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Abstract. We investigate several unconventional models of finite automata and algorithms.
We show that two-way alternating automata can be smaller than fast bounded-error probabilis-
tic automata. We introduce ultrametric finite automata which use p-adic numbers to describe
the branching process of the computation. We examine the size complexity of all the above-
mentioned automata for the counting problem. We also examine two-way frequency finite au-
tomata.
We define ultrametric query algorithms and examine ultrametric query complexity for Boolean
functions. We generalize the notion of frequency computation by requiring some structure for the
correct outputs.
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Introduction

Typically computer is viewed as a deterministic machine. However scientists have also
extensively studied other models of computation. Some of them are based on nonde-
terminism and alternation, some of them are intended to be physically realizable or are
inspired by natural processes. Such examples include randomized and quantum comput-
ing, cellular automata, DNA computing and neural networks. However others are just a
mathematically elegant formal systems that describe a process which can be viewed as
a computation (lambda calculus, Markov algorithms, Wang tiles, etc.).

There is no globally accepted definition of what type of computation should be con-
sidered unconventional. For example the notion of nondeterminism is so widely used in
computer science that practically nobody would consider it unconventional. However,
as noted by Arora and Barak (2009) in their textbook “Computational Complexity: A
Modern Approach”: “One should note that, unlike standard Turing machines, nondeter-
ministic Turing machines are not intended to model any physically realizable compu-
tation device.” Nevertheless, despite its physical nonrealizability the nondeterministic
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Turing machine is undoubtedly a very useful concept and in fact one of central in com-
putational complexity theory. Therefore, we can see that the physical realizability of a
model of computation is not a determining indicator of conventionality.

Also it is not uncommon in mathematics that a new concept or result is not readily
applicable at the time of its discovery, but may find its use several centuries later. As
a classical example, it is highly unlikely that the ancient Greek mathematicians when
thinking about prime numbers could have imagined their use in cryptography more than
2000 years later. Sometimes results in one field have unexpected applications in other
fields. For example, the methods of quantum computing have in many occasions turned
out useful to prove classical results in fields that have nothing to do with quantum
computing (see Drucker and Wolf (2009) for a survey).

Therefore it is not impossible that unconventional models of computation, however
unimaginable as physical devices, can later turn out useful in unexpected ways.

Subject and Goals of the Research

Different degrees of unconventionality are possible. Unconventional computation can
be mildly unconventional by simply considering a computation in a setting that is not
usually (conventionally) considered, or it might be highly unconventional by introduc-
ing some novel, almost unimaginable type of computation.

The goal of the research was to examine different unconventional computational
models and prove new, previously unknown properties about them. A large part of the
work is devoted to unconventional finite automata. We focus on three unconventional
types of computation – probabilistic, ultrametric, and frequency. We consider several
models of computation with varying degrees of unconventionality, namely:

– probabilistic and alternating two-way finite automata,
– ultrametric finite automata and query algorithms,
– frequency finite automata and structured frequency algorithms.

Arguably the most conventional computation type considered is the two-way finite
automata. Traditionally finite automata have been considered in one-way setting and
with focus on the languages that can be recognized. Indeed, if one cares only about
the class of languages recognizable by finite automata then there is no need to consider
nondeterministic or alternating automata or two-way versions of them because all of
those models can recognize exactly the same class of languages – the class of regular
languages. However the situation changes remarkably if we are interested in the state
complexity of the automata.

As noted by Kapoutsis, a rich and meaningful complexity theory arises when one
considers the size complexity of two-way finite automata. It is quite similar to the Tur-
ing machine time and space complexity theory and contains all the standard features
of a complexity theory such as complexity classes, reductions, complete problems and
even alternating hierarchy. Moreover, the connection to Turing machine complexity
theory is not just conceptual – some results about polynomial-size deterministic and
nondeterministic automata would directly translate to space-bounded Turing machine
complexity theory, specifically the L ?

= NL question. For an overview of this two-way
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finite automata size complexity theory, see, for example, Kapoutsis (2009), Kapout-
sis (2012), and Královic (2010). We prove a relationship between the two of the least
conventional types of automata in this theory, namely the alternating and probabilistic
automata.

For every prime number p the p-adic numbers are a completion of the field of ra-
tional numbers with respect to the p-adic metric, in the same way as real numbers are
a completion of rational numbers with respect to the usual metric. A theorem by Os-
trowski shows that every non-trivial absolute value on the rational numbers is equivalent
to either the usual real absolute value or a p-adic absolute value. Therefore p-adic num-
bers can be considered as one of two possible natural extensions of the field of rational
numbers (the other one being usual real numbers). p-adic numbers have been used in
various ways by theoretical physicists in attempts to understand the nature of fundamen-
tal physics. However, the use of p-adic numbers in computational models is a relatively
new concept recently introduced by Freivalds. In ultrametric computation p-adic num-
bers are used to describe the branching of a computation. In this way the p-adic numbers
have been used to define ultrametric automata, ultrametric Turing machines, ultrametric
query algorithms, and ultrametric learning algorithms. The ultrametric computations,
unlike deterministic, randomized or even quantum computations, are not meant to be
realizable as physical devices, at least we are not aware of a practical way to implement
them. Nevertheless, they are equally interesting as an abstract computational model.
In this paper we define ultrametric finite automata and consider various properties that
arise out of their definition. Additionally we introduce the model of ultrametric query
algorithms which is similar to probabilistic and quantum query algorithms. We prove
results about ultrametric query complexity of Boolean functions.

