasible Schedule and optimizing for an assignment of Resources to Operations.
The goal of our Scheduling Algorithm is to find a ”good” feasible Schedule in accor-
dance with SchedulingObjectives defined by the user. In particular, the goal is to
minimize the number of Orders that are completed after their respective deadlines,
where Resources and Operations assignment is optimised.

We assume that the pre-emption of any Operation is not allowed — that is, an
Operation is processed in an uninterrupted mode and each Operation can be sched-
uled only after all its predecessor Operations (specified by ProcessModel) are com-
pleted and all Resources required for its processing are available and not assigned to
other Operations. We assume that the same Resource can not be assigned to any two
different Operations simultaneously. If any Resource is already assigned to some
Operation in a Schedule (at a particular time range), then this Resource is unavail-
able for any other Operations at this particular time range and thus other relevant
time periods must be generated for assigning to the ScheduledItem. A beginTime of
the first ScheduledItem in the Schedule must be greater than or equal to a beginTime
of a Schedule and the endTime of the last ScheduledItem of a Schedule must be
less than or equal to the endTime of the Schedule.

Ontology-Driven Scheduling System for Manufacturing 519

The input for the Scheduling Algorithm is the scheduling problem instance pro-
vided by specification of a scheduling problem (schedulingProblemSpec) defined by
the ProcessModel and the time range of the Schedule (scheduleTimeHorizon), and by
SchedulerData — data that is required for the Scheduling Algorithm, such as Resources,
ResourcesAssignmentGroups and Orders’ data (ordered quantities, deadlines, due dates,
release dates, the priorities or weights) and by PriorityRules that are specified by
the user. The output for the Scheduling Algorithm is a feasible Schedule (a list of
ScheduledItems) for the given scheduling problem instance whenever one exists, or
”no feasible schedule exists” if no feasible Schedule exists.

At the current version of the Scheduling Algorithm we apply a constructive for-
ward scheduling approach that allows to gradually construct a Schedule by adding
one ScheduledItem at a time in the increasing direction of time starting at the begin-
Time of the Schedule. In forward scheduling, we use Earliest Deadline First (EDF)
PriorityRule, i.e., among all Operations the Operation that has the earliest dead-
line will be scheduled first and Operations are selected arbitrarily, if there are multiple
Operations with equal deadlines.

The Scheduling Algorithm has two main steps. The first step, initialization, includes
setting the beginTime, the endTime, the currentTime of the Schedule, and the maxi-
mum number of iterations (Limit) of the Scheduling Algorithm (for the cases when the
feasible Schedule is not to be found within reasonable period of time).

The second step, the while loop, repeatedly executes the following four sub-steps
until a feasible Schedule is obtained (if such exists) or no feasible Schedule exists:

1. Search for all ”ready” Operations with all their predecessor Operations sched-
uled and sort them according to the Earliest Deadline First (EDF) PriorityRule.

2. Select the Operationwith the earliest deadline, find all combinations of Resources
(ResourcesAssignmentGroups) required for its processing that are available and not
assigned to any other Operations at the curTime of the Schedule and select the
best one, for example select a ResourcesAssignmentGroup that comprises the min-
imal number of Resources or gives the minimal processing time. If no Resource

can be assigned, then select the next ”ready” Operation in the list.

3. Compute the duration of Operation on the basis of the number and efficiency of
Resources assigned to it (we can not determine the duration of the Operation

until we know which Resources are assigned to it) and create the corresponding
ScheduledItem. Add the ScheduledItem to the Schedule. Repeat the sub-steps
2 and 3 for all ”ready” Operations.

4. Search all ScheduledItems to find the one with the earliest endTime and deallo-
cate all Resources assigned to the Operation, change the curTime of the Schedule
to the endTime of the ScheduledItem. Repeat the sub-steps from 1 through 4.

Here follows a description of the Scheduling Algorithm in pseudo-code.

520 Sanko and Kotkas

Algorithm 1: Scheduling Algorithm: ForwardStrategy
Input: schedulingProblemSpec(scheduleTimeHorizon, ProcessModel), PriorityRules,

SchedulerData
Output: Schedule

1 1. Initialize the Schedule:
2 specify the begin-, the end- and the current times of the Schedule,
3 and the maximum number of iterations of the Scheduling Algorithm (i.e., Limit);

4 2. while (there exists at least one Operation with a status ”pending” or ”running”) and
(the current time of the Schedule is less than the end time or the number of iterations of
the Scheduling Algorithm is less than or equal to the specified Limit) do

5 2.1 For all Operations of the ProcessModel with all their predecessor Operations
having the status ”completed” (completedOperations set) change their status to the
”ready” and add to the readyOperations set

6 2.2 Sort the readyOperations set according to the specified PriorityRule(s)

7 2.3 foreach Operation in the readyOperations set do
8 2.3.1 find all Resources required for its processing that are available and not in

the status ”busy” at the current time
9 2.3.4 select the best (combination of) Resources according to the predefined

