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Abstract. Motivated by applications to relational databases, N. Alechina proposed in 2000 a
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1 Introduction

In 80-ies, various first-order logics were widely used for understanding relational data-
bases and turned out, in particular, to be a useful tool of analysis of the concept of
functional dependency between attributes in them. A natural mode of using a logical
language to speak about a database is to interpret the formal variables of the language
as attributes in its scheme. In this way functional dependences are introduced in the
semantics of the language, and they may also been reflected into its syntax. Let us
illustrate this point by two examples from the literature.

Probably, the first serious logical system dealing with dependencies between vari-
ables was the ‘Independence friendly logic’ (shortly, ‘IF logic’) proposed by Hintikka
and Sandu (1989). A further development of IF-logic and its compositional seman-
tics, introduced in Hodge (1997), is ‘Dependence logic’ of Väänänen (2007). See also
Grädel and Väänänen (2012) and (2013).
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The language of dependence logic is the ordinary first-order language expanded by
new atomic formulas =(t1, t2, . . . , tn) (called dependence formulas), where t1, . . . , tn
are arbitrary terms; such a formula is informally read as ‘the value of tn is function-
ally dependent on the values of t1, . . . , tn−1’. The intended semantics is the so called
team semantics. A team for a first-order structure A = (A, . . .) is a set of assign-
ments φ for the variables of the language in A. By definition, a dependence formula
=(t1, t2, . . . , tn, t) is satisfied by a team Θ if, for all φ, φ′ ∈ Θ, φ(t) = φ′(t) whenever
φ(ti) = φ′(ti) for i = 1, 2, . . . , n. This truth condition resembles the well-known defi-
nition of a functional dependency of attributes in a database relation; see also Example
2.2 below. We leave out here truth conditions for compound formulas, and only note
that formula counts as valid in a model A if it is satisfied in it by all teams.

Functional dependences between variables dealt with in the dependence logic are
predetermined by the ”content” of a concrete team and may vary when changing teams.
Another, less popular kind of logic of dependence, also suggested by relational databases,
was discussed in Alechina (2000), and deals with “built-in” functional dependences. It
is based on a many-sorted first-order language without function symbols and depen-
dence formulas of any kind, but not all assignments of values to variables are available
in its models. In more detail, there is a set I of sorts (interpreted as attribute names), and
each variable (attribute) vi belongs to a different sort i ∈ I . A model of such a language
L(I) is a first order structureA := ((Ai)i∈I , ...), whereAi are nonempty sets (domains
of attributes), not necessarily disjoint or even different. An fd-model of L(I) is then a
pair (A, F ), where F is a (possibly, empty) set of functions fij : Ai → Aj (functional
dependences). The set Φ of assignments admissible in an fd-model is given by

Φ := {φ ∈
∏
i∈I

Ai : for every fij ∈ F, φ(vj) = fij(φ(vi))}.

Imitating the traditional definitions, a formula is said to be true in the fd-model if it is
satisfied by all assignments from Φ, and valid if it is true in all models. The logic given
rise to by this semantics is called Lfd.

A logical consequence relation relatively to a given fd-model (not discussed by
Alechina) also could be defined in the same way: a formula α logically implies β if
every assignment from Φ that satisfies α satisfies also β. However, the restricted set of
admissible assignments may turn out to be too small to get adequate characterizations
of validity and logical consequence: as the following example shows, Φ may be even
empty.

Example 1.1. Consider four attributes x1, x2, x3, x4 with domains

A1 := {a11, a12}, A2 := {a21, a22}, A3 := {a31, a32}, A4 := {a41, a42}

and dependences

f31 : a31 7→ a11, a32 7→ a12, f32 : a31 7→ a21, a32 7→ a22,

f41 : a41 7→ a11, a42 7→ a12, f42 : a41 7→ a22, a42 7→ a21.

