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Abstract. Rūsiņš Mārtiņš Freivalds (1942-2016) was one of European pioneers of theoretical
computer science, making important contributions to the theory of probabilistic algorithms and
other fields of theoretical computer science. He was also my first research supervisor at the Uni-
versity of Latvia and influenced my research career quite substantially. In this article, I describe
some of my research experiences working together with him, from the first exercises in his un-
dergraduate seminar to how we started working on quantum computing.
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1 Introduction

Rūsiņš Mārtiņš Freivalds was among the leading European theoretical computer scien-
tists of his time. He was one of first to realize that probabilistic algorithms can be more
efficient than deterministic, in a variety of contexts, from Turing machines (Freivalds,
1975, 1979c) to algorithms for verifying matrix multiplication (Freivalds, 1979b). Frei-
valds also made important contributions to other areas of theoretical computer science,
from inductive inference (a recursion-theoretic model of learning) to quantum comput-
ing, and advised a number of graduate students.

Freivalds was my first research advisor. I started attending his seminar as a 1st year
undergraduate and worked with him for the next 5 years. Working with Freivalds was
a very important research experience which profoundly influenced me as a scientist. It
was an important stepping stone that allowed me to be admitted into the Ph.D. program
of University of California, Berkeley where I went on to doing research on quantum
information.

Some of the topics that I learned with Rūsiņš Freivalds still fascinate me as a
researcher. For example, under his supervision, I learned about deterministic, non-
deterministic and probabilistic decision trees and relations between their complexi-
ties (for example, deterministic decision tree complexity D(f) being at most ND2(f)
where ND(f) is the nondeterministic decision tree complexity, as described in a later
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survey by Buhrman and de Wolf (2002)). These interesting relations inspired me to
study the quantum version of decision trees (known as quantum query algorithms) - a
topic of many of my most highly valued research contributions, from the quantum ad-
versary method for proving lower bounds on quantum algorithms (Ambainis, 2002) to
the recent separations between quantum and deterministic and probabilistic and deter-
ministic decision tree complexities (Ambainis et al., 2016).

In this article, I recall four important experiences as Freivalds’ student and collabo-
rator:

– The 1st Freivalds’ seminar that I attended, the problem that we considered at the
seminar, and how it got me started in theoretical computer science;

– The first open problem that I solved as Freivalds’ student (communication com-
plexity of equality function in the 3-party model (Yao, 1979, Ambainis, 1996b));

– The most difficult result that I obtained as Freivalds’ student (the analysis of prob-
ability hierarchy for PFIN-type inductive inference (Ambainis, 1996a));

– Our first paper about quantum automata (Ambainis, Freivalds, 1998) which was a
starting point in quantum computing for both of us.

2 The 1st Freivalds’ seminar

As a high school student, I participated in mathematical olympiads, winning a gold
medal at the International Mathematical Olympiad in 1991. Latvian mathematics olym-
piad team was coached by Agnis Andžāns, a professor at the University of Latvia.
When I finished high school and entered university, Andžāns introduced me and two
other mathematics olympiad competitors from my year to Rūsiņš Freivalds. Freivalds
then started running an introductory seminar for the three of us. (One of the other two
students, Ģirts Karnı̄tis, is now a professor of Computer Science at the University of
Latvia, specializing in databases and big data.)

During the first seminar, Freivalds gave the following problem to us. Consider com-
puting a Boolean function f(x1, . . . , xn) using AND, OR and NOT gates. Each AND
and OR gate takes two inputs (which can be either variables xi or outputs of other
gates), each NOT gate takes 1 input. The result of each gate can be used as an input to
an arbitrary number of other gates. For what number of gates M(n) is it true that any
Boolean function f(x1, . . . , xn) can be computed with M(n) gates?

The first result that we obtained during the seminar was that n2n gates were suffi-
cient. Consider the set S consisting of all (x1, . . . , xn) ∈ {0, 1}n with f(x1, . . . , xn) =
1. If S contained all 2n possible (x1, . . . .xn), then f(x1, . . . , xn) would always be
equal to 1 and computing it would be trivial. Otherwise, S contains at most 2n − 1
elements. Then, we can compute f as follows:

1. We start by computing NOTxi for all i ∈ {1, . . . , n}.
2. For every (y1, . . . , yn) ∈ S we create a gate that outputs 1 if (x1, . . . , xn) =

(y1, . . . , yn) and 0 otherwise. This can be done by taking AND of all xi for i :
yi = 1 and NOTxi for i : yi = 0.

