
Baltic J. Modern Computing, Vol. 4 (2016), No. 4, pp. 736–752
DOI: http://dx.doi.org/10.22364/bjmc.2016.4.4.11

The Kahr–Moore–Wang Class Contains
Untestable Properties

Charles JORDAN? and Thomas ZEUGMANN??

Division of Computer Science, Hokkaido University, N-14, W-9, Sapporo, Japan

skip@ist.hokudai.ac.jp, thomas@ist.hokudai.ac.jp

Abstract. Property testing is a kind of randomized approximation in which one takes
a small, random sample of a structure and wishes to determine whether the struc-
ture satisfies some property or is far from satisfying the property. We focus on the
testability of classes of first-order expressible properties, and in particular, on the clas-
sification of prefix-vocabulary classes for testability. The main result is the untestability
of [∀∃∀, (0, 1)]=. We also show that this class remains untestable without equality in
at least one model of testing. These classes are well-known and (at least one is) min-
imal for untestability. We discuss what is currently known about the classification for
testability and briefly compare it to other classifications.

Keywords: property testing, logic, randomized algorithms, Kahr–Moore–Wang class

1 Introduction

Testing a property can be viewed as a form of approximation where we trade
accuracy for efficiency. As far as we are aware, de Leeuw et al. (1956) first formal-
ized probabilistic machines. They showed that such machines cannot compute
uncomputable properties under reasonable assumptions, but mention the possi-
bility that probabilistic machines could perhaps be more efficient than determin-
istic machines. This topic attracted considerable attention including Gill (1977).
Early examples of such results were presented by Freivalds (1977), (1979) in-
cluding his matrix multiplication checker.

In property testing, we take a random sample of some large structure and wish
to distinguish between the case that it has some desired property and the case
? Supported by JSPS Grant Nos. 15H00847, ‘Exploring the Limits of Computation’

(ELC), and 16H02785.
?? Supported by MEXT Grant-in-Aid for Scientific Research on Priority Areas under

Grant No. 21013001.

The Kahr–Moore–Wang Class Contains Untestable Properties 737

that it is far from having the property. We focus on the testability of first-order
expressible properties, and in particular on the classification of prefix-vocabulary
classes of first-order logic for testability.

Rubinfeld and Sudan (1996) and Blum et al. (1993) introduced the notion of
property testing in the context of formal verification. The basic idea was soon
extended by Goldreich et al. (1998), who represented graphs as binary functions
and focused on testing graph properties. We omit a detailed history of testing,
see the introduction to testing graph properties by Goldreich (2010), two surveys
by Ron (2008), (2009), and older surveys by Fischer (2001) and Ron (2001).

We are particularly interested in the testability of properties expressible in
subclasses of first-order logic, and review relevant work in Subsection 1.1.

Here, we show that there exist untestable graph properties expressible with
quantifier prefix ∀∃∀ when equality is allowed (see Section 3 for a formal state-
ment). In addition, we use a variation of that proof to show that this prefix
remains untestable in at least one of our models even when equality is forbid-
den. We suspect that the class is untestable without equality in all of our models.

Taking into account the related work described in Subsection 1.1 and using
the notation of Definition 7, the current classification for testability is the fol-
lowing (cf. Jordan and Zeugmann (2012)). We omit the result for [∀∃∀, (0, 1)]
because it may depend on the choice of model.

– Testable classes
1. Monadic first-order logic: [all, (ω)]=.
2. Ackermann’s class with equality: [∃∗∀∃∗, all]=.
3. Ramsey’s class: [∃∗∀∗, all]=.

– Untestable classes
1. [∀3∃, (0, 1)]=.
2. [∀∃∀, (0, 1)]=.

We are especially interested in determining the testability of variants of the
Gödel class (i.e., classes whose prefix contains at least ∀2∃) as this would suffice to
complete the classification for the special case of predicate logic with equality.
The above classification is consistent with several other well-known classifica-
tions, such as that for the finite model property (see, e.g., Chapter 6 of Börger
et al. (1997), for docility (or finite satisfiability, see Kolaitis and Vardi (2000))
and for associated 0-1 laws for fragments of existential second-order logic (see
Kolaitis and Vardi (2000)). It would be interesting to know if the classification
for testability coincides with one of these classifications.

The rest of the paper is organized as follows: First, we review related work in
Subsection 1.1. Definitions and notation are in Section 2. The proof of untesta-
bility for [∀∃∀, (0, 1)]= is presented in Section 3, while the case without equality
is considered in Section 4.

1.1 Related Work

Alon et al. (2001) proved that the regular languages are testable, implying that
monadic first-order is testable given the well-known results of Büchi (1960) or

738 Jordan and Zeugmann

McNaughton and Papert (1971). Alon et al. (2000) were the first to directly
consider the classification problem for testability, restricted to properties of
undirected, loop-free graphs. They showed the testability of all such proper-
ties expressible by prenex sentences with quantifier prefix ∃∗∀∗, and also proved
that there exists an untestable property expressible with quantifier prefix ∀∗∃∗
(examining the proof shows that ∀12∃5 suffices).

These are (restrictions of) well-known classes. Jordan and Zeugmann (2012)
extended the positive result to the full Ramsey’s class ([∃∗∀∗, all]=), proved the
testability of Ackermann’s class with equality ([∃∗∀∃∗, all]=), and sharpened the
negative result to prefixes ∀3∃, ∀2∃∀, ∀∃∀∃ and ∀∃∀2 (on directed graphs with
equality). This paper sharpens these last three prefixes and proves that ∀∃∀ is
a minimal prefix class for untestability. This particular class is the restriction of
the Kahr–Moore–Wang (1962) class to directed graphs.