Frequency computation is a notion that was introduced in 1960 by G. Rose. A
frequency algorithm (m,n)-computes a function f if given any n distinct inputs
x1, . . . , xn it produces n outputs y1, . . . , yn for which at least m of the equations
yi = f(xi) hold, i.e., the algorithm is required to output the correct answer on at
least m of n different inputs. While for some this notion might already seem rather
unconventional by itself, we modify it in two different ways therefore imparting
an additional degree of unconventionality. The first way involves finite automata.
While frequency finite automata have already been considered earlier, they have been
considered only in the setting of one-way automaton which simultaneously reads a
symbol from each of the input words. We introduce two-way frequency finite automata
– a model which has not been considered earlier in the literature. We show their
relationship with finite automata with linearly bounded counters and the complexity
class LOGSPACE.

The other modification is changing the definition of frequency computation by re-
quiring some structure for the correct answers therefore obtaining the so-called struc-
tured frequency computation. It is also a new model which has not been considered
previously. In this setting we examine which structures allow the computing of recur-
sive sets and which – nonrecursive. We also investigate graph frequency computation
where the size of the structures is limited to 2 so they can be represented as the edges
of a graph.
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The Organization of the Paper

The paper contains six sections each of which is devoted to one unconventional com-
putation model. We start by considering finite automata.

In the first section we consider two-way probabilistic and alternating automata
which are the most conventional computation type considered in this paper. In this sec-
tion we do not define new computation models, but instead work in a theoretical frame-
work introduced by Sakoda and Sipser and further developed by Kapoutsis, Královič
and others. We shortly describe the complexity theory of two-way automata and give
definitions for two-way probabilistic and alternating finite automata and the correspond-
ing complexity classes. Then we prove the main result of the section – show a language
that can be recognized with a linear-size one-way alternating automaton, but cannot be
recognized with any polynomial-size probabilistic two-way automaton. This is a pre-
viously unknown, novel result and it shows that the corresponding complexity classes
2P2 and 2A are not equal.

In the second section we consider ultrametric finite automata. We describe the p-
adic numbers and give definitions for ultrametric finite automata and investigate their
properties. We show that with a regulated ultrametric automaton only regular languages
can be recognized and we give a bound on the number of states for an equivalent de-
terministic automaton. We show that for some languages ultrametric automata can be
smaller than deterministic automata. We also compare different definitions for ultra-
metric automata. In the second part of the section we consider multi-head ultrametric
automata. We show that ultrametric one-way automata can recognize languages not rec-
ognizable by any k-head nondeterministic automata. For two-way automata we prove
that adding an extra head to the automaton increases the class of recognizable lan-
guages.

In the third section we focus on counting with finite automata by examining how
many states are needed for different models of automata to recognize the language
Cn = {1n}. At first we list known results about deterministic, nondeterministic and al-
ternating finite automata, and then proceed to prove new results about probabilistic and
ultrametric finite automata. We show an optimal 3-state one-way probabilistic automa-
ton. We show how to construct a constant-sized two-way probabilistic automaton with
the number of states not depending on the required probability for the correct answer.
We also show an optimal 2-state ultrametric automaton.

In the fourth section we consider two-way frequency automata. We introduce their
definition and show that with frequency (m,n) it is possible to recognize any language
recognizable with a two-way automaton with n − m linearly bounded counters. We
also show that any language from the class LOGSPACE can be recognized by some
frequency automaton.

Next, we consider unconventional algorithms. In the fifth section we introduce a
new type of algorithms – ultrametric query algorithms which use p-adic numbers to
describe the branching of an algorithm. We show results about the ultrametric query
complexity. We show that the exact ultrametric query complexity is at most the poly-
nomial degree of a Boolean function. For several functions we show ultrametric query
algorithms with complexity 1.
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In the sixth section we introduce structured frequency computation. We prove that
with overlapping structures only recursive sets can be recognized and show that the size
of overlapping structures is at least

√
n. We also show how to construct structures which

nearly achieves this bound by using projective planes. In the second part of the section
we consider the special case of graph structures and categorize which graphs allow only
computation of recursive sets.

In conclusion we list some open problems and further research directions in each of
the considered topics.

1 Classical Automata

The most conventional computation type considered in this paper is the two-way finite
automata. Traditionally finite automata have been considered in deterministic one-way
setting and with the focus on the languages that can be recognized. Indeed, if one cares
only about the class of languages recognizable by finite automata then there is no need
to consider nondeterministic or alternating automata or two-way versions of them be-
cause all of those models can recognize exactly the same class of languages – the class
of regular languages. However the situation changes remarkably if we are interested in
the state complexity of the automata.

This section is based on Balodis (2013).

1.1 Two-Way Finite Automata Complexity Theory

In this section we work in a theoretical framework of state complexity of two-way
finite automata introduced by Sakoda and Sipser (1978) and developed by Kapoutsis
and others (for an overview, see, for example, Kapoutsis (2009), Kapoutsis (2012), and
Královic (2010)).

As noted by Kapoutsis, a rich and meaningful complexity theory arises when one
considers the size complexity of two-way finite automata. It is quite similar to the Tur-
ing machine time and space complexity theory and contains all the standard features
of a complexity theory such as complexity classes, reductions, complete problems and
even alternating hierarchy.

Following this framework, instead of individual languages and finite automata
we consider families of languages and families of finite automata. We say that
a family of automata A = (A1, A2, A3, . . . ) recognizes a family of languages
L = (L1, L2, L3, . . . ), if for every h ≥ 1 the automaton Ah recognizes Lh. Special
interest is given to families of automata where the increase in the number of states can
be bounded by a polynomial.

The automata are called small if there is a polynomial p such that for each h the
automatonMh has at most p(h) states.