If φ(x3) = a31, then φ(x1) = a11, φ(x2) = a21, and there is no choice for φ(x4).
Likewise with φ(x3) = a32. One may conclude that the given set of dependences forces
at least some of the four attributes to conflict with each other. C
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Therefore, with the described semantics, some semantic properties of formulas and
relations between them may become inadequate; for example, it may happen that every
formula logically implies any other formula (when Φ = ∅).

A possible way to avoid such difficulties could be admitting partial assignments de-
fined only on compatible subsets of variables. We choose another strategy, and develop
in this paper an algebraic, assignment-free semantics for a certain first-order logical
language. The primary object in this kind of semantics will be the so called fd-frame
(this concept is borrowed from Cı̄rulis (2004)), which consists of a set of variables, a
family of value sets for them, and a (closed in a sense) set of unary functional depen-
dencies between variables; as we shall see in the next section, admitting dependences
between single variables only is not a real restriction, but simplifies matters. A subset
of variables is recognized as compatible in a frame if there is a variable they all depend
on. We associate with an fd-frame F a certain set S elements of which are informally
interpreted as statements about variables (and their values) in F, and turn it into an al-
gebraic structure with operations interpreted as negation, conjunction, disjunction (the
two latter being partial unless all variables are pairwise consistent) and existential and
universal quantification. Moreover, we introduce on S a relation interpreted as entail-
ment (consequence relation). Finally, we show by an example how the statement algebra
can be used to interpret an appropriate first order language (similar to that of Alechina’s
Lfd): with any formula, a statement from S is associated as its meaning, but no formula
with incompatible free variables becomes meaningful in a given frame. On this ground,
the semantic notions of validity and logical consequence are then introduced in the se-
mantics. However, we do not consider any formal system for this logic, and have not
aimed to introduce statement algebras as a class of structures respect to which some
predefined formal logical system should be sound or even complete.

It is worth to note already here that variables in an fd-frame are still rather formal: as
shown by examples in the next section, they may, but not necessary have to, be thought
of as attributes related with some database or an information system of any other kind.
Several ideas developed in this paper go back to Cı̄rulis (1987), where they are realized
in another form.

2 Functional-dependency frames

We begin with some preliminaries. A preorder on some setP is a reflexive and transitive
relation on P . Upper and lower bounds for subsets of a preordered set are defined just as
in ordered sets; however a least upper bound (l.u.b.) and a greatest lower bound (g.l.b.)
of a subset P , if defined, may be not unique. P is said to be bounded complete if every
subset bounded from above has a l.u.b. (equivalently, if every its non-empty subset has a
g.l.b.), and finitely bounded complete if a l.u.b. exists (at least) for every finite bounded
set. However, greatest lower bounds need not exist in a finitely bounded preordered set.
Every (finitely) bounded preordered set P has least or initial elements—the l.u.b-s of
the empty subset. P is finitely bounded complete if and only if it has initial elements
and every two-element bounded subset has a l.u.b. If the preorder under consideration
is antisymmetric, i.e., P is actually a poset, l.u.b.-s and g.l.b.-s are unique and are called
joins and meets, respectively.
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2.1 Functional dependences between variables

A system of functional dependences is determined by the following data:

− a nonempty set Var of variables,
− a family Val := (Valx)x∈Var of nonempty sets of values for each variable,
− a family F := (dyx : Valy → Valx)(x,y)∈D of functions (dependences), where D is

some subset of Var2.

The set D may be interpreted as a binary relation on Var. We shall usually write x← y
for (x, y) ∈ D. Therefore,

x← y iff dyx exists in F.

We call the relation← (i.e.,D) a dependency relation, read ‘x← y’ as ‘x (functionally)
depends on y’, and consider each function dyx as the respective dependence. Therefore,
x here is a function of y: if x ← y and y has a value v, then x has the value dyx(v)
(of course, there is also a feedback: if x has a value u, then y must have a value in
(dyx)−1(u)).

We assume that F satisfies the following conditions:

(F1) F is closed under composition: if dzy and dyx are in F , then dyxd
z
y belongs

to F ,
(F2) the identity map idValx on Valx belongs to F for every x.