It is easy to show that [∀∃∀, (0, 1)] (even without equality) has infinity ax-
ioms1. Vedø (1997) showed that a 0-1 law does not hold for second-order existen-
tial logic when the first-order part is in this class (again, even without equality).

The current paper sharpens some (prefixes ∀2∃∀, ∀∃∀∃, ∀∃∀2) of the results
of Jordan and Zeugmann (2012) and so we briefly outline the improvement that
allows us to minimize the prefix considered. The untestable property considered
there is closely related to the untestable property of Alon et al. (2000), but mod-
ified to minimize the number of quantifiers used. These properties are essentially
first-order expressible versions of checking an explicitly given isomorphism be-
tween two graphs2. In fact, restricting the properties to checking an explicitly
given isomorphism between undirected, bipartite graphs maintains hardness for
testing. See Figure 1(a) for an example where the goal is to check whether the
directed edges give an isomorphism between the two bipartite subgraphs. How-
ever, graph isomorphism seems to require one to discuss at least four vertices
simultaneously (because one wishes to state that an edge is present iff its image
is present and the edges are disjoint in general).

(a) A graph with Pb (b) A graph with Pe (c) A graph with Pf

Fig. 1. Properties Pb, Pe and Pf

1 An infinity axiom is a sentence that has only infinite models.
2 Graph isomorphism is generally hard for testing, cf. Fischer and Matsliah (2008).

The Kahr–Moore–Wang Class Contains Untestable Properties 739

Sharing one of the partitions would seem to remove the need for four quan-
tifiers. See Figure 1(b) for an example where the goal is again to check whether
the directed edges give an isomorphism between the two halves of the graph.
The resulting property is perhaps closer to a variant of function isomorphism,
e.g., for functions f, g : {1, . . . , n} → {0, 1}n where the bit i of f(j) is 1 if there
is an edge from j in the leftmost partition to i in the middle partition and like-
wise for g(j) and the right partition. This property is not first-order expressible,
but there is a somewhat tedious first-order encoding that is sufficiently similar.
Figure 1(c) gives an example of this first-order property; details are in Section 3.

The connection with function isomorphism allows us to leverage recent work
on the testability of (Boolean) function isomorphism and use recent ideas and
techniques from Alon and Blais (2010) to prove Lemma 2. In Section 4, we use
a variation of this property that removes the use of equality.

2 Preliminaries

The goal in property testing is always to distinguish structures that have some
property from those that are far from having the property. Here, we focus on
first-order expressible properties of directed graphs and so we begin with the
necessary definitions.

Definition 1. A graph is an ordered pair G = (V,E), where V is a finite set
and E ⊆ V × V a binary relation defined on V .

Let N = {1, 2, 3, . . .} denote the set of all natural numbers. We generally
identify V with the first n natural numbers [n] := {1, . . . , n} and call #(G) :=
|V | = n the size of a graph G. Furthermore, let Gn be the set of graphs of size n
and let G := ∪n≥0Gn be the set of all (finite) graphs. Note that our graphs are
directed and may contain loops.

A property P ⊆ G of graphs is any set of graphs. We are particularly inter-
ested in first-order expressible properties. Our logic is a basic first-order predicate
logic with equality. There are no function or constant symbols. We focus on first-
order properties of graphs, and so the only predicate symbol (besides the special
symbol =) is the binary edge symbol E.

A sentence ϕ defines a property in the natural way,

Pϕ := {G | G ∈ G, G |= ϕ} .

We require a distance between graphs and properties, which we define in the
following way: We denote the symmetric difference of sets M and N by M 4N
and let EA and EB be the edge predicates of graphs A and B, respectively.

Definition 2. Let n ∈ N, let A = (V,EA) and B = (V,EB) be two graphs
defined such that |V | = n. The distance between A and B is

dist(A,B) := |EA 4 EB |/n2 .

740 Jordan and Zeugmann

The distance generalizes to properties, dist(A,P) := minB∈P dist(A,B). Def-
inition 2 results in a typical model of testing based on the dense graph model
introduced by Goldreich et al. (1998). We now proceed to the remaining testing
definitions.

Definition 3. An ε-tester for property P is a randomized algorithm that makes
queries for the existence of edges in a graph A. The tester must accept with
probability at least 2/3 if A has P and must reject with probability at least 2/3
if dist(A,P) ≥ ε.

Definition 4. Property P is called testable if there is some function c(ε) and
for every ε > 0, an ε-tester for P such that the tester makes at most c(ε) queries.

Note that the query complexity is bounded by a function that does not
depend on the size of the graphs. We allow different ε-testers for each ε > 0 and
so this is a non-uniform model. However, we are focused on proving untestability
and our results hold even in the non-uniform case.

Next, we will define indistinguishability, a relation on properties introduced
by Alon et al. (2000) that preserves testability. However, testers can focus on
loops and distinguish between structures that have an asymptotically small dif-
ference (because the number of loops is asymptotically dominated by the number
of non-loops). We therefore begin with an alternative definition of distance. In
the following, ⊕ denotes exclusive-or.