Criterion (e.g., the minimal duration or minimal number of required
Resources);

10 2.3.5 compute the duration of the Operation;
11 2.3.6 change the status of the Operation to the ”running”;
12 2.3.7 change the status of each Resource assigned to the Operation to the

”busy”;
13 2.3.8 create the corresponding ScheduledItem and add it to the Schedule

14 2.4 among all ScheduledItems of the Schedule do
15 2.4.1 find the ScheduledItem with the earliest endTime ;
16 2.4.2 change the current time of the Schedule to the endTime of the

ScheduledItem;
17 2.4.3 change the status of the corresponding Operation to the ”completed”;
18 2.4.4 For each Resource assigned to the Operation change the status of the

Resource to the ”idle” ;

5 Conclusion and Future Work

This paper presents a description of the ontology-driven system for solving resource-
constrained scheduling problems in orders-oriented and lean mass customization based
manufacturing using the CoCoViLa system. This work has been done within the project
Model Based Java Software Development Technology3 that assumes starting system de-
velopment from the ontological conceptualization of the domain, presenting the (meta)-
models of the problem and implementing the system via transformations of the models
into code. The experiments on models of manufacturing processes and development of
software components are done in collaboration with Bolefloor Ltd.

3 http://cs.ioc.ee/mbjsdt/

Ontology-Driven Scheduling System for Manufacturing 521

So far we have used a simplified model of the scheduling problem and as a conse-
quence a simple Scheduling Algorithm is developed. In practice, the scheduling prob-
lem is more complex, where Operations may be processed for a period of time, inter-
rupted and resumed at a later time, even by another Resource (a pre-emptive schedul-
ing problem), a complicated setting of Resources and computation of durations of
Operations are required.

One direction for the future research is elaboration of more sophisticated scheduling
algorithms. We see two possible ways in doing it: further developing our own algorithm
or incorporating some existing scheduling engine via defining an ontology for it.

Another direction for the future research involves creation of customer-specific on-
tology and merge with the manufacturing scheduling ontology. This enables develop-
ment of generic Data Transformation modules for handling data of different customers.
Currently Data Transformation modules are customer specific.

References

Pinedo, M.L. (2008). Scheduling: Theory, Algorithms, and Systems. Springer Publishing Com-
pany, Incorporated, 3rd edn.

Pinedo, M.L. (2009). Planning and Scheduling in Manufacturing and Services. Springer Science
and Business Media, 23rd edn.

Brucker, P. (2001). Scheduling Algorithms. Springer-Verlag New York, Inc., Secaucus, NJ, USA,
3rd edn.

Smith, S.F., Becker, M.A. (1997). An ontology for constructing scheduling systems. In: In Work-
ing Notes from 1997 AAAI Spring Symposium on Ontological Engineering. pp. 120–129.
AAAI Press.

Smith, S.F., Hildum, D., Crimm, D. (2003). Interactive resource management in the comirem
planner. In: Proceedings IJCAI-03 Workshop on Mixed-Initiative Intelligent Systems.

Rajpathak, D., Motta, E., Roy, R. (2001). A generic task ontology for scheduling applications.
Proceedings of the International Conference on Artificial Intelligence.

Ojamaa, A., Kotkas, V., Spichakova, M., Penjam, J. (2013). Developing a lean mass customiza-
tion based manufacturing. In: 16th IEEE International Conference on Computational Science
and Engineering, CSE 2013, December 3-5, 2013, Sydney, Australia. pp. 28–33. IEEE Com-
puter Society, http://dx.doi.org/10.1109/CSE.2013.15

Ojamaa, A., Haav, H.M., Penjam, J. (2015). Semi-automated generation of dsl meta models from
formal domain ontologies. In: Model and Data Engineering, pp. 3–15. Springer International
Publishing

Demeulemeester, E.L. (2002). Project Scheduling: A Research Handbook. Kluwer Academic
Publishers, New York, Boston, Dordrecht, London, Moscow.

Grigorenko, P., Tyugu, E. (2010). Higher-order attribute semantics of flat declarative languages.
Computing and Informatics 29(2), 251–280.

Haav, H., Ojamaa, A., Grigorenko, P., Kotkas, V. (2015). Ontology-based integration of software
artefacts for DSL development. In: On the Move to Meaningful Internet Systems: OTM 2015
Workshops - Confederated International Workshops: OTM Academy, OTM Industry Case
Studies Program, EI2N, FBM, INBAST, ISDE, META4eS, and MSC 2015, Rhodes, Greece,
October 26-30, 2015, Proceedings. pp. 309–318.

Mints, G., Tyugu, E. (1982). Justification of the structural synthesis of programs. Science of
computer programming 2(3), 215–240.

522 Sanko and Kotkas

Tyugu, E., Penjam, J. (2015). Model-based technology of software development in large. pp.
149–163. http://ceur-ws.org/Vol-1525/paper-11

Received April 29, 2016 , accepted April 30, 2016