3. We take OR of all gates from the previous step.
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The first step requires n gates. In the second step, for every (y1, . . . , yn) ∈ S, we take
AND of n values. This can be done with n−1 AND gates. The overall number of gates
in the second step is (n−1)|S|where |S| denotes the size of S. In the third step, we take
OR of |S| values which can be done with |S| − 1 OR gates. Thus, the overall number
of gates is

n+ (n− 1)|S|+ (|S| − 1) = n|S|+ n− 1 < n2n.

For example, if f(x1, x2, x3) is a function that is equal to 1 if (x1, x2, x3) is equal to
(0, 0, 0) or (1, 1, 1), the resulting circuit is shown in Figure 1.

Fig. 1. Circuit for f(x1, x2, x3)

The task was to come up with a better construction. Over the next week, I kept
thinking about this problem and coming up with better and better constructions. The
first conceptual improvement over the construction above was to express the function
f(x1, . . . , xn) as

f(x1, . . . , xn) = ((NOTx1)ANDf0(x2, . . . , xn))OR(x1ANDf1(x2, . . . , xn)).

Then, we can construct a circuit for f from circuits for f0 and f1 and 4 extra gates (one
OR, two ANDs and one NOT). This shows that M(n) ≤ 2M(n − 1) + 4. Resolving
this recurrence gives M(n) ≤ 5

22
n.

The next improvements involved identifying subfunctions that were frequently reused
in the construction above and, instead of recomputing them every time, computing them
once and reusing the result of the computation.

The best result that I achieved was M(n) ≤ (2 + o(1)) 2
n

n . I also proved that
M(n) ≥ ( 12 − o(1)) 2

n

n . The true answer was M(n) = (1 + o(1)) 2
n

n , as shown in
the classical papers by Shannon (1949) and Lupanov (1958).
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The process of coming up with better and better solutions was quite interesting and
exciting for me. It is often said that student’s interest depends on whether the lecturer
manages to create interest in the subject during the first lecture. In my case, Freivalds
created a long-lasting interest in theoretical computer science.

3 The first research problem

My results with the circuit problem impressed Freivalds quite thoroughly. He had actu-
ally expected substantially less than what I achieved.

Freivalds started thinking about open problems that he could give to me. On one
hand, the problem had to be understandable to a 1st year undergraduate. On the other
hand, he wanted to find something that would be interesting to other researchers if I
solved it.

He came up with a problem in communication complexity, a research area invented
by Yao (1979). Communication complexity studies computing in a setting where the
input data is distributed among several parties. It is assumed that all parties have a
substantial computational power and can carry out computation very quickly. The only
bottleneck is the communication among the parties which is slow. The task is to opti-
mize the computation so that it can be done with a minimum amount of communication.
(A detailed review of the field of communication complexity can be found in the books
by Kushilevitz and Nisan (2006) and Hromkovič (1997).)

The standard model of communication complexity consists of two parties (Alice
and Bob) who want to compute a function f(x, y) with x initially belonging to Alice
and y initially belonging to Bob so that the amount of bits communicated between
Alice and Bob is as small as possible. Alice and Bob can act either deterministically or
probabilistically.

The equality problem is a very well known example where probabilistic commu-
nication protocols are more efficient than deterministic ones. In this case, Alice’s and
Bob’s inputs x and y are strings of n bits and they would like to determine if x = y.
Any deterministic protocol would require them to send n bits. Probabilistically, Alice
can randomly choose a prime p ∈ {2, . . . , cn} for some constant c, interpret x as a
number between 0 and 2n − 1 and send (p, x mod p) to Bob. Bob also interprets y as
a number and computes y mod p. If x mod p = y mod p, Bob concludes that x = y.
Otherwise, he concludes that x 6= y.

This protocol allows to determine whether x = y with Alice communicatingO(log n)
bits to Bob. In the first paper on communication complexity, Yao (1979) asked whether
there is an efficient communication protocol in a model where Alice and Bob communi-
cate to a third party (a referee). Namely, Alice holds an n-bit string x and communicates
a message based on this string to the referee. Bob holds another n-bit string x and com-
municates a message based on this string to the referee. The referee then has to output
his guess whether x = y.