Definition 5. Let n ∈ N, n ≥ 2, and let U be any universe such that |U | = n.
Furthermore, let A = (U,EA) and B = (U,EB) be any two graphs with uni-
verse U . For notational convenience, let

d1(A,B) :=
∣∣{x | x ∈ U and EA(x, x)⊕ EB(x, x)

}∣∣
n

, and

d2(A,B) :=
∣∣{(x1, x2) | x1, x2 ∈ U, x1 6= x2, and EA(x1, x2)⊕ EB(x1, x2)

}∣∣
n(n− 1) .

The mr-distance between A and B is

mrdist(A,B) := max {d1(A,B), d2(A,B)} .

Definition 6. Two properties P and Q of graphs are indistinguishable if they
are closed under isomorphisms and for every ε > 0 there exists an Nε such that
for any graph A with universe of size n ≥ Nε, if A has P then mrdist(A,Q) ≤ ε
and if A has Q then mrdist(A,P) ≤ ε.

An important property of indistinguishability is that it preserves testability.
The proof of the following is analogous to that given in Alon et al. (2000).

Lemma 1. If P and Q are indistinguishable, then P is testable if and only if Q
is testable.

The Kahr–Moore–Wang Class Contains Untestable Properties 741

In fact, as the proof constructs an ε-tester for P by iterating an ε/2-tester
for Q three times, one can also relate the query complexities of P and Q.

Definition 5 (mrdist) is a distance measure that can be used in place of
Definition 2 (dist) when defining testability. The resulting model makes testing
strictly more difficult than using dist, see Jordan and Zeugmann (2012). We
refer to properties that are testable using mrdist as mr-testable. In Section 3,
we prove the untestability of ∀∃∀ with equality in both models3. However, our
proof for the class without equality (cf. Section 4) is restricted to proving it is
not mr-testable. We suspect that this restriction can be removed.

Many proofs of hardness for testability rely on Yao’s Principle (1977), an
interpretation of von Neumann’s minimax theorem for randomized computation.
For completeness, we state the version that we use.

Principle 1 (Yao’s Principle). If there is an ε ∈ (0, 1) and a distribution
over Gn such that all deterministic testers with complexity c have an error-rate
greater than 1/3 for property P , then property P is not testable with complexity c.

The definition of “testable” is of course our usual one involving random
testers. In general, one seeks to show that for sufficiently large n and some
increasing function c := c(n), there is a distribution of inputs such that all
deterministic testers with complexity c have error-rates greater than 1/3.

Finally, we briefly define the notation we use to specify prefix-vocabulary
classes. See Börger et al. (1997) for details and related material.

Definition 7. Let Π be a string over the four-character alphabet {∃,∀,∃∗,∀∗}.
Then [Π, (0, 1)]= is the set of sentences in prenex normal form which satisfy the
following conditions:

1. The quantifier prefix is contained in the regular language given by Π (for
technical reasons, one usually treats ∃ and ∀ as matching the relevant quan-
tifier and also the empty string).

2. There are zero (0) monadic predicate symbols.
3. In addition to the equality predicate (=), there is at most one (1) binary

predicate symbol.
4. There are no other predicate symbols.

That is, [Π, (0, 1)]= is the set of prenex sentences in the logic defined above whose
quantifier prefixes match Π. If the second component of the specification is all,
then conditions two and three are removed (any number of predicate symbols
with any arities are acceptable).

3 The Case with Equality

Our goal in this section is Theorem 1.
3 The proof assumes the use of dist. However, testing with mrdist is strictly more

difficult and so the proof also implies untestability using mrdist.

742 Jordan and Zeugmann

Theorem 1. The prefix class [∀∃∀, (0, 1)]= is not testable.

We begin by outlining the proof. First, we define Pf , a property expressible
in the class [∀∃∀, (0, 1)]= which, as described in Subsection 1.1, is in some sense
a somewhat tedious but first-order expressible variant of checking (explicit) iso-
morphism of undirected bipartite graphs in tripartite graphs. We then define a
variant P2, in which the isomorphism is not explicitly given and we must test
whether there exists some suitable isomorphism. Although this increases the
complexity of deciding the problem from checking an isomorphism to finding
one, it does not change hardness for testing. We show that P2 and Pf are in-
distinguishable and so P2 is testable iff Pf is testable. Finally, we prove directly
that P2 is untestable, even with o(

√
n) queries, using an argument based on a

recent proof by Alon and Blais (2010).

Proof (Theorem 1). We begin by defining Pf . Formally, it is the set of graphs
satisfying the following conjunction of four clauses (see Figure 1(c) for an exam-
ple):

∀x∃y∀z : { ((¬E(x, x) ∧ ¬E(z, z) ∧ x 6= z)→ E(x, z))
∧ (E(x, x)→ (E(x, y) ∧ ¬E(y, y) ∧ [(¬E(z, z) ∧ E(x, z))→ y = z]))
∧ (¬E(x, x)→ (E(y, x) ∧ E(y, y) ∧ [(E(z, z) ∧ E(z, x))→ y = z]))
∧ ((E(x, x) ∧ E(z, z))→ [¬E(y, y) ∧ E(x, y) ∧ (E(x, z)↔ E(y, z))]) }

A graph satisfies this formula if the following conditions are all satisfied:

1. The nodes without loops form a complete subgraph.
2. For every node x with a loop, there is exactly one y without a loop such that

there is an edge from x to y.
3. For every node y without a loop, there is exactly one x with a loop such that

there is an edge from x to y.
4. For all nodes x, z with loops, and y the unique node without a loop such

that E(x, y), it holds that E(x, z) iff E(y, z).

Property P2 below is similar to Pf , except that the isomorphism is not ex-
plicitly given.