2D is the class of families of problems solvable by a family of small two-way de-
terministic automata (2DFAs):

2D =
{

(Lh)h≥1

∣∣∣there exist 2DFAs (Mh)h≥1 and polynomial p such that
Mh solves Lh with at most p(h) states, for all h

}
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2N is the class of families of problems solvable by a family of small nondetermin-
istic finite automata (2NFAs) and co-2N is the class of families of problems whose
complements are solvable by a family of small 2NFAs. Analogous classes for one-way
automata are 1D, 1N and co-1N.

The increase in complexity when going from a deterministic to a nondeterministic
model has been an important topic in computer science. Most notorious of the kind
is the question whether polynomial-time Turing machines recognize the same class of
languages as polynomial-time nondeterministic Turing machines, i.e., the P ?

= NP
question.

In two-way finite automata complexity theory the central question is similar –
whether the class 2D is equal to the class 2N. It is analogous to the P ?

= NP and
L

?
= NL questions in the Turing machine time and space complexity theories.

Moreover the connection to the complexity theory of Turing machines is not just
conceptual. It has been known for a long time that proving 2D 6= 2N using only poly-
nomially long instances would imply that L 6= NL (by Berman and Lingas (1977)).

1.2 Alternating and Probabilistic Automata

In this subsection we prove a relationship between the two of the least conventional
types of automata in this theory, namely the alternating and probabilistic automata.

We use the well-known standard definition for alternating automata.

Definition 1. A two-way alternating finite automaton (2AFA) is a tuple M =
(Q∃, Q∀,Σ, δ, q0, F ), where

Q∃ andQ∀ are finite sets of existential and universal states, respectively, withQ∃∩
Q∀ = ∅ and Q = Q∃ ∪Q∀,
Σ is the input alphabet,
δ : Q× (Σ∪{`,a})→ 2Q×{L,N,R} is the transition function, where `,a /∈ Σ are
the left and right endmarkers, and L, N, R denote the head movement,
q0 ∈ Q is the starting state, and
F ⊆ Q is the set of accepting states (also called final states).

The input word w is presented to the automaton enclosed by the endmarkers as
`wa.

The automatonM is said to be one-way (1AFA) if its input head motions are re-
stricted toR andN . For one-way machines, we usually do not embed the input between
endmarkers.

An alternation is a computation step in which the automaton switches from a state
q ∈ Q∃ to a state q′ ∈ Q∀ or from a state q ∈ Q∀ to a state q′ ∈ Q∃.

A nondeterministic automaton (2NFA) is a special case of 2AFA M =
(Q∃, Q∀,Σ, δ, q0, F ) for which Q∀ = ∅. A deterministic automaton (2DFA) is a
special case of 2NFA for which the transition function δ assigns at most one successor
state and movement direction for each state and input symbol. Similarly the automata
are one-way (1NFA and 1DFA, respectively) if their input head motions are restricted
to R and N .

For probabilistic automata (PFA) we also use the standard well-known definition.
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Definition 2. A two-way probabilistic finite automaton (2PFA) is a tuple A =
(Q,Σ, δ, q0, F ) where

Q is the finite set of states,
Σ is the input alphabet,
δ : Q×(Σ ∪ {`,a})×Q×{L,N,R} → P is the probabilistic transition function,
`,a /∈ Σ are the left and right endmarkers, respectively, and L, N, R denote the head
movement, and P ⊆ [0, 1] is the set of allowed probabilities,
q0 : Q→ P is the starting distribution, and
F ⊆ Q is the set of accepting states.

For 2PFAs the transition function δ : Q × (Σ ∪ {`,a}) × Q × {L,N,R} → P
assigns for each possible transition the probability of making this transition and q0 :
Q→ P shows the starting probability distribution.

If P = Q∩ [0, 1], where Q is the set of rational numbers, then we call the automaton
rational. If P = {0, 12 , 1}, then we call the automaton coin-flipping. The 2PFAM is
said to be one-way (1PFA) if its input head motions are restricted to R and N .

Precise descriptions of how the automata work can be found in the work or in the
literature of automata theory.

Let A(x) denote the probability that a PFA A accepts the word x. We say that a
PFA A recognizes language L with cutpoint λ ∈ [0, 1] if ∀x ∈ L A(x) > λ and ∀x /∈
L A(x) < λ. We say that a PFA A recognizes language L with an isolated cutpoint
λ ∈ [0, 1] if there exists δ > 0 (called isolation radius) such that ∀x ∈ L A(x) > λ+ δ
and ∀x /∈ L A(x) < λ− δ. The PFAs with isolated cutpoint are called P2FAs.

We say that a 2PFAM is fast if there exists a polynomial p such that for each word
w ∈ Σ∗ the expected running time ofM is upper-bounded by p(|w|).

Similarly as for other types of automata, we define classes of families of languages
corresponding to the alternating and probabilistic finite automata.

Definition 3.

2A =
{

(Lh)h≥1

∣∣∣there exist 2AFAs (Mh)h≥1 and polynomial p such that
Mh solves Lh using at most p(h) states for all h

}
For all k ≥ 1:

2Σk =

{
(Lh)h≥1

∣∣∣∣there exist 2AFAs (Mh)h≥1 and polynomial p such that
Mh solves Lh starting in an existential state and using

at most k − 1 alternations and p(h) states for all h

}

2Πk =

{
(Lh)h≥1

∣∣∣∣there exist 2AFAs (Mh)h≥1 and polynomial p such that
Mh solves Lh starting in an universal state and using
at most k − 1 alternations and p(h) states for all h

}
1Σk and 1Πk denote the corresponding classes for one-way automata.

The complexity class of problems solvable by a family of small and fast rational
2P2FAs is 2P2.

Definition 4.