At the time when I started working with Freivalds, this problem was still open and
he gave it to me. After a few months (in Spring 1993), I came up with a probabilis-
tic protocol that solves it with Alice and Bob communicating O(

√
n) bits. Thus, in

the model with a referee, probabilistic protocols are still better than deterministic ones
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(which again need n bits of communication) but their advantage is smaller than in the
standard model of communication.

The protocol is quite simple to describe:

1. Before running the protocol, Alice and Bob agree on an encoding scheme E :
{0, 1}n → {0, 1}Cn such that any two encodings E(x), E(y) differ in at least 1/4
of all bits. (It is known from coding theory (McWilliams, Sloane, 1977) that such
schemes exist.)

2. Alice computes E(x), Bob computes E(y). They both place their strings into a√
Cn×

√
Cn table, with one bit in each cell of the table.

3. Alice chooses a random i ∈ {1, . . . ,
√
Cn} and communicates i and the contents

of the ith row of the table.
4. Bob chooses a random j ∈ {1, . . . ,

√
Cn} and communicates j and the contents of

the jth column of the table.
5. The referee compares the values of the entry that belongs to both the ith row and the
jth column in Alice’s and Bob’s messages. If they differ, he concludes that x 6= y.

Since E(x) and E(y) differ in at least 1/4 of all bits, this protocol detects x 6= y with a
probability at least 1/4. For a higher probability of success, Alice, Bob and the referee
can run this protocol several times, concluding that x = y if none of the runs detects
x 6= y.

Soon after I obtained this result, Freivalds went to several universities in United
States to visit his colleagues. After his visit, he told me that at least two prominent
scientists, Manuel Blum (Turing Award winner, then at the University of California,
Berkeley) and Andrew Yao (Turing Award winner, then at Princeton University) were
quite impressed by it.

This was my first research result but it took 2.5 years until it appeared in a journal
(Ambainis, 1996b). First, Freivalds promised me to translate the paper into English if I
wrote it in Latvian but it turned out that he was too busy with other matters. Secondly,
the content of the paper kept changing. Freivalds gave me another problem, about the
complexity of deciding whether x > y in the same model of communication complex-
ity. I solved it and started writing it down, only to discover that the solution to this
problem follows from a known result (again, by Yao (1983)).Thirdly, since I did not
know coding theory at that time, the first version of the paper contained a proof that an
encoding scheme with the required properties exists. Later, I replaced it with a reference
to a coding theory textbook.

While the paper kept changing, the news about the result had gotten out. The result
rekindled interest in the model of communication with a referee (now called Simulta-
neous messages model) and, before my paper was published, several other scientists
discovered the same protocol independently of me and also discovered a proof that it
is optimal (Babai and Kimmel, 1997, Bourgain and Wigderson, 1996, Newman and
Szegedy, 1996).

Interestingly, the result became useful for my current area of research, quantum
information. It is a basis for a protocol called quantum fingerprinting which allows to
encode long strings of classical bits into a small-dimensional quantum state (Buhrman
et al., 2001).
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After my first result in communication complexity I went on to work on several
other questions in this area. From ICALP’1994, Freivalds brought me the conference
proceedings containing a survey by Pudlák (1994), titled “Unexpected upper bounds
in communication complexity” which contained communication protocols for several
problems with an amount of communication that is smaller than one would expect. I
then improved two of those protocols (Ambainis, 1996c, Ambainis and Lokam 2000).

4 My most difficult result with Freivalds

One of the main research interests of Freivalds was inductive inference, a model for
machine learning based on computability theory. Inductive inference was invented in
1960s by Gold (1965, 1967) and is among the older theories of learning. Freivalds,
together with other Latvian computer scientists (most notably, Jānis Bārzdiņš, Efim
Kinber and Kārlis Podnieks) started working on inductive inference in early 1970s and
their research left a substantial impact on this field (as described in later surveys by
Freivalds (1991) and Freivalds et al. (1991)).

One of the basic models of inductive inference is finite learning of functions (ab-
breviated by FIN, first studied by Lindner (1972)):

1. The object to be learned is a computable function f : {1, 2, . . .} → {0, 1} which
belongs to some class of functions L.

2. The learner is a Turing machine M which receives values f(1), f(2), . . . and, at
some point, may output a program P which is supposed to compute f .