Then
dyxd

z
y = dzx, idValx = dxx, (1)

and the relation ← is evidently a preorder. The described system (Var, Val, F ) satis-
fying (F1) and (F2) will be called an fd-structure (‘fd’ for ‘functional dependency’),
and the preordered set Var, its scheme. If← is antisymmetric and, therefore, an order
relation, it is natural to consider dependeces in F as inclusion dependences.

The family F is said to be surjective if the following condition is fulfilled:

(F3) every dependence dyx is surjective.

Dependences may be required to be surjective because x, in the case when it depends
on y, is supposed to have only the possible values determined by y. Therefore, (F3)
actually requires the value sets Valx to be non-redundant.

Variables x and y in an fd-structure are equivalent (in symbols, x ↔ y) if x ← y
and y ← x. As it should be in this case, the dependences dxy and dyx are mutually inverse
bijections. Indeed, for every possible value v of y, the corresponding value of x is dyx(v),
and this, in its turn, forces y to have the value dxy(dyx(v)), which therefore must equal
to v. Thus dxyd

y
x is the identity map on Valy . Likewise, dyxd

x
y is the identity map on

Valx; this proves that the above claim is valid. The system F may be called reflexive if
it satisfies a condition which provides the converse:

(F4) if dyx is in F and is bijective, then its inverse belongs to F ; therefore
(dyx)−1 = dxy .
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The following natural extension of condition (F4):

(F5) if x, y ← z and there is a function d : Valy → Valx such that dzx(w) =
d(dzy(w)) for all w ∈ Valz , then d belongs to F ; therefore d = dyx,

will not be needed in this paper. Below, some other natural additional conditions on fd-
structures will be discussed, but first we consider several examples of such structures.

2.2 Examples

The first two examples are related to information systems in the sense of Pawlak (1981)
(more recent sources are, e.g., Khan and Banerjee (2009), Pancerz (2014)), known also
as knowledge representation systems, attribute-value systems and information tables.
The notion of information system essentially coincides with that of relation (with un-
ordered columns labeled by attributes) in a relational database, of many-valued context
(Granter and Wille (1999)) and of Chu space (e.g., Pratt (1994),(2005), also Wolski and
Gomolińska (2013)).

Example 2.1. An information system is a quadruple (Ob,At, V, I), where
– Ob is a nonempty set of objects,
– At is a set of their attributes,
– V is a family (Va, a ∈ At) of sets; each Va is considered as the set of possible values
(domain) of a,
– I is a function Ob × At →

⋃
(Va : a ∈ At) such that I(o, a) ∈ Va; it is called an

information function.
Normally, attributes in an information system are thought of as formally indepen-

dent in the sense that the information function may be quite arbitrary (unlike database
relations, where some constraints may be built in its scheme). Accordingly, let F con-
sist of all identity maps on the sets Va; thus, the set At is trivially ordered: a← b in At
iff a = b. Then the triple (At, V, F ) is an fd-structure; of course, (F3), (F4) and (F5)
also are trivially fulfilled. C

A version of information systems with built-in dependencies (and, hence, with a
non-trivially ordered scheme) have been discussed by the present author in Cı̄rulis (2002)
and later in Cı̄rulis (2004).

Example 2.2. Real dependencies between attributes of an information system are sup-
posed to be caused by the behavior of the information function on the object set as a
whole. Namely, an attribute a is considered as dependent on a set B of attributes if the
value of a for every object turns out to be uniquely determined by values of attributes
in B for this object:

a← B :≡ for all o1, o2 ∈ Ob, f(o1, a) = f(o2, a) whenever
f(o1, b) = f(o2, b) for every b ∈ B.