2P2 =

{
(Lh)h≥1

∣∣∣∣there exist rational 2P2FAs (Mh)h≥1 and polynomials p, q, r such that
Mh solves Lh with isolation radius 1

r(h,n)
using at most p(h) states and

q(h, n) steps on average, for all h and all n and all n-long instances

}
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We also define two classes for less restricted types of 2PFAs. The complexity class
for unrestricted runtime is 2P2X. If we drop the requirement for the cutpoint to be
isolated then the corresponding complexity class is 2P.

As the main result of the section we show two families of languages EVALUATE-
DNF-FUNCTION and EVALUATE-CNF-FUNCTION, each of which can be recognized by
a family of linear-size 1AFAs which make only 1 alternation (and start in an existen-
tial or universal state respectively), but for every family of fast bounded-error 2PFAs
the state increase is more than polynomial. So for small automata even very restricted
alternation (one-way and using only 1 alternation) gives advantage over a natural (fast
and bounded-error) class of probabilistic automata.

Theorem 1. There exists a family of 1AFAs (Ah)h≥1 with 2h + 3 states that solves
the problem EVALUATE-DNF-FUNCTION starting in an existential state and using 1
alternation.

Theorem 2. There exists a family of 1AFAs (A′h)h≥1 with 2h+ 3 states that solves the
problem EVALUATE-CNF-FUNCTION starting in a universal state and using 1 alterna-
tion.

Theorem 3. There exists no family of 2NFAs of fast 2P2FAs that solves EVALUATE-
DNF-FUNCTION or EVALUATE-CNF-FUNCTION with a polynomial number of states.

Corollary 1. Neither 1Σ2 nor 1Π2 is contained in 2N ∪ co-2N ∪ 2P2.

This result shows a previously unknown relationship between complexity classes in
the theoretical framework of Sakoda, Sipser and Kapoutsis. Is solves an open problem in
this model thereby increasing our current understanding about two-way finite automata
complexity.

This result is also interesting because in the literature there are many results which
show advantages of probabilistic automata over non-probabilistic ones. However this
result is one of the very few showing advantage in the opposite direction – that a class
of non-probabilistic finite automata can be more powerful than a class of probabilistic
finite automata.

In this section we also show results in the opposite direction, however in a somehow
weaker form. If we do not require the automata to be fast or the isolation radius to
decrease no faster than polynomially then such small automata can recognize families
of languages which cannot be recognized by small 2AFAs.

Corollary 2. Neither 1P nor 2P2X is contained in 2A.

An open problem is whether it is true also if the probabilistic automata is left with
both of those restrictions.

2 Ultrametric Automata

p-adic numbers have been used in various ways by theoretical physicists in attempts to
understand the nature of fundamental physics. However the use of p-adic numbers in
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computer science is a relatively new concept recently introduced by Freivalds. p-adics
have been used to define ultrametric finite automata, ultrametric Turing machines, ul-
trametric query algorithms and ultrametric learning algorithms. The ultrametric compu-
tations, unlike deterministic, randomized or even quantum computations, are not meant
to be realizable as physical devices, at least we are not aware of a practical way to im-
plement them. Nevertheless, they are equally interesting as an abstract computational
model.

This section is partly based on Balodis et al. (2013).

2.1 p-adic Numbers

For every prime number p the p-adic numbers are a completion of the field of rational
numbers with respect to the p-adic metric, in the same way as real numbers are a com-
pletion of rational numbers with respect to the usual metric. A theorem by Ostrowski
shows that every non-trivial absolute value on the rational numbers is equivalent to ei-
ther the usual real absolute value or a p-adic absolute value for some prime p. Therefore
p-adic numbers can be considered as one of two possible natural extensions of the field
of rational numbers (the other one being usual real numbers).

For real numbers it is common to have an infinite number of digits to the right of the
point in the decimal (or any other base) notation. This infinite sequence can be periodic,
e.g., 1

3 = 0.3333 . . . or aperiodic, e.g., π = 3.1415926 . . . . The p-adic numbers have
it the other way – to the right of the point there is only a finite number of digits, but an
infinite number to the left of the point.

Let p be an arbitrary prime number. A p-adic digit is a natural number between 0
and p − 1 (inclusive). A p-adic integer is a sequence · · · ai · · · a2a1a0 of p-adic digits
which is infinite to the left side.

Especially significant is the p-adic norm.

Definition 5. The p-norm for a rational number α = ±2α23α35α57α7 · · · , where αi ∈
Z is:

‖α‖p =

{
p−αp , if α 6= 0

0, if α = 0.

More information about the p-adic numbers can be found in the work or in the
introductory text by Madore (2000).

2.2 Ultrametric Finite Automata

In this section we examine ultrametric finite automata and prove various properties
about them. We use the following novel definition which is made by modifying the
original definition of ultrametric finite automata. Later in the section it is analyzed what
advantages does the current definition have compared to the original definition.

Definition 6. p-ultrametric finite automaton (UpFA) is a sextuple 〈Q,Σ, q0, δ, QA, QR〉
where

Q is a finite set – the set of states,
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Σ is a finite set – input alphabet,
q0 : Q→ Qp is the initial amplitude distribution,
δ : Σ×Q×Q→ Qp is the transition function,
QA, QR ⊆ Q are the sets of accepting and rejecting states, respectively.

The following expressions show how automaton works. In general UpFA works
similarly as a probabilistic automaton with the difference that instead of probabilities –
real numbers between 0 and 1 – it uses amplitudes – p-adic numbers.

Definition 7.
sε = q0

sw1...wi(q) =
∑
q′∈Q

sw1...wi−1(q′) · δ (wi, q
′, q)

∑
q∈QA

‖sw(q)‖p >
∑
q∈QR

‖sw(q)‖p ⇔ w is accepted

An interesting class of UpFAs are regulated UpFAs because they recognize the same
class of languages as deterministic finite automata – regular languages.