Definition 8. A graph G = (V,E) has P2 if it satisfies the following conditions:

1. There is a partition4 V1, V2 ⊆ V such that |V1| = |V2|, there are loops
(E(x, x)) on all x ∈ V1 and no loops (¬E(x, x)) for all x ∈ V2.

2. The nodes without loops form a complete subgraph.
3. There are no edges from a node with a loop to a node without a loop.
4. There exists a bijection b : V1 → V2 such that if x, z have loops, then E(x, z)

iff E(b(x), z).

It is not difficult to show that properties Pf and P2 are indistinguishable.
4 V1, V2 partition V if V1 ∩ V2 = ∅ and V1 ∪ V2 = V .

The Kahr–Moore–Wang Class Contains Untestable Properties 743

Claim 1. Properties Pf and P2 are indistinguishable.

Proof (Claim 1). Let ε > 0 be arbitrary and let Nε = ε−1. Assume that G has
property P2 and that #(G) > Nε. We will show that mrdist(G,Pf) < ε.

Graph G has P2 and so there is a bijection satisfying Condition 4 of Defini-
tion 8. We therefore add the edges E(i, b(i)) making the isomorphism (from V1
to V2) explicit. The resulting graph Gf has Pf .

We have made exactly n/2 modifications, all to non-loops, and n− 1 ≥ Nε,
so mrdist(G,Pf) ≤ mrdist(G,Gf) = 1/2(n− 1) < ε.

The converse is analogous; given a G that has Pf , simply remove the n/2
edges from loops to non-loops after using them to construct a suitable bijection b.

ut

Properties Pf and P2 are indistinguishable and so (by Lemma 1), it suffices
to show that P2 is is untestable. Lemma 2 below is stronger than necessary, and
actually implies a Ω(

√
n) lower bound for testing Pf per the discussion following

Lemma 1. ut

Lemma 2. Fix 0 < ε < 1/2. Any ε-tester for P2 must perform Ω(
√
n) queries.

Proof (Lemma 2). The proof is via Yao’s Principle (cf. Principle 1), and so we
define two distributions, Dno and Dyes and show that all deterministic testers
have an error-rate greater than 1/3 for property P2 when the input is chosen
randomly from Dno with probability 1/2 and from Dyes with probability 1/2.

In the following, we consider a distribution over graphs of sufficiently large
size 2n, and an arbitrarily fixed partition of the vertices into V1 and V2 such
that |V1| = |V2| = n (e.g., let the vertices be the integers V := [2n], V1 := [n],
and V2 := V \V1).

We begin with Dno, defined as the following distribution:

1. Place a loop on each vertex in V1 and place no loops in V2.
2. Place each possible edge (except loops) in V1 × V1 and V2 × V1 uniformly

and independently with probability 1/2.

That is, Dno is the uniform distribution of graphs (with this particular partition)
satisfying the first three conditions of P2.

Next, we define Dyes as the following:

1. Choose uniformly a random bijection π : V1 → V2.
2. Place a loop on each vertex in V1 and place no loops in V2.
3. For each possible edge (i, j 6= i) ∈ V1 × V1, uniformly and independently

place both (i, j) and (π(i), j) with probability 1/2 (otherwise place neither).

It is easy to see that Dyes generates only positive instances. Next, we show
that Dno generates negative instances with high probability.

Lemma 3. Fix 0 < ε < 1/2 and let n be sufficiently large. Then,

Pr
G∼Dno

[dist(G,P2) ≤ ε] = o(1) .

744 Jordan and Zeugmann

Proof (Lemma 3). The distribution Dno is the uniform distribution over graphs
of size 2n with a particular partition satisfying the first three conditions of P2.
Let Gε be the set of graphs G′ of size 2n satisfying these conditions and such
that dist(G′, P2) ≤ ε (regardless of the partition).

Counting the number of such graphs shows

|Gε| ≤
(

2n
n

)
2n(n−1)n!

dε2n2e∑
i=0

(
2n2

i

)
≤
(

2n
n

)
2n(n−1)n!2H(ε)2n2

,

where H(ε) := −ε log ε − (1 − ε) log(1 − ε) is the binary entropy function (cf.
Lemma 16.19 in Flum and Grohe (2006) for the bound on the summation).

Distribution Dno produces each of 2n(n−1)2n2 graphs with equal probability,
and so

Pr
G∼Dno

[dist(G,P2) ≤ ε] ≤ |Gε|
2n(n−1)+n2 ≤

(
2n
n

)
n!2H(ε)2n2

/2n
2

≈ 4nn!2H(ε)2n2

√
πn2n2 = o(1) .

The approximation is asymptotically tight, which suffices. ut

We have shown that Dyes generates only positive instances and that (with
high probability) Dno generates instances that are ε-far from P2. Next, we show
that (again, with high probability) the two distributions look the same to testers
making only o(

√
n) queries.

The proof is similar to a proof by Alon and Blais (2010). We begin by defining
two random processes, Pno and Pyes, which answer queries from testers and
generate instances according to Dno and Dyes, respectively.

Process Pno is defined in the following way:

1. Choose uniformly a random bijection π : V1 → V2.
2. Intercept all queries from the tester and respond as follows:

(a) To queries E(i, i) with i ∈ V1: respond 1.
(b) To queries E(i, i) with i ∈ V2: respond 0.
(c) To queries E(i, j) with i ∈ V1 and j ∈ V2: respond 0.
(d) To queries E(i, j) with i 6= j ∈ V1: quit if we have queried E(π(i), j),

otherwise respond 1 or 0 randomly with probability 1/2 in each case.
(e) To queries E(i, j) with i ∈ V2 and j ∈ V1: quit if we have queried

E(π−1(i), j), otherwise respond 1 or 0 randomly with probability 1/2 in
each case.