Subsets of At may be treated as complex attributes. Let At+ be the collection of all
finite such attributes. For A,B ∈ At+, put

A← B :≡ a← B for all a ∈ A.
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Now, for every o ∈ Ob let φo be a function onAt such that φo(a) = I(o, a) for all a.
For everyX ∈ At+, let VX be the set of all restrictions {φo|X : o ∈ Ob}. ThenA← B
if and only if there is a mapping dBA : VB → VA such that φo|A = dBA(φo|B) for every
o ∈ Ob. With F+ the set of all such functions and V + := (VX : X ∈ At+), the triple
(At+, V +, F+) is an fd-structure satisfying (F3), (F4) and, of course, (F5). Notice that
the dependency relation on its scheme is governed by the so called Armstrong axioms
(with A ⊆ B, dBA is a so called inclusion dependence). C

A variant of such an fd-structure occurs when some conflict (or concurrence) rela-
tion—a symmetric and antireflexive relation ]—lives on the set of attributes and only
conflict-free subsets of At are allowed to be included in At+.

In the next example, the role of variables is played by entities which usually are not
thought of as such.

Example 2.3. Suppose that I and O are the input set and, respectively, the output set
of some automaton, possibly, nondeterministic. Let I∗ be the set of all input words
over I , and write x ≤ y to mean that an input word x is a prefix of an input word y.
Let, furthermore, O∗x be the set of all words over O of length equal to the length of
x. For x ≤ y, define a function dyx : O∗y → O∗x by the rule that dyx(w) is the prefix of
w in O∗x; let F be the set of all such functions Then the triple (I∗, (O∗x)x∈I∗ , F ) is an
fd-structure. Its scheme I∗ is even tree-ordered; the conditions (F3), (F4) and (F5) are
obviously fulfilled.

Thus, input words are treated here as variables, and output words of an appropriate
length, as their values. Of course, one may choose for variables some set X of more
conventional entities (together with a fixed bijective correspondence between I∗ and
X), and redefine the above fd-structure accordingly. C

Our last example of an fd-structure is more abstract. It is suggested by some ideas
in quantum logic; see Section 4 in Cı̄rulis (2015) for another realization of them.

Recall that an orthoposet is a bounded poset (P,≤, 0, 1) equipped with an ortho-
complementation—a unary operation ⊥ such that

if p ≤ q, then q⊥ ≤ p⊥, p⊥⊥ = p, p ∧ p⊥ = 0.

Any Boolean algebra is an example of such a poset. Elements p, q of P are said to be
orthogonal (in symbols, p ⊥ q) if p ≤ q⊥, and a subset M of P is said to be orthogonal
(or an orthosubset) if it does not contain 0 and its elements are mutually orthogonal.

Example 2.4. Given an orthoposetP , we may perceive it as (possibly, an approximation
to) the set of inner events of some system, device or a similar object S, where ≤ serves
as a part-of (or inclusion) relation for events, while the orthocomplement of an event p
means the complementary event of p. A maximal orthosubset may then be thought of
as an exhaustive collection of mutually exclusive events.

We consider any injective function defined on a maximal orthosubset M as an ob-
servable parameter of S and consider such parameters as variables. Let Mx stand for
the domain of a variable x, and Valx, for its range (which may be a proper subset of
its codomain); then every element of Mx can be interpreted as an event that x has a



An Algebraic Approach to Semantics 795

concrete value. Conversely, any observed value of x signalizes that a certain event has
occurred. If to every event q from My there is an event p in Mx such that q ≤ p, then
to any v ∈ Valy there is u ∈ Valx such that x has the value u whenever y has the value
v (again, also conversely). In such a situation, we say that x functionally depends on y,
and write x← y; of course, then there is a function dyx : Valy → Valx such that always
u = dyx(v). Let Var be some set of variables on P , and let F be the corresponding set
of dependence functions; then (Var, (Valx)x∈Var, F ) is an fd-structure, and (F3), (F4),
(F5) also are satisfied. Notice that two variables are equivalent in this model if and only
if they have a common domain in P . C

Ending this subsection, we state a problem:

Characterize those fd-structures that can, up to isomorphism, be realized on
some orthoposet in the way described in the last example.

2.3 Frames

Suppose we are given some fd-structure (Var, Val, F ). Informally, a subset X of Var
may be regarded as compatible if values of its elements are “coexistent” or “available
simultaneously“. For instance, this is certainly the case if there is a variable which all
variables in X depend on. More formally, X is compatible whenever it has an upper
bound in the preordered set Var.

