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Abstract. We show that an improvement to the best known quantum lower bound for GRAPH-
COLLISION problem implies an improvement to the best known lower bound for TRIANGLE

problem in the quantum query complexity model. In GRAPH-COLLISION we are given free ac-
cess to a graph (V,E) and access to a function f : V → {0, 1} as a black box. We are asked to
determine if there exist (u, v) ∈ E, such that f(u) = f(v) = 1. In TRIANGLE we have a black
box access to an adjacency matrix of a graph and we have to determine if the graph contains
a triangle. For both of these problems the known lower bounds are trivial (Ω(

√
n) and Ω(n),

respectively) and there is no known matching upper bound.
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1 Introduction

By Q(f) we denote the bounded-error quantum query complexity of a function f . We
consider the quantum query complexity for some graph problems.

Definition 1. In TRIANGLE problem it is asked whether an n-vertex graph G = (V,E)
contains a triangle, i.e. a complete subgraph on three vertices. The adjacency matrix of
the graph is given in a black box which can be queried by asking if (x, y) ∈ E.

Recently there have been several improvements in the algorithms for the TRIAN-
GLE problem in the quantum black box model. The problem was first considered by
Buhrman et al. (2005) who gave an O(n +

√
nm) algorithm where n is the number of

vertices and m – the number of edges. Later in 2007 Magniez et al. gave an Õ(n13/10)
algorithm based on quantum walks. Introducing a novel concept – learning graphs, and
using a new technique Belovs (2012b) was able to reduce the complexity to O(n35/27).
Lee, Magniez, and Santha (2013) using a more refined learning graph approach reduced
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the complexity to Õ(n9/7). Currently the best known algorithm is by Le Gall (2014)
who exhibited a quantum algorithm which solves the TRIANGLE problem with query
complexity Õ(n5/4). Classically the query complexity of TRIANGLE is Θ(n2); how-
ever, it is an open question whether TRIANGLE can be computed in time better than
O(nω) where ω is the matrix multiplication constant.

Definition 2. In GRAPH-COLLISIONG problem a known n-vertex undirected graph
G = (V,E) is given and a coloring function f : V → {0, 1} whose values can
be obtained by querying the black box for the value of f(x) of a given x ∈ V .
We say that a vertex x ∈ V is marked iff f(x) = 1. The value of the GRAPH-
COLLISIONG instance is 1 iff there exists an edge whose both vertices are marked,
i.e. ∃(x, y) ∈ E f(x) = f(y) = 1.

By Q(GRAPH-COLLISION) we mean the complexity of solving GRAPH-COLLI-
SIONG for the hardest n-vertex graph G.

There has been an increased interest in the quantum query complexity of the
GRAPH-COLLISION problem, mainly because algorithms for solving GRAPH-COLLI-
SION are used as a subroutine in algorithms for the TRIANGLE problem by Magniez,
Santha, and Szegedy (2007) and Boolean matrix multiplication by Jeffery, Kothari, and
Magniez (2012).

The best known quantum algorithm for GRAPH-COLLISION for an arbitrary n-
vertex graph has complexity O(n2/3) by Magniez, Santha, and Szegedy (2007). How-
ever, for some graph classes there are algorithms with complexity O(

√
n) (by Ambai-

nis et al. (2013), Belovs (2012a), Gavinsky and Ito (2012), and Jeffery, Kothari, and
Magniez (2012)). It is an open question whether for every n-vertex graph G GRAPH-
COLLISIONG can be solved with O(

√
n) queries.

Contrary to the improvements in the algorithms for these two problems, the best
known lower bounds for Q(GRAPH-COLLISION) and Q(TRIANGLE) are still the trivial
Ω(
√
n) and Ω(n) respectively, which follow from the reduction to search problem.

Nonetheless these lower bounds seem hard to improve with the current techniques.
As mentioned before, algorithms for GRAPH-COLLISION have been used as a sub-

routine for constructing algorithms for the TRIANGLE problem, therefore an improved
algorithm for GRAPH-COLLISION would result in an improved algorithm for TRIAN-
GLE. In this paper we show a reduction in the opposite direction—that an improvement
in the lower bound on Q(GRAPH-COLLISION) would imply an improvement in the
lower bound on Q(TRIANGLE).

2 Result

Theorem 1. If there is a graph G = (V,E) with n vertices such that GRAPH-
COLLISIONG has quantum query complexity t then TRIANGLE problem has quantum
query complexity at least Ω(t

√
n).

Proof. We show how to transform the graph G into a graph G′ with 3n vertices so that
it is hard to decide if G′ contains a triangle. More precisely, we construct the graph G′
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in such a way that solving the TRIANGLE problem on G′ is equivalent to solving OR
function from the results of n independent instances of GRAPH-COLLISIONG.

First, we want to get rid of any triangles in G, therefore we transform G into an
equivalent bipartite graph G2 = (V2, E2) with 2n vertices by setting V2 = {v1, v2 |
v ∈ V } and E2 = {(x1, y2) | (x, y) ∈ E}. The graph G2 is equivalent to G in the
following sense—if we mark the vertices v1 and v2 in G2 for every marked vertex v in
G, then G2 has a collision iff G has a collision. However, the graph G2 does not contain
any triangle (since it is bipartite).

Next, we add n isolated vertices z1, . . . , zn to G2 thereby obtaining a graph G′. Let
f1, . . . , fn : V → {0, 1} be the colorings from n independent GRAPH-COLLISIONG

instances. We add the edges (zi, v1) and (zi, v2) to G′ iff v ∈ V is marked by the
respective coloring, i.e., iff fi(v) = 1.

See Fig. 1 for an example.
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Fig. 1. Graph G and the resulting graph G′

The only possible triangles in the graph G′ can be of the form {zi, v1, w2} for some
i ∈ {1, . . . , n} and v, w ∈ V . Moreover, there is a triangle {zi, v1, w2} iff fi is such
coloring that G has a collision (v, w), i.e., iff fi(v) = fi(w) = 1. Therefore detecting a
triangle in G′ is essentially calculating OR function from the results of n instances of
GRAPH-COLLISIONG.

We now use the fact that OR function requires Ω(
√
n) queries, the assumption that

GRAPH-COLLISIONG requires t queries and the Theorem 1.5. from Reichardt (2011):

Theorem 2. Let f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1}. Then

Q(f • g) = Θ(Q(f)Q(g)),

where (f • g)(x) = f(g(x1, . . . , xm), . . . , g(x(n−1)m+1, . . . , xnm)).
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Setting f = OR and g = GRAPH-COLLISIONG gives the desired bound. ut

As the next corollary shows, a better lower bound on GRAPH-COLLISION implies
a better lower bound on the TRIANGLE problem.

Corollary 1. If Q2(GRAPH-COLLISION) = ω(
√
n) then Q2(TRIANGLE) = ω(n).
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