Definition 8. If for UpFAM = 〈Q,Σ, s0, δ, QA, QR〉 all transition amplitudes in δ are
p-adic integers and there exist constants d1, d2 ∈ Z such that on any word w ∈ Σ∗ in
any state q ∈ Q either the amplitude sw(q) in state q after reading word w is equal to 0
or p−d2 ≤ ‖sw(q)‖p ≤ p−d1 then we call the automaton regulated (or more specifically
– (d1, d2)-regulated).

We show an upper bound on the increase in the number of states when constructing
a DFA from a regulated UpFA.

Theorem 4. If a k-state (d1, d2)-regulated UpFA M = 〈Q,Σ, s0, δ, QA, QR〉 recog-
nizes a language L, then there exists a DFA with 2k(d2−d1+1) log2 p states recognizing
L.

We give an example of a language that shows a gap between the state complexity of
deterministic and ultrametric automata.

Theorem 5. For every k,m there exists a language Lk,m such that:

Every DFA recognizing Lk,m needs at least km states.
For every prime p there is a regulated UpFA recognizing Lk,m with (k+ 1) ·m− 1
states.
For every prime p > m there is a UpFA recognizing Lp,m with m+ 1 states.

We show that k + 1 state suffices for a regular UpFA to recognize the complement
of a language that can be recognized by a regulated k-state UpFA.

Theorem 6. If a k-state UpFA M = 〈Q,Σ, s0, δ, QA, QR〉 recognizes a lan-
guage L with the property that on no word w the equality

∑
q∈QA

‖sw(q)‖p =∑
q∈QR

‖sw(q)‖p holds, then there exists a k-state UpFA M ′ recognizing the
complement language L̄.
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Theorem 7. If a (d1, d2)-regulated k-state UpFA recognizes a language L, then there
is a (d1, d2 + 1)-regulated k + 1-state UpFA that recognizes L with the property that
there is no wordw for which the equality

∑
q∈QA

‖sw(q)‖p =
∑
q∈QR

‖sw(q)‖p holds.

Corollary 3. If a (d1, d2)-regulated k-state UpFA recognizes a language L, then there
exists a (d1, d2+1)-regulated (k+1)-state UpFA recognizing the complement language
L̄.

We also compare how the ultrametric automata were defined originally (here called
p-ultrametric threshold automata (UpFTA)). UpFTA differ from UpFA in two aspects.
First, in the UpFTA definition it is requested that at the end of the input word is a special
endmarker $. Second, a UpFTA has only accepting states and after reading the word,
the amplitude in the accepting states is compared to a given threshold λ (instead of the
amplitude in rejecting states, as in UpFA).

It is justified why the new definition is superior. We show that there is no need to
use the endmarker.

Theorem 8. For every UpFTA M = (Q,Σ, q0, δ, F,Λ) there exists a UpFTA
M ′ = (Q′,Σ, q′0, δ

′, F ′,Λ) with |Q| + |F | states such that for every word w:∑
q∈F ‖sw$(q)‖p =

∑
q∈F ′ ‖s′w(q)‖p, where s and s′ are the amplitude distributions

of UpFTAs M and M ′, respectively.

We show that for any regulated UpFTA there exists a regulated UpFA recognizing
the same language with the number of states increased by an amount which represents
the complexity of representing the threshold as a sum of norms of p-adic numbers.

Theorem 9. If a language L is recognized (without endmarker) by a UpFTA
M = (Q,Σ, q0, δ, F, (λ, �)) such that there exists λ′ =

∑b
i=a li · pi such that

∀w ∈ Σ∗
∑
q∈F ‖sw(q)‖p � λ⇔

∑
q∈F ‖sw(q)‖p�̃λ′ (where ≤̃ is < and ≥̃ is >) then

there exists a UpFA M ′ with |Q|+
∑b
i=a li states which recognizes L.

Theorem 10. If a language L is recognized by a regulated UpFTA M =

(Q,Σ, q0, δ, F, (λ, �)) then there exists λ′ =
∑b
i=a li · pi such that ∀w ∈

Σ∗
∑
q∈F ‖sw(q)‖p � λ⇔

∑
q∈F ‖sw(q)‖p�̃λ′.

We also examine multi-head ultrametric automata. For one-way automata the fol-
lowing result is proven:

Theorem 11. For every k ≥ 1 ∈ N, there exists a language Lk such that:

for every prime p there exists a 1UpFA(1) that recognizes Lk,
Lk cannot be recognized by any 1NFA(k).

For two-way automata it is shown that there exists a hierarchy, i.e., by adding an
extra head to a k-head automaton the class of recognizable languages increases.

Theorem 12.
L(2UpFA(k)) $ L(2UpFA(k + 1)).



572 Balodis

3 Counting with Automata

In this section, we investigate the descriptional complexity advantages for probabilistic
and ultrametric automata compared with deterministic, nondeterministic and alternating
automata. We limit our focus to unary languages containing exactly one word. We say
that an automaton counts to n if it recognizes the language Cn.

Definition 9. Cn = {1n}.

We get new results about probabilistic and ultrametric automata for the counting
problem and show that they can be very succinct, requiring only a constant number of
states in many models.

This section is based on Balodis (2014).

3.1 Probabilistic Automata

We show an optimal probabilistic one-way automaton which recognizes Cn.

Theorem 13. For each n, there exists a 1PFA that recognizes Cn with 3 states with an
isolated cutpoint.

Theorem 14. If n > 1 then any 1PFA that recognizes Cn has at least 3 states.

Notice that although each individual automaton An from Theorem 13 has an iso-
lated cutpoint, the isolation radius tends towards 0 as n increases. We show that in the
two-way case there is no such deficiency and a constant number of states suffices for
all n (where the constant even does not depend on the required probability to give the
correct answer).