3. M learns a class L if, for any f ∈ L, given f(1), f(2), . . ., it outputs a program P
which, given x, correcly computes f for all x ∈ {1, 2, . . .} (including x for which
the machine M did not see f(x)).

4. FIN is the family of all L for which there exists M that learns L.

Freivalds was among the first researchers to study probabilistic algorithms in many
contexts, from probabilistic Turing machines (Freivalds, 1975, 1979c) to algorithms for
verifying matrix multiplication (Freivalds, 1979b). He also started the study of proba-
bilistic algorithms in the context of inductive inference.

Let FIN 〈p〉 denote the class of all L for which there exists a probabilistic Turing
machine M such that, for any f ∈ L, the probability that, given f(1), f(2), . . ., M
outputs a program P that computes f is at least p. (We note that a success probability p
can be achieved either by outputting one correct program with probability p or more or
by outputting one of several correct programs P1, . . . , Pm with a total probability that
is at least p.) Freivalds (1979a) showed that:

– For success probabilities p > 2/3, FIN 〈p〉 = FIN .Thus, in this case, probabilis-
tic machines are not more powerful than deterministic ones.

– For success probability p = 2/3, FIN
〈
2
3

〉
is strictly larger than FIN ;

He then showed that

FIN

〈
2

3

〉
⊂ FIN

〈
3

5

〉
⊂ . . . ⊂ FIN

〈
k

2k − 1

〉
⊂ FIN

〈
k + 1

2k + 1

〉
⊂ . . . (1)
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and, for any p : k
2k−1 < p < k+1

2k+1 , we have FIN
〈

k
2k−1

〉
= FIN 〈p〉. Thus, decreas-

ing the success probability increases the capabilities of probabilistic learning machines
but this happens in discrete steps at certain probabilities.

For a long time, it remained open how the capabilities increase when the learning
machine is required to succeed with probabaility p < 1/2 until Daley et al. (1995) and
Daley and Kalyanasudaram (1997) discovered that

FIN

〈
1

2

〉
⊂ FIN 〈p1〉 ⊂ . . . ⊂ FIN 〈pk〉 ⊂ FIN 〈pk+1〉 ⊂ . . .

and FIN 〈p〉 = FIN 〈pi〉 for p : pi < p < pi+1, for another sequence of probabilities
defined by p1 = 24

49 , p2 = 20
41 , . . . and pm = 12m−52

25m−109 for m ≥ 11. This sequence
converges to limm→∞ pm = 12

25 . Obtaining this result was quite difficult. It took the
authors several years of work and the final proof was more than 100 pages long. Given
that all this effort was just to analyze FIN 〈p〉 for probabilities p in a small interval
[ 1225 ,

1
2 ] = [0.48, 0.5], analyzing FIN 〈p〉 for smaller p looked infeasible.

When I heard about this problem from Freivalds, it fascinated me. Given the dif-
ficulty of analyzing FIN , I looked at a simpler model called PFIN (introduced by
Case and Ngo-Manguelle, 1979) where it is known that all programs P output by a
learning machine M terminate on all inputs. (This allows to avoid some of the more
nasty technical issues with analyzing FIN machines.) At that time, it was known that,
for probabilities p > 1/2, we have

PFIN ⊂ PFIN
〈
2

3

〉
⊂ FIN

〈
3

5

〉
⊂ . . .

⊂ FIN
〈

k

2k − 1

〉
⊂ FIN

〈
k + 1

2k + 1

〉
⊂ . . .

with PFIN
〈

k
2k−1

〉
= PFIN 〈p〉 for p : k

2k−1 < p < k+1
2k+1 (Daley et al., 1992). For

smaller p, two sequences p1 > p2 > . . . with

PFIN 〈p1〉 ⊂ PFIN 〈p2〉 ⊂ . . . ⊂ PFIN 〈pk〉 ⊂ PFIN 〈pk+1〉 ⊂ . . .

and PFIN 〈p〉 = PFIN 〈pi〉 for p : pi < p < pi+1 were found, with one sequence
from p1 = 1

2 to limi→∞ pi =
4
9 and another sequence from p1 = 4

9 to limi→∞ pi =
3
7 (Daley et al., 1992, Daley and Kalyanasudaram, 1993). Even though PFIN was
simpler, it was still very difficult and Daley and Kalyanasudaram (1993) wrote that the
prospects of fully analyzing the power of PFIN 〈p〉 even for p ∈ [ 25 ,

1
2 ] look quite

bleak.
In my work (Ambainis, 1996a, 2008), I took a different approach to studying PFIN.