What about the converse? A compatible subset itself may be thought of as a com-
plex, or compound, variable. However, it is, in a sense, only a virtual one and should
be somehow represented by an element of Var. Then we, for example, could implic-
itly take into account also dependency on several variables. A good candidate for an
“actual” complex variable representing X in Var is a least upper bound of X .

Notice that a compatible subset of Var represented by its l.u.b. necessarily has an
upper bound; this implies that the compatible subsets of variables may be identified
with the bounded ones. Thus, we state the following condition:

(V0) the set of variables Var is bounded complete.

This condition is not an essential restriction on Var: it may be considered as a principle
which says that we always can, if necessary, “define” or “construct” a new variable
which serves as a l.u.b. of that or other compatible set of variables and add it to Var.
However, we are forced to accept the fact that different compatible subsets may be
represented by the same actual attribute (or equivalent attributes).

Next, it is a plausible intuitive idea that the value set of an actual complex variable
has to be built up from the value sets of the component variables in a regular way. Let
again X be a compatible subset of Var with a l.u.b. y. Then any element v ∈ Valy
should be completely determined by its components dyx(v) with x ∈ X . Put in precise
terms, this condition reads as follows:

(V1) for all v1, v2 ∈ Valy , if dyx(v1) = dyx(v2) whenever x ∈ X, then v1 = v2.

In other words, elements of Valy should be separable by the dependences dyx with x ∈
X . If the condition is satisfied, we say that the fd-structure respects least upper bounds
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(in Var). In particular, ifX is empty (recall that then its l.u.b. is a least element of Var),
then the if part of the above condition is trivially fulfilled, and Valy must have only one
element. Thus, the condition (V1) implies that a variable depends of all variables if and
only if it is constant. Another consequence is that the variables (their values) belonging
to any compatible subset correlate with those in another one having the same (least)
upper bounds.

In fact, X itself can be provided with an appropriate set ValX of ”complex” values.
For x1, x2 ∈ X , let us call values u ∈ Valx1

and v ∈ Valx2
consistent (in symbols,

u ∼x1x2
v, or just u ∼ v if the context is clear), if dx1

z (u) = dx2
z (v) for every variable

z that depends on both x1 and x2. We further say that an assignment φ for X (i.e.,
a function which assigns a value from Valx to every variable x ∈ X) is a consistent
if φ(x1) and φ(x2) are consistent for all x1, x2 ∈ X; in particular, then φ(x1) =
dx2
x1

(φ(x2)) whenever x1 ← x2. A consistent assignment may be thought of as a record
of “simultaneously possible” values of variables from X . Now, the subset ValX ⊆∏

(Valx : x ∈ X) of all consistent assignments may be considered as the domain of the
complex attribute X . For example, if there is some v ∈ Valy such that φv(x) = dyx(v)
whenever x ∈ X , then φv necessarily belongs to ValX . On the other hand, every value
of X should correspond in this sense to an appropriate value of y, which determines the
former one. This can be put in precise terms as follows:

(V2) for every φ ∈ ValX , there is v ∈ Valy such that φ = φv .

We say that the family Val, or the fd-structure under consideration itself, is saturated,
if this condition is fulfilled.

If both discussed conditions, (V1) and (V2), are fulfilled, then the family of map-
pings (dyx : x ∈ X) embeds Valy into the direct product of all domains Valx with
x ∈ X; in fact, maps Valy even onto ValX . We may consider also the “inverse” of this
embedding—a mapping on : ValX → Valy defined by

for every φ ∈ ValX and v ∈ Vy , on(φ) = v if and only if φ = φv .

With one exception in the next subsection, the full strength of the condition (V0)
will not be needed in this paper: some finitary consequences of it are sufficient. Namely,
the set Var is assumed to be finitely bounded complete, and every finite but nonempty
its subset, to have a g.l.b.. These conditions can be equivalently reworded in terms of
two binary operations as in the following definition, which goes back to Cı̄rulis (2004).