Theorem 15. There exists a constant c such that for every ε > 0 and for each n there
exists a 2PFA that recognizes Cn with c states with probability 1− ε.

3.2 Ultrametric Automata

We show that an ultrametric regulated automaton can count to n with 2 states and two
states are necessary even if the automaton is not regulated.

Theorem 16. For each n and each prime p there exists a regulated UpFA that recog-
nizes Cn with 2 states.

Theorem 17. If n > 0 then any UpFA that recognizes Cn has at least 2 states.
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4 Frequency Finite Automata

The notion of frequency computation was introduced by Rose (1960). A frequency
algorithm (m,n)-computes a function f , if given any n pairwise distinct x1, . . . , xn
it produces n outputs y1, . . . , yn of which at least m are correct (i.e., for m different
values of i the equation yi = f(xi) holds). If the function is of type f : Σ∗ → {0, 1}
then we speak of a special case of (m,n)-computable languages.

While frequency finite automata have already been considered earlier, they have
been considered only in the setting of one-way automata which simultaneously reads a
symbol from each of the input words. Here we introduce two-way finite automata which
have not been considered earlier in the literature and show their relationship with de-
terministic two-way finite automata with linearly-bounded counters and the complexity
class LOGSPACE.

4.1 Two-Way Frequency Automata

We know such classical result about frequency computing with Turing machines.

Theorem 18 (Trakhtenbrot 1963). If m
n > 1

2 , then every language that is (m,n)-
recognizable with a Turing machine is recursive.

If mn ≤
1
2 , then there is a continuum of languages that are (m,n)-recognizable with

a Turing machine.

Similar theorem is known about one-way frequency finite automata.

Theorem 19 (Kinber 1976; Austinat et al. 2005). For one-way finite automata:
If mn > 1

2 , then every (m,n)-recognizable language is regular.
If mn ≤

1
2 , then there is a continuum of (m,n)-recognizable languages.

Analogously one could expect that in the two-way automata case with a frequency
(m,n) with m

n > 1
2 only the same languages could be recognized that can be recognized

with a deterministic two-way automaton (i.e., only regular languages), however we will
see that it is not the case and already allowing only 1 error (i.e., with a frequency
(n− 1, n)) a larger class of languages can be recognized.

We introduce the following definition which is constructed by applying the notion
of frequency computing to two-way finite automata in the most natural way.

Definition 10. For natural numbers m,n (1 ≤ m ≤ n) a two-way (m,n)-frequency
finite automaton ((m,n)-2FFA) is a tuple A = (Q,Σ, δ, q0, F ), where

Q is the finite set of states,
Σ is the input alphabet,
δ : Q × (Σ ∪ {`,a})n → Q × {L,N,R}n is the transition function, where `,a
/∈ Σ are the left and right endmarkers, respectively, and L, N, R denote the head
movement (to the left, no movement, and to the right, respectively),
q0 ∈ Q is the starting state, and
F : Q→ {0, 1}n is the acceptance function.
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Definition 11. We say that a language L ⊆ Σ∗ is recognized by an (m,n)-2FFA A
if for every n distinct input words x1, . . . , xn ∈ Σ∗ the automaton A when started on
x1, . . . , xn gives an output (y1, . . . , yn) ∈ {0, 1}n such that at least m of the following
hold:

y1 = 1⇔ x1 ∈ L
y2 = 1⇔ x2 ∈ L

...

yn = 1⇔ xn ∈ L

4.2 Results

It is not surprising that with a frequency (n, n) only regular languages can be recog-
nized.

Theorem 20. L ((n, n)-2FFA) = L ((1, 1)-2FFA) = REG

However, with a frequency (n− 1, n) the class of recognizable languages is larger.
We denote an automaton with k linearly bounded counters by 2BCA(k) (the value

of the counter never exceeds the length of the input). We show that every language
recognizable with a 2BCA(k) is also recognizable with a (n− k, n)-2FFA.

Theorem 21. For any n > k:

L ((n− k, n)-2FFA) ⊇ L (2BCA(k))

This result shows that with a frequency (n− 1, n) a lot of non-trivial languages can
be recognized.

Corollary 4. For any n > 1 the languages{
12

m | m ≥ 0
}

,{
12

2m | m ≥ 0
}

,{
142

m2

| m ≥ 0
}

,{
111

p | p is a prime
}

,{
0m1m

2 | m ≥ 0
}

,{
0m12

m | m ≥ 0
}

can be recognized by an (n− 1, n)-2FFA.

An open question is whether an (n − k, n)-2FFA can recognize any language that
cannot be recognized by k linearly bounded counters. The following theorem provides
a sufficient condition for it.
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Theorem 22.

(L (2BCA(k + 1)) \ L (2BCA(k))) ∩ L ((1, k + 1)-2FFA) 6= ∅ ⇒
∀n>k L ((n− k, n)-2FFA) ) L (2BCA(k))

We also show that it is not correct to interpret the frequency (m,n) as a fraction m
n .

The following result shows that any language recognizable with a logarithmic-space
Turing machine (i.e., any language from LOGSPACE) can be (m,n)-recognized with a
two-way frequency automaton with the fraction m

n arbitrary close to 1.

Theorem 23.

∀L ∈ LOGSPACE ∃k ∀n > k L ∈ L ((n− k, n)-2FFA)

5 Ultrametric Query Algorithms

Query algorithms is a well-known model in theoretical computer science. We have to
calculate the result of a function f on the input x = x1x2 . . . xn, i.e., f(x). Usually
Boolean functions f : {0, 1}n → {0, 1} are considered. The function f is known to
the algorithm. The value of the input x is unknown and the only way to access it is via
queries to a “black box”. A query is the call of the function Ox : {1, . . . , n} → {0, 1}
where Ox(i) = xi, i.e., by querying i the algorithm learns the value of xi. The task of
the algorithm is to compute f(x) by making as few queries as possible.