3. When the process has quit or the tester has finished its queries, complete
the generated instance in the following way: First, fix the edges that were
queried according to our answer. Next, place loops on each vertex in V1, no
loops in V2 and no edges from V1 to V2. Place each remaining possible edge,
place it (uniformly, independently) with probability 1/2, ignoring π.

The Kahr–Moore–Wang Class Contains Untestable Properties 745

We define Pyes in the same way, except for the final step. When Pyes quits or
the tester finishes, it fixes the edges that were queried according to its answers,
and also fixes the corresponding edges (when relevant) according to π. More
precisely, for each fixed E(i, j) with i 6= j ∈ V1, we also fix E(π(i), j) and for
fixed E(i, j) with i ∈ V2, j ∈ V1, we also fix E(π−1(i), j), in both cases the same
as our response to E(i, j) (not randomly). The remaining edges are placed as
in Pno.

Note that Pno generates instances according to Dno and Pyes generates in-
stances according to Dyes. In addition, Pyes and Pno behave identically until they
quit or answer all queries. In particular, if a tester does not cause the process to
quit, the distribution of responses of its queries is identical for the two processes.
We show that, with high probability, a tester that makes o(

√
n) queries does not

cause either process to quit.

Lemma 4. Let T be a deterministic tester which makes o(
√
n) queries, and

let T interact with Pyes or Pno. In both cases,

Pr [T causes the process to quit] = o(1) .

Proof (Lemma 4). The condition causing the process to quit is identical in Pyes
and Pno. The probability that any pair of queries E(i, j) and E(i′, j′) cause the
process to quit is at most

Pr [i′ = π(i) or i = π(i′)] ≤ (n− 1)!
n! = 1/n .

The tester makes at most o(
√
n) queries and so

Pr [T causes the process to quit] ≤ o(
√
n)2O(1/n) = o(1) .

ut

Any deterministic tester T which makes o(
√
n) queries can only distinguish

between Dyes and Dno with probability o(1), but it must accept Dyes with prob-
ability 2/3, and reject Dno with probability 2/3− o(1). It is impossible for T to
satisfy both conditions, and the lemma follows from Principle 1. ut

4 The Case without Equality

In Section 3, we proved that [∀∃∀, (0, 1)]= is untestable. The formula proved
untestable contains equality, and so we now consider the class without equality.
The main result in this section is Theorem 2, stating that [∀∃∀, (0, 1)] is not mr-
testable. Although this seems to be a tradeoff between the presence of equality
and the “degree” of testability, we suspect that this class is not testable under
either definition. The proof is very similar to the proof above.

Theorem 2. There are properties in [∀∃∀, (0, 1)] that are not mr-testable, even
given o(

√
n) queries.

746 Jordan and Zeugmann

Proof (Theorem 2). The proof is similar to the proof of Theorem 1. We will
begin by defining a property Pf that is expressible in our class. We will then
define a property P which is indistinguishable from Pf , and use Yao’s Principle
to show that P is not mr-testable.

A graph has property Pf if it satisfies the following conditions:

1. For every x with a loop, there is an outgoing edge to at least one y without
a loop.

2. For every x without a loop, there is an incoming edge from at least one y
without a loop.

3. There are no edges between vertices without loops.
4. For every x with a loop, there is an edge to at least one y without a loop

such that for all z with loops, the following holds: There is a directed edge
from y to z iff there are an odd number5 of directed edges between x and z.

5. For every x without a loop, there is an incoming edge from at least one y
with a loop such that for all z with loops, the following holds: There is a
directed edge from x to z iff there are an odd number of directed edges
between y and z.

More formally, Pf is the set of graphs that satisfy the following formula:

∀x∃y∀z : { (E(x, x)→ (¬E(y, y) ∧ E(x, y)))
∧ (¬E(x, x)→ (E(y, y) ∧ E(y, x)))
∧ ((¬E(x, x) ∧ ¬E(z, z))→ ¬E(x, z))
∧ ((E(x, x) ∧ E(z, z))→ ((E(x, z)⊕ E(z, x))↔ E(y, z)))
∧ ((¬E(x, x) ∧ E(z, z))→ ((E(y, z)⊕ E(z, y))↔ E(x, z))) }

Next, we define a property P that we will show to be indistinguishable
from Pf . A graph has property P if it satisfies the following conditions:

1. There is a partition of the vertices into (non-empty) V1, V2.
2. All vertices in V1 have loops and no vertices in V2 have loops.
3. There are no edges in V2 × V2.
4. There exist functions f : V1 → V2 and g : V2 → V1 satisfying the following:

For all x, z ∈ V1, there is an edge from f(x) to z iff there are an odd number
of directed edges between x and z. For all x ∈ V2 and z ∈ V1, there is an
edge from x to z iff there are an odd number of directed edges between g(x)
and z.

It is not difficult to show that P and Pf are indistinguishable.

Lemma 5. Properties P and Pf are indistinguishable.
5 There is an odd number of edges between x and z if there is a directed edge from x

to z or from z to x, but not both. Note that a loop is counted as an even number of
edges.