Definition 2.5. A (finitary) fd-frame F is an fd-structure where
– every pair of variables bounded above has a l.u.b.,
– every pair of variables has a g.l.b.,
– there are initial (i.e., least) variables,
– F respects least upper bounds and is saturated.

For convenience of notation, we also assume that (i) for any two variables x and y
having least upper bounds one of these bounds is selected and denoted by x ∨ y, (ii)
for any x and y selected and denoted by x ∧ y is one of their greatest lower bounds,
(iii) one of the initial variables is selected and denoted by o. Therefore, after identifying
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equivalent elements, the preordered set of all variables becomes a nearsemilattice in the
sense of Cı̄rulis (2004).

Now the definition of consistent values can be simplified: by (F1),

u ∼x,y v iff dxx∧y(u) = dyx∧y(v).

Let us turn back to the examples of the preceding subsection. The fd-structure of
Example 2.1 is not a frame (for distinct variables do not have any g.l.b.), but it becomes
a frame if one adds a new initial attribute (thus, makingAtr what is called a flat domain)
with an one-element domain and corresponding dependences. On the other hand, any
attributes in a Pawlak-style information system are normally thought of as compatible;
this requires the attribute set to be extended as in Example 2.2. The fd-structure of
Example 2.2 is an fd-frame, and so is its variant mentioned just after the example. The
fd-structure of Example 2.3 is a frame if the empty word is included in I∗. Observe
that the frame has essentially incompatible sets of variables, and that this feature cannot
be avoided in any natural way. As to the last example, we note without proof that, in
the case when every maximal orthosubset of P is a domain of a variable, (i) the set
of variables here proves to be bounded complete if the underlaying orthoposet P is
orthocomplete, i.e., every orthosubset of P has the join, and (ii) then the fd-structure
under question is an fd-frame.

2.4 On independency of variables

Let F be any frame satisfying (F3) and (F4). In terms of functional dependences, also
independency of variables in F can be characterized. We begin with the following in-
formal description of independency:

y is independent from x if, at any given value of x, y can take every of its
possible values.

In a more technical language, the independence relation ⊥ is characterized as follows:

y ⊥ x :≡ all values from Valy are consistent with every value from Valx.

Put another way, this means that y ⊥ x iff every assignment to variables x and y is
consistent.

Lemma 2.6. If x, y ← z, then y ⊥ x if and only if to every u ∈ Valx and v ∈ Valy
there is w ∈ Valz such that u = dzx(w) and v = dzy(w).

Proof. Assume that x, y ← z; then x and y have a l.u.b. Next, y ⊥ x iff any value
v ∈ Valy is consistent with any value in u ∈ Valx. As the frame is saturated, this is the
case iff u = dx∨yx (w0) and v = dx∨yy (w0) for an appropriate w0 ∈ Valx∨y . As dzx∨y is
surjective, there is w ∈ Valz such that w0 = dzx∨y(w). Thus u = dzx(w) and v = dzy(w)
by (F1). ut

The following properties of ⊥ are easily verified.
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Lemma 2.7. In Var,
(a) If y ⊥ x, then x ⊥ y,
(b) if x← y and y ⊥ z, then x ⊥ z,
(c) 0 ⊥ x,
(d) x ⊥ x iff x↔ o,
(e) if y ← z, then y ⊥ x iff y ⊥ z ∧ x.

Proof. (a) Evident.
(b) Suppose that x ← y, y ⊥ z, and take u ∈ Valx, w ∈ Valz . Then u = dyxv for

some v by (F3); moreover, dyy∧z(v) = dzy∧z(w) by (1). Using (F1) several times, now

dxx∧z(u) = dxx∧zd
y
x(v) = dyx∧z(v) = dy∧zx∧zd

y
y∧z(v) = dy∧zx∧zd

z
y∧z(w) = dzx∧z(w).