Randomized query algorithm can probabilistically choose which variable to query.
Quantum query algorithm can make the queries in a quantum superposition.

The query algorithm model is extensively studied for quantum query algorithms. It
is a lower bound for time complexity.

In this section we introduce ultrametric query algorithms. This model is constructed
similarly as deterministic, probabilistic and quantum query algorithms.

Here we examine several properties of the ultrametric query algorithms. Some of
the main results are relating ultrametric query complexity with the polynomial degree
of the Boolean function.

This section is partly based on Jērinš et al. (2014).

5.1 Ultrametric Query Complexity

Ultrametric query algorithms are based on p-adic numbers. A p-ultrametric algorithm
is described by a directed acyclic graph with exactly one vertex (root) which has no
incoming edges. The nodes with no outgoing edges are leafs and they are the final
(accepting) states of the algorithm.

Definition 12. We say that a p-ultrametric query algorithm is one-endpoint if it has
exactly one accepting state.

Definition 13. We say that a p-ultrametric query algorithm is exact if for every input
the sum of norms of the final amplitudes is either 0 or 1.
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The complexity of a p-ultrametric query algorithm is defined as the maximum num-
ber of queries in a branch from the root to an accepting state.

The p-ultrametric query complexity (denoted by Up(f)) of a function f is the com-
plexity of an optimal p-ultrametric query algorithm which computes f . The exact p-
ultrametric query complexity (denoted by Up,E(f)) of a function f is the complexity of
an optimal p-ultrametric query algorithm which exactly computes f . We denote the cor-
responding complexities for one-endpoint algorithms byU1

p (f) andU1
p,E(f). Of course,

for every p and f it holds that Up(f) ≤ Up,E(f) ≤ U1
p,E(f) and Up(f) ≤ U1

p (f).
Figure 1 depicts a 2-ultrametric query algorithm for XORn function.

x1

x2

x3

...

xn

1

1

1

1

x
1 =

1 / 1
x2 = 1 / 1

x3 = 1 / 1

xn
=
1 / 1

Fig. 1. 2-ultrametric query algorithm for XORn

Let deg(f) be the degree of the unique multilinear polynomial representing the
Boolean function f . We show that one-endpoint p-ultrametric exact query complexity
is at most the polynomial degree of the function therefore is at most two times the
quantum exact query complexity.

Theorem 24. U1
p,E(f) ≤ deg(f) ≤ 2QE(f)

The 2-ultrametric algorithm forXORn hints for a more general way of constructing
2-ultrametric algorithms with a small complexity.

Definition 14. Denote by deg2(f) the binary polynomial degree of function f , i.e., the
minimal degree of a polynomial p(x) such that p(x) ≡ f(x) (mod 2).

Theorem 25. U1
2 (f) ≤ deg2(f)

An interesting class of functions are those for which there exist p-ultrametric query
algorithms with a small complexity for a specific p.

Definition 15.

NDIVn,p(x) =

{
0, if the number xnxn−1 . . . x1 is divisible by p
1, otherwise
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Theorem 26. For any n and any prime p there exists a one-endpoint p-ultrametric
query algorithm with complexity 1 that computes NDIVn,p.

6 Structured Frequency Algorithms

In the original definition of frequency computation the algorithm receiving n different
inputs is required to produce n outputs of which at leastm are correct. In this section we
introduce a new, modified definition of frequency computation – structured frequency
computation. We fix several subsets of inputs (all together called structure). The algo-
rithm is required that in at least one of the fixed subsets all of the outputs are correct.
Structured frequency computation had not been considered earlier in the literature, it is
defined by Balodis, Iraids, and Freivalds (2015).

6.1 Frequency Computation

We will examine the computing of sets. By χA : N → {0, 1} we denote the character-
istic function of a set A:

χA (x) =

{
1, if x ∈ A
0, if x /∈ A

The original definition of frequency computation is the following:

Definition 16 (Rose 1960). A set A is (m,n)-computable iff there is a total recur-
sive function f which assigns to all distinct inputs x1, x2, . . . , xn a binary vector
(y1, y2, . . . , yn) such that at least m of the equations χA(x1) = y1, χA(x2) =
y2, . . . , χA(xn) = yn hold (see Figure 2).

f

x1

x2

x3

. . .

xn

y1
y2
y3

. . .

ynpa
ir

w
is

e
di

st
in

ct

≥ m are correct

Fig. 2. Frequency computing

We construct the notion of frequency computing by changing the definition of fre-
quency computing by requiring that the correct answers cover at least one of the subsets
of the structure. The first natural question is – what structures allow the computing of
recursive sets and which allow computing something more? We show that even when
only

√
n of the n answers are required to be correct, only recursive sets can be recog-

nized. A similar property is known about the classical frequency (m,n)-computation
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with frequency m
n > 1

2 . We also investigate graph frequency computation where the
size of the structures is limited to 2 so they can be represented as the edges of a graph.

Definition 17. By a structure of a finite set K we call a set of K’s subsets S ⊆ 2K .
Assume K = {1, 2, . . . , n}.

Definition 18. A set A is (S,K)-computable (or computable with a structure S) iff
there is a total recursive function f which assigns to all distinct inputs x1, x2, . . . , xn a
binary vector (y1, y2, . . . , yn) such that ∃B ∈ S ∀b ∈ B χA(xb) = yb.