The Kahr–Moore–Wang Class Contains Untestable Properties 747

Proof (Lemma 5). Let G be graph with property Pf and let ε > 0 be arbitrarily
fixed. Then, G also has property P , that is mrdist(G,P) = 0. In the other
direction, if the graph G has property P , then we can satisfy property Pf by
adding at most O(n) (non-loop) edges from x to f(x) and g−1(y) to y. Thus,
mrdist(G,Pf) ≤ O(n)/Θ(n2) = o(1) < ε for sufficiently large graphs. ut

Indistinguishability preserves testability (cf. Lemma 1) and so it suffices to
show that P is untestable. Lemma 6 below is stronger than necessary and ac-
tually implies a Ω(

√
n) lower bound for testing Pf per the discussion following

Lemma 1. ut

Lemma 6. There is an 0 < ε < 1/2 such that any mr-style ε-tester for P must
perform Ω(

√
n) queries.

Proof (Lemma 6). The proof is via Yao’s Principle (cf. Principle 1) and so we
must define a distribution of inputs and show that all deterministic ε-testers
have an error rate greater than 1/3 for P on inputs from the distribution. For
our distribution, we will draw from a distribution Dno with probability 1/2 and
from a distribution Dyes with probability 1/2.

In the following, we consider distributions over graphs with sufficiently large
vertex set [2n] and an arbitrarily fixed partition of the vertices into V1 and V2
such that |V1| = |V2| = n.

We begin with Dno, defined as the following distribution:

1. Place loops on all vertices in V1 and no loops in V2.
2. For each ordered pair in V1×V2, place a directed edge with probability 1/2.
3. For each unordered pair {i, j}, i, j ∈ V1 and i 6= j, with probability 1/2 place

no edge, and with probability 1/2 place a single directed edge, from i to j
if i ≤ j and from j to i if j ≤ i.

4. For each ordered pair in V2×V1, with probability 1/2 place the directed edge
and with probability 1/2 do not.

Note that Dno is the uniform distribution of graphs that satisfy the following
conditions:

1. The vertex set is [2n] and the vertices with loops follow the given partition.
2. There are no undirected edges between vertices with loops (when a loop is

not considered an undirected edge).
3. There are no edges between vertices without loops.
4. All directed edges (i, j) between vertices with loops satisfy i ≤ j.

Next, we define Dyes.

1. Place loops on all vertices in V1 and no loops in V2.
2. For each ordered pair in V1×V2, place a directed edge with probability 1/2.
3. Choose uniformly a random bijection π : V1 → V2.
4. For each unordered pair in (i, j 6= i) ∈ V1 × V1, with probability 1/2 do

the following: Place directed edges (π(i), j) and (π(j), i), and then place
either (i, j) (if i ≤ j) or (j, i) (if j ≤ i). Otherwise, do not place any edges
right now.

748 Jordan and Zeugmann

Distribution Dyes generates only positive instances for P . Now, we show that
with high probability, Dno generates instances that are ε-far.
Lemma 7. Let ε > 0 be sufficiently small and n be sufficiently large. Then,

Pr
G∼Dno

[mrdist(G,P) ≤ ε] = o(1) .

Proof (Lemma 7). Distribution Dno is the uniform distribution over graphs of
size 2n with a fixed partition V1, V2 satisfying the following:
1. All vertices in V1 have loops and no vertices in V2 have loops.
2. There are no undirected edges between vertices with loops.
3. There are no edges between vertices without loops.
4. All directed edges (x, y) between vertices with loops satisfy x ≤ y.

We want a small upper-bound on the probability of a graph being drawn
from Dno that is not ε-far from P . Since Dno is the uniform distribution over a
certain class of graphs, this probability is∣∣{G | G ∼ Dno, mrdist(G,P) ≤ ε}

∣∣∣∣{G | G ∼ Dno}
∣∣ .

The number of distinct graphs produced by Dno is 2(n
2)22n2 = 22.5n2−n/2.

Let G2n be the set of graphs with vertices [2n] that have property P and are
not ε-far from all graphs in Dno. Then,

Pr
G∼Dno

[mrdist(G,P) ≤ ε] ≤
|G2n|

∑b4εn2c
i=0

(4n2

i

)
22.5n2−n/2 . (1)

Note that any graph G that is not ε-far from all graphs in Dno must have
loops on n− εn ≤ j ≤ n+ εn vertices. Therefore,

|G2n| ≤
n+εn∑
j=n−εn

(
2n
j

)
4(j

2)2j(2n−j)j2n−j

≤ (2εn+ 1)
(

2n
n

)
22(n+εn

2)+(n+εn)2+(n+εn) log (n+εn) . (2)

Using the (asymptotically tight) estimate
(2n
n

)
≈ 4n/

√
πn, we see that (2) is

approximately
(2εn+ 1)√

πn
22n+(n+εn)2+(n+εn)(n+εn−1)+(n+εn) log(n+εn) .

Combining this with Inequality (1) and using that
∑bε4n2c
i=0

(4n2

i

)
≤ 2H(ε)4n2 ,

where H(ε) = −ε log ε − (1 − ε) log(1 − ε) is the binary entropy function (cf.
Lemma 16.19 in Flum and Grohe (2006)), we get

Pr
G∼Dno

[mrdist(G,P) ≤ ε]

≤ 2εn+ 1√
πn

2−n
2/2+4H(ε)n2+3/2n+2(ε2+ε)n2+εn+(n+εn) log (n+εn) = o(1) ,

because the −n2/2 in the exponent dominates when ε is sufficiently small. ut

The Kahr–Moore–Wang Class Contains Untestable Properties 749

We have shown that Dyes generates only positive instances and, with high
probability, Dno generates ε-far instances. Next, we show that, with high proba-
bility, the two distributions look identical to testers making only o(

√
n) queries.