Thus, x ⊥ z.
(c) Evident.
(d) We know that always o ← x. If x ⊥ x, then the set Valx is a singleton; hence,

dxo is a bijection and, by (F4), x← o; thus, x↔ o. The converse follows from (c).
(e) By (b), y ⊥ z ∧ x whenever y ⊥ x. Conversely, suppose that y ← z and

y ⊥ z ∧ x. If v ∈ Valy and u ∈ Valx, then

dyy∧x(v) = dyy∧z∧x(v) = dz∧xy∧z∧x(dxz∧x(u)) = dxy∧x(u),

see (F1). Thus, y ⊥ x. ut

We can prove more: the relation ⊥ is also additive.

Lemma 2.8. Suppose that x, y ← z and that y is a l.u.b. of Y := {yi : i ∈ I}. Then
y ⊥ x if and only if yi ⊥ x for all i.

Proof. Necessity follows from item (b) of the previous lemma. Sufficiency: assume that
both suppositions of the lemma are fulfilled and that yi ⊥ x for all i. Without restriction
of generality, we may also assume that z is a l.u.b. of x and y. Choose any u ∈ Valx and
v ∈ Valy , and put vi := dyyi(v) for all i ∈ I; then vi ∼ vj for all i, j ∈ I . Moreover,
vi ∼ u by the last assumption. Thus, a function φ on {x} ∪ Y defined by φ(x) = u
and φ(yi) = vi for i ∈ I is a consistent assignment, and there is an element w ∈ Valz
such that u = dzx(w) and, for all i ∈ I , vi = dzyi(w)—see (V2). By virtue of (F1),
now dyyi(d

z
y(w)) = dzyi(w) = vi = dyyi(v) for all i. As the frame respects least upper

bounds, it follows that v = dzy(w). Therefore,

dyx∧y(v) = dyx∧y(dzy(w)) = dzx∧y(w) = dxx∧y(dzx(w)) = dxx∧y(u),

i.e., v ∼ u. Since both v and u are arbitrary, it follows that y ⊥ x. ut

One more useful connection between ⊥ and←,

(F6) if, for all z, z ⊥ x whenever z ⊥ y, then x← y,

generally does not hold in F though its converse easily follows from Lemma 2.7(b). The
independence relation can be characterized purely in terms of the relation← (i.e., not
involving values of variables).
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Theorem 2.9. For all x, y, y ⊥ x if and only if x ∧ y ↔ o.

Proof. By (1), y ⊥ x if and only if dyx∧y(v) = dxx∧y(u) for all u ∈ Valx and v ∈ Valy .
Sufficiency of the condition now follows from the fact that Valo is a singleton set (as F
respects upper bounds; see the preceding subsection). Necessity: the dependences dxx∧y
and dyx∧y are surjective; so independence of y from x implies that Valx∧y must be a
singleton and, consequently, x ∧ y is an initial variable (see (F4)). ut

Let us return to examples of frames from subsection 2.2. In Example 2.2, complex
attributesA andB are independent if and only if, for every o1, o2 ∈ Ob, there is o ∈ Ob
such that φo|A = φo1 |A and φo|B = φo2 |B. In Example 2.3, two input sequences x
and y are independent if and only if they have only the trivial prefix in common. In
Example 2.4, it turns out that variables x and y are independent if and only if {1} is the
single orthosubset of which both Mx and My are refinements. (An orthosubset R of P
is a refinement of an orthosubset Q if every element of Q is the join of a subset of R.)

We now introduce a new, independency-based operation on Var. Assume for a mo-
ment that the set of variables is bounded complete.

Consider the set [x]z := {y ← z : y ⊥ x}. Being bounded by z, it has a l.u.b.; we
denote one of these by z−x. By virtue of Lemma 2.8, z−x belongs to [x]z and, hence,
is greatest in this set:

z − x← z, z − x ⊥ x, if y ← z and y ⊥ x, then y ← z − x. (2)

Therefore, z − x is a greatest in the sense of ← variable that depends on z and is
independent from x. Let us call the operation − subtraction. This name is suggested by
a set-theoretic interpretation of axioms (2): they are satisfied for x, y, z arbitrary sets if
← stands for set inclusion, ⊥, for their disjointness, and −, for set subtraction.