Instead of trying to find out particular probabilities where the power of PFIN 〈p〉
changed, I looked at more general questions. The main technical result was

Theorem 1 (Ambainis, 1996a, 2008) LetPPFIN be the set of all p such thatPFIN 〈p〉
is larger than PFIN 〈p+ ε〉 for any ε > 0. Then PPFIN is equal to the set A defined
by the following rules:
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1. 1 ∈ A;
2. if p ∈ [0, 1] and there exist p1, . . . , ps ∈ A and q1, . . . , qs ≥ 0 such that p =
q1 + q2 + . . .+ qs and pi = p

1−p+qi , then p ∈ A.

This result has several consequences. By using it, I showed that there is an algo-
rithm, which, given p and q, decides whether PFIN 〈p〉 = PFIN 〈q〉. I also charac-
terized the complexity of the set PPFIN , by showing that its structure is equal to the
ordinal number ε0.

Ordinal numbers were another favorite of Freivalds. An ordinal is a set S whose
elements are ordered so that, for every subset S′ ⊆ S, S′ has a smallest element (i.e.
x ∈ S′ such that x < x′ for all other x′ ∈ S). Some examples of ordinals are:

– the set of natural numbers, in an increasing order;
– the set of pairs of natural numbers (x, y) in the order defined by (x, y) < (x′, y′) if
x < x′ or if x = x′ and y < y′;

– the set of k-tuples of natural numbers (x1, . . . , xk) with (x1, . . . , xk) ≤ (y1, . . . , yk)
if x1 = y1, . . ., xi−1 = yi−1 and xi < yi, for some i ∈ {1, . . . , k};

– the set of all (x1, . . . , xk) for all k with (x1, . . . , xk) ≤ (y1, . . . , yk′) if k < k′ and
the order for the k = k′ case as defined above.

The ordering types of these sets are denoted w, w2, wk and ww. One can then define a
sequence of even more complicated ordering types

ww, ww
w

, ww
ww

, . . . ,

with ε0 being the limit of this sequence. I showed that ε0 is also the ordering type of
PPFIN (when considered in decreasing order, with 1 as the smallest element and 0 as
the largest). This shows that PPFIN is vastly more complicated than the part which was
explored before (which consisted of 3 sequences of type w each).

This work is still among most involved and mathematically most interesting things
that I have done. The resulting paper, however, did not receive much attention in the
theoretical computer science community. The focus of learning theory had shifted from
abstract 1960s models like inductive inference (which encompass any learning task but
on a very abstract level) to more concrete models (which are less general but more
suitable for obtaining algorithms for concrete learning tasks).

5 Our first quantum collaboration

Quantum computing caught Freivalds’ attention quite early. Seeing that the world was
losing interest in inductive inference, he was looking for new research topics. In 1993,
he came back from FOCS’1993 (IEEE Conference on Foundations of Computer Sci-
ence, one of two top theoretical computer science conferences in the world) and gave
me the conference proceedings with a paper on quantum computing (Yao, 1993), saying
“This is the thing to study”.

At this point, very few people were working on quantum computing. The basic
models (such as quantum Turing machines and quantum circuits) were just defined a
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few years ago and the total number of papers in the field which one could call “quantum
theoretical computer science” was around 10. The field would get a major boost a few
months later when Peter Shor (1994) discovered his quantum algorithm for factoring
but this had not yet happened. At that moment, only a few pioneers were looking at
quantum computing at that moment.

I read that paper and a paper on quantum bit commitment (Brassard et al., 1993) in
the same proceedings. I would read a few more papers on quantum algorithms in the
next years. But, without anyone to guide me, it was difficult to do something on my
own. So, I had no results on quantum computing until I left for my Ph.D. at University
of California, Berkeley in 1997.

When I arrived at Berkeley, Umesh Vazirani was teaching a course on quantum
computing in my first semester there. This was one of the first organized courses on
quantum computing in the world. It gave me an opportunity to learn the subject in
an organized way, including the things which I missed out while reading the research
papers on my own. At the end of the course, Vazirani gave a list of open problems for
course projects or future work. This was a great idea: it helped students to start their
own research projects.