The proof is similar to a proof by Alon and Blais (2010).
We begin by defining two random processes, Pno and Pyes, which answer

queries from testers and generate instances according to Dno and Dyes, respec-
tively.

Process Pno is defined in the following way:

1. Choose uniformly a random bijection π : V1 → V2.
2. Intercept all queries from the tester and respond as follows:

(a) To queries E(i, i) with i ∈ V1, respond 1.
(b) To queries E(i, i) with i ∈ V2, respond 0.
(c) To queries E(i, j) with i ∈ V2, j ∈ V2, respond 0.
(d) To queries E(i, j) with i ∈ V1, j ∈ V2, randomly respond 1 or 0 with

probability 1/2 in each case.
(e) To queries E(i, j) with i > j ∈ V1, respond 0.
(f) To queries E(i, j) with i < j ∈ V1, quit if we have queried E(π(i), j)

or E(π(j), i). Otherwise randomly respond 1 or 0 with probability 1/2
in each case.

(g) To queries E(i, j) with i ∈ V2, j ∈ V1, quit if we have queried E(π−1(i), j)
or E(j, π−1(i)). Otherwise randomly respond 1 or 0 with probability 1/2
in each case.

3. When the process has quit, or the tester has finished its queries, complete
the generated instance in the following way:
First, fix the edges that were queried according to our answers. Next, place
loops on all vertices in V1, no loops in V2 and no edges internal to V2. Place
each edge in V1 × V2 uniformly and independently with probability 1/2. For
each remaining possible edge (i, j) ∈ V1 × V1, place the edge uniformly and
independently with probability 1/2 if i < j and do not place the edge if
i > j. For each remaining possible edge in V2× V1, place the edge uniformly
and independently with probability 1/2 (ignoring π).

We define Pyes in the same way, except for the final step. When Pyes quits or
the tester finishes, it fixes the edges that were queried according to its answers,
and also fixes the corresponding edges (when relevant) according to π. More
precisely, for each fixed E(i, j) with i 6= j ∈ V1, we also fix E(π(i), j) and
E(j, π(i)), and for fixed E(i, j) such that i ∈ V2, j 6= π−1(i) ∈ V1, we also fix
E(π−1(i), j) and E(j, π−1(i)), in both cases according to our previous decision.
The remaining edges are placed as in Pno.

Note that Pno generates instances according to Dno and Pyes generates in-
stances according to Dno. In addition, Pyes and Pno behave identically until they
quit or answer all queries. In particular, if a tester does not cause the process to
quit, the distribution of responses to queries is identical for the two processes.
We show that, with high probability, a tester that makes o(

√
n) queries does not

cause either process to quit.

750 Jordan and Zeugmann

Lemma 8. Let T be a deterministic tester which makes o(
√
n) queries, and

let T interact with Pyes or Pno. In both cases,

Pr[T causes the process to quit] = o(1) .

Proof (Lemma 8). The condition causing the process to quit is identical in Pyes
and Pno. The probability that any fixed pair of queries E(i, j) and E(i′, j′) cause
the process to quit is at most

Pr[i′ = π(i) or i′ = π(j)] ≤ 2(n− 1)!
n! = 2/n .

The tester makes at most o(
√
n) queries and so

Pr[T causes the process to quit] ≤ o(
√
n)2O(1/n) = o(1) .

ut

Any deterministic tester T which makes o(
√
n) queries can only distinguish

between Dyes and Dno with probability o(1), but it must accept Dyes with prob-
ability at least 2/3 and reject Dno with probability at least 2/3 − o(1). It is
impossible for T to satisfy both conditions, so the lemma follows from Princi-
ple 1. ut

5 Conclusions

Property testing is a kind of randomized approximation, where we take a small,
random sample of a structure and seek to determine whether the structure has a
desired property or is far from having the property. We focused on the classifica-
tion problem for testability, wherein we seek to determine exactly which prefix
vocabulary classes are testable and which are not.

In particular, we focused on the the testability of first-order properties ex-
pressible with quantifier prefix ∀∃∀. In Section 3, we showed that this prefix can
express untestable (directed) graph properties when equality is available. Then,
in Section 4 we considered the class without equality. There, we showed that
this class remains mr-untestable, however testability using dist remains open.
We suspect that this class remains untestable using dist. These results sharpen
some of the results of Jordan and Zeugmann (2012).

As mentioned in Subsection 1.1, the current classification for testability
closely resembles several other classifications (e.g., those for the finite model
property, docility and associated second-order 0-1 laws) and it would be in-
teresting to determine whether it coincides with one of these. In particular,
determining the testability of variants of the Gödel class would complete the
classification for the special case of predicate logic with equality.

The Kahr–Moore–Wang Class Contains Untestable Properties 751

Acknowledgments

We are very thankful to Rūsiņš Freivalds for hosting us as visitors and for the
many enlightening discussions on probabilistic algorithms we enjoyed during
these stays in Riga. We’re also grateful to Neil Immerman for pointing out that
removing equality in our untestable properties does not really change the “spirit”
of why they are untestable. Section 4 formalizes this for prefix ∀∃∀. We suspect
that the mr-untestable property given there is also untestable when using dist,
and that a similar argument can be used to remove equality from the untestable
property with prefix ∀3∃ given in Jordan and Zeugmann (2012). Finally, we
thank Hiro Ito for pointing out an omission in a previous version of the proof of
Lemma 2 (cf. Jordan and Zeugmann (2011)).