Definition 19. By the size of a structure S ⊆ 2K we denote the size of
the smallest subset - minA∈S |A|. We call the structure size consistent iff

¬∃K ′ ⊆ K minA′∈S
|A′∩K′|
|K′| > minA∈S

|A|
|K|

6.2 Projective Plane Frequency Computation

In this subsection we prove that there are structures of size O(
√
n) which only allow

computation of recursive sets. Therefore the algorithm is required to give the correct
answer on a small fraction of inputs – O

(√
n
n

)
= O

(
1√
n

)
– (which is much less than

1
2 which corresponds to the original definition), however only recursive sets can be
computed. We use projective planes to construct these structures.

Definition 20. We call a structure S ⊆ 2K overlapping iff ∀A,B ∈ S A ∩B 6= ∅.

Theorem 27. If A is computable with an overlapping structure then A is recursive.

Theorem 28. For any set K of size n = q2 + q + 1 where q is a prime power there
exists a size consistent overlapping structure of size q + 1.

We also prove that for overlapping structures the fraction obtained by the finite
planes is close to the best possible.

Theorem 29. Every size consistent overlapping structure S ⊆ 2K has size at least
√
n

where n = |K|.

6.3 Graph Frequency Computation

The smallest interesting size of structures is 2. In this subsection we focus on such struc-
tures. A convenient and well-known way to represent such structures is using graphs.

Definition 21. We call a structure S ⊆ 2K a graph structure iff ∀A ∈ S |A| = 2.

A natural question arises – for which graphsG are theG-computable sets recursive?
We show for some graphs G that only recursive sets can be G-computed or show that
there exists a continuum of G-computable sets (therefore among them are also non-
recursive sets).
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Proposition 1. If the graph G is either a triangle (C3) or a star graph (Sk) then every
G-computable set is recursive (see Figure 3).

1

2

3

1

2

3

4
5

. . .

n

Fig. 3. Graphs C3 and Sn

Theorem 30. If a graph G contains as a subgraph a cycle of length 4 (C4) or two
vertex-disjoint paths of length 3 (2P3) then there is a continuum of G-computable sets,
namely, every (1, 2)-computable set is also G-computable (see Figure 4).

1

2 3

4 1

2

3 4

5

6

Fig. 4. Graphs C4 and 2P3

The next two theorems show that graphs consisting of 2 pairs of connected vertices
and 3 pairs of connected vertices are substantially different.

Theorem 31. If a graph G contains as a subgraph three vertex-disjoint paths of length
2 (3P2) then there is a continuum of G-computable sets. (see Figure 5).

1 2

3 4

5 6

Fig. 5. Graph 3P2

Theorem 32. If a graph G is two vertex-disjoint paths of length 2 (2P2) then every
G-computable set is recursive (see Figure 6).
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1 2

3 4

Fig. 6. Graph 2P2

7 Conclusion and Discussion

We have considered several types of unconventional finite automata, ranging from two-
way probabilistic and alternating finite automata to ultrametric and frequency finite
automata. We have also examined two types of unconventional computation – ultramet-
ric query algorithms and structured frequency computation. In all considered areas we
have compared how the unconventional models relate to classical models. Although we
have proven many new results, there are still a lot of connections to be found.

In the two-way finite automata size complexity theory we have shown a previously
unknown relation between alternating and probabilistic automata. More specifically that
there is a family of languages that is recognizable by a family of polynomial-size al-
ternating automata, but for every family of fast probabilistic bounded-error two-way
automata the sizes of the automata grow superpolynomially. Although in the litera-
ture there are several results showing advantages of probabilistic models of automata
over non-probabilistic models of automata, this seems to be one of very rare examples
where a class of non-probabilistic automata are shown to be more powerful than a class
of probabilistic automata. It seems that the result could be strengthened to include also
probabilistic automata that can work superpolynomial time or have non-isolated cut-
point, but it seems hard to prove it with the current techniques, therefore some new
approach might be needed.

We have introduced the ultrametric finite automata. We think that for these the most
perspective model is the regulated ultrametric automata as they can recognize exactly
the regular languages and a bound on the complexity of simulating them with deter-
ministic automata is given. It would be interesting to find some connections of how
they relate to alternating and nondeterministic automata.

We have considered all of the above-mentioned types of automata for the counting
problem, i.e., recognizing the one-word unary language Cn = {1n}. We have shown
optimal constant-size probabilistic and ultrametric regulated automata. However it is
still open, if we require the two-way probabilistic automaton to be fast and have the
error probability bounded by a constant, can it do any better than one-way automaton,
i.e., have less than O(log2 n/ log log n) states.

We have introduced the two-way frequency finite automata. We have shown that
any language recognizable with two-way automaton with k linearly bounded counters
is (n−k, n)-recognizable by a two-way frequency finite automaton for any n > k. This
relation shows that many nontrivial languages are (n− 1, n)-recognizable. However, it
is an open question whether there are any other languages recognizable by a frequency
automaton. In the work we have shown a sufficient condition for it.

Based on the p-adic numbers we have defined ultrametric query algorithms and
ultrametric query complexity similar to probabilistic and quantum query complexity.
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However, the unrestricted ultrametric query model seems to be too powerful because
such functions as ORn and XORn can be computed with just 1 query and the com-
plexity never exceeds the polynomial degree of the function. Therefore one should try
to find a natural restriction for the model that for some functions gives more interesting
query complexity bounds such as O(log n) and O(

√
n). One could also try to devise

some lower bound technique and explore what functions are hard for ultrametric query
algorithms.

We have introduced the notion of structured frequency algorithms by modifying the
definition of frequency computation. Based on finite planes we have shown a structure
of size O(

√
n) that allows only recognition of recursive sets and shown that using over-

lapping structures this size cannot be decreased. It is an open question whether there
are some other (non-overlapping) structures of smaller size that allow only recognition
of recursive sets.
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