One of the problems on the list was developing a theory of quantum finite automata.
It caught my attention because finite automata was one of topics on which I worked
with Freivalds in Latvia. So, I knew something about the subject and could use my
knowledge to build a theory in the quantum case. At the time, there were two papers
on quantum automata, by Moore and Crutchfield (2000) and by Kondacs and Watrous
(1997), with a more general model proposed by Kondacs and Watrous. One of my
first results (obtained in December 1997 at Berkeley) was that the power of Kondacs-
Watrous model increased if the required success probability was decreased. Namely:

Theorem 2 (Ambainis and Freivalds, 1998)

1. If a language L is recognized by a 1-way quantum finite automaton (QFA) in the
Kondacs-Watrous model with probability more than 7/9, it can be also recognized
with probability 1.

2. There is a language L that is recognizable by a 1-way quantum finite automaton
(QFA) in the Kondacs-Watrous model with probability 0.68... but not with proba-
bility 1.

In its spirit, this result is similar to results about PFIN in the previous section but the
reasons why the power of the model depends on the success probability p are completely
different.

A few weeks later, I went on winter break to Latvia and met with Freivalds. To
my surprise, he was now also studying quantum automata. In the previous summer, his
student Juris Smotrovs (now a professor of computer science at the University of Latvia)
went to a summer school in Finland on unconventional models of computation which
included quantum computing. Following that, Freivalds started a seminar on quantum
computing. Smotrovs taught what he had learned in Finland and they all tried to figure
out: how would a quantum finite automaton look like and what would it be able to do?

Freivalds had a great guess for a problem where quantum finite automata would
be better than classical. The problem was to recognize whether the length of the input
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word was divisible by p. To solve this problem, a classical automaton needs p states.
Freivalds had an idea how to do counting modulo p with quantum states, by rotating
a quantum state by an angle 2πk

p after reading every input letter (for some integer k). In
this way, a quantum state would complete a full rotation by 2πk after reading every p
input letters and return to the starting point.

The part that was not clear was: how do you choose k? Every fixed k would work in
some cases but fail in other cases. Freivalds was trying to build a quantum automaton in
which parts of the quantum states were rotated by different angles 2πki

p , with all parts
returned to the starting state after every p letters. He had a specific choice of parameters
ki in mind but the resulting trigonometric expression for the success probability was
too complicated.

Seeing this, I proposed a simpler idea. At Berkeley, I had just finished a course on
Randomized Algorithms (taught by Alistair Sinclair) and I proposed to choose ki’s ran-
domly. Quite easily, I showed that a random choice worked, with a very high probabil-
ity. We obtained a quantum automaton which solved the problem, by using a state-space
withO(log p) dimensions, exponentially better than classical automata. (This result was
also published in Ambainis and Freivalds, 1998).

Interestingly, this was the quantum counterpart of a problem which Freivalds had
studied in the probabilistic context: given a language that requires n states for deter-
ministic automata, how small can the best probabilistic automaton be? His first result
was an example where probabilistic automata can solve the problem with O( log2 n

log logn )
states but deterministic automata require n states (Freivalds, 1982) and he eventually
improved the gap to O(log n) states for probabilistic vs. n states for deterministic au-
tomata (Freivalds, 2008).

This was the starting point in quantum computing for both of us. It started a col-
laboration in which I discussed research with Freivalds and gave talks in his seminar
every time when I came to Riga for summer or winter breaks, for the next 4 or 5 years.
Freivalds with his students visited me at Berkeley, Princeton and Waterloo. He was
particularly fascinated by the result that the power of QFAs changed with the success
probability and its parallels with his work on FIN and spent a lot of time with his stu-
dents figuring out when and how exactly the power of QFAs changed, with me also
contributing some ideas to this work (Ambainis et al., 1999, Ambainis et al., 2001,
Ambainis and Kikusts 2003, Golovkins et al. 2011).

I went back to Berkeley in January 1998 and presented our construction of quantum
automata to Umesh Vazirani and members of his group. This lead to more discussions
about quantum computing, with members of his group describing their research prob-
lems to me. I then started to work on some of these problems, going from one topic in
the theory of quantum computing to another.

The collaboration between myself and Freivalds also helped me to maintain a con-
nection to Latvia in general and University of Latvia. In particular, this was one of the
reasons which lead to my return to Latvia in 2007, ten years after I left for Berkeley.
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