References

Alon, N. and Blais, E. (2010). Testing Boolean function isomorphism. In Approxima-
tion, Randomization, and Combinatorial Optimization, Algorithms and Techniques,
13th International Workshop, APPROX 2010, and 14th International Workshop,
RANDOM 2010, Barcelona, Spain, September 2010, Proceedings, volume 6302 of
Lecture Notes in Computer Science, pages 394–405. Springer.

Alon, N., Fischer, E., Krivelevich, M., and Szegedy, M. (2000). Efficient testing of large
graphs. Combinatorica, 20(4):451–476.

Alon, N., Krivelevich, M., Newman, I., and Szegedy, M. (2001). Regular languages are
testable with a constant number of queries. SIAM J. Comput., 30(6):1842–1862.

Blum, M., Luby, M., and Rubinfeld, R. (1993). Self-testing/correcting with applications
to numerical problems. J. of Comput. Syst. Sci., 47(3):549–595.

Börger, E., Grädel, E., and Gurevich, Y. (1997). The Classical Decision Problem.
Springer-Verlag.

Büchi, J. R. (1960). Weak second-order arithmetic and finite-automata. Z. Math. Logik
Grundlagen Math., 6:66–92.

Fischer, E. (2001). The art of uninformed decisions. Bulletin of the European As-
sociation for Theoretical Computer Science, 75:97–126. Columns: Computational
Complexity.

Fischer, E. and Matsliah, A. (2008). Testing graph isomorphism. SIAM J. Comput.,
38(1):207–225.

Flum, J. and Grohe, M. (2006). Parametrized Complexity Theory. Springer.
Freivalds, R. (1977). Probabilistic machines can use less running time. In Gilchrist, B.,

editor, Information Processing 77, Proceedings of the IFIP Congress 77, Toronto,
Canada, August 8-12, 1977, pages 839–842, North-Holland.

Freivalds, R. (1979). Fast probabilistic algorithms. In Mathematical Foundations of
Computer Science 1979, Proceedings, 8th Symposium, Olomouc, Czechoslovakia,
September 3-7, 1979, volume 74 of Lecture Notes in Computer Science, pages 57–
69. Springer-Verlag.

Gill, J. (1977). Computational complexity of probabilistic Turing machines. SIAM J.
Comput., 6(4):675–695.

Goldreich, O. (2010). Introduction to testing graph properties. Technical Report
TR10-082, Electronic Colloquium on Computational Complexity (ECCC).

Goldreich, O., Goldwasser, S., and Ron, D. (1998). Property testing and its connection
to learning and approximation. J. ACM, 45(4):653–750.

752 Jordan and Zeugmann

Jordan, C. and Zeugmann, T. (2011). Untestable properties in the Kahr–Moore–Wang
class. In Beklemishev, L. D. and de Queiroz, R., editors, Logic, Language, Informa-
tion and Computation, 18th International Workshop, WoLLIC 2011, Philadelphia,
PA, USA, May 18-21, 2011, Proceedings, volume 6642 of Lecture Notes in Artificial
Intelligence, pages 176–186. Springer, 2011.

Jordan, C. and Zeugmann, T. (2012). Testable and untestable classes of first-order
formulae. J. of Comput. Syst. Sci., 78(5):1557–1578.

Kahr, A. S., Moore, E. F., and Wang, H. (1962). Entscheidungsproblem reduced to
the ∀∃∀ case. Proc. Nat. Acad. Sci. U.S.A., 48:365–377.

Kolaitis, P. G. and Vardi, M. Y. (2000). 0-1 laws for fragments of existential second-
order logic: A survey. In Nielsen, M. and Rovan, B., editors, Mathematical Foun-
dations of Computer Science 2000, 25th International Symposium, MFCS 2000,
Bratislava, Slovakia, August/September 2000, Proceedings, volume 1893 of Lecture
Notes in Computer Science, pages 84–98. Springer.

de Leeuw, K., Moore, E.F., Shannon, C. E., and Shapiro, N. (1965). Computability
by probabilistic machines. In Shannon, C. E. and McCarthy, J., editors, Automata
Studies, pages 183–212. Princeton University Press, Princeton, NJ.

McNaughton, R. and Papert, S. (1971). Counter-Free Automata. M.I.T. Press.
Ron, D. (2001). Property testing. In Rajasekaran, S., Pardalos, P. M., Reif, J. H.,

and Rolim, J., editors, Handbook of Randomized Computing, volume II, chapter 15,
pages 597–649. Kluwer Academic Publishers.

Ron, D. (2008). Property testing: A learning theory perspective. Found. Trends Mach.
Learn., 1(3):307–402.

Ron, D. (2009). Algorithmic and analysis techniques in property testing. Found. Trends
Theor. Comput. Sci., 5(2):73–205.

Rubinfeld, R. and Sudan, M. (1996). Robust characterizations of polynomials with
applications to program testing. SIAM J. Comput., 25(2):252–271.

Vedø, A. (1997). Asymptotic probabilities for second-order existential Kahr-Moore-
Wang sentences. J. Symbolic Logic, 62(1):304–319.

Yao, A. C.-C. (1977). Probabilistic computations: Toward a unified measure of com-
plexity. In 18th Annual Symposium on Foundations of Computer Science, pages
222–227. IEEE Computer Society.

Received August 25, 2016 , accepted October 4, 2016