It is easily seen that x− x↔ o, z − o↔ z, o− x↔ o. By Lemma 2.7(e),

z − x↔ z − (x ∧ z).

Note also that subtraction is stable w.r.t.↔:

if z1 ↔ z2 and x1 ↔ x2, then z1 − x1 ↔ z2 − x2.

Some of the following properties of subtraction will be referred to in subsection 3.4.

Theorem 2.10. For all x, y, z,

(a) if y ← z, then y ⊥ x iff y ← z − x,
(b) x ∧ (z − x)↔ o,
(c) if x← y, then z − y ← z − x,
(d) x ⊥ z iff z − x↔ z.

Proof. (a) By the definition of z − x and, in the opposite direction, Lemma 2.7(b), as
z − x ⊥ x.

(b) By (2) and Theorem 2.9.
(c) Suppose that x ← y. By (2), z − y ← z, z − y ⊥ y and also z − y ← z − x,

since z − y ⊥ x by Lemma 2.7(b).
(d) By definition of subtraction, always z − x← z. Further, z ← z − x if and only

if z ⊥ x: see (a). ut



800 Cı̄rulis

We saw that subtraction can be introduced on Var if this set is bounded complete.
However, it is explicitly assumed in Definition 2.5 that Var is finitely bounded com-
plete; consequently, existence of substraction should be considered as an additional
condition on the scheme of F. So, we shall say that the scheme of an fd-frame is sub-
tractive if subtraction (i.e., an operation − satisfying (2)) on it exists.

3 Statement algebra of an fd-frame

Let F := (Var, (Valx)x∈Var, F ) be any frame which satisfies (F3) and (F4).

3.1 Statements

We consider that the basic sentences about variables of an fd-frame that are of interest
for logic are those of the form

the value of a variable x belongs to a subset U of Valx.

Such a sentence may be codified as a pair (x, U). We therefore call a statement any
pair (x, U) with U ⊆ Valx, let Sx stand for the set {x} × Bx of statements with x
fixed (here, Bx is the powerset of Valx), and denote by S the set

⋃
(Sx : x ∈ Var) of

all statements associated with a frame. Each set Sx inherits the structure of a Boolean
algebra from Bx:

(x, U) ∪ (x;V ) := (x, U ∪ V ), (x, U) ∩ (x, V ) := (x, U ∩ V ),

−(x, U) := (x,−U), (x, U) ⊆ (x, V ) :≡ U ⊆ V,

where −U stands for Valx r U , i.e., − is here the complementation in the Boolean
algebra Bx. Of course, the Boolean algebras Sx are interconnected: whenever x ← y,
there is a natural pair of mappings

εxy : Bx → By, π
y
x : By → Bx

defined by

εxyU := {v ∈ Valy : dyx(v) ∈ U},
πyxV := {u ∈ Valx : u = dyx(v) for some v ∈ V } = {dyx(v) : v ∈ V }.

The many-sorted algebra B(F) := (Bx, ε
x
y , π

y
x)x←y∈Var will be our starting point in

describing the structure of S.
So, εxy is the preimage map, and πyx is the image map of dyx:

εxyU = (dyx)−1(U), πyxV = dyx(V ).

It is well-known, and can be easily checked, that then they form a so called adjunction
(known also as a (contravariant) Galois connection):

if x← y, then V ⊆ εxy(U) if and only if πyx(V ) ⊆ U ; (3)
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here, εxy is said to be the right adjoint of πyx, and πyx, the left adjoint of εxy . For further
references, we give a list of basic properties of εxy and πyx. Actually, only the properties
(a)–(d), (g),(h),(m) and (p) in the subsequent proposition are independent: the remaining
ones can be derived from them. On the other hand, the condition (3) is equivalent to the
conjunction of (c) and (g)–(i).

Proposition 3.1. The mappings εxy and πyx have the following properties:

(a) εxx = idBx
,

(b) εyzε
x
y = εxz ,

(c) εxy is isotonic,
(d) −εxy = εxy−,
(e) πxx = idBx

,
(f) πyxπ

z
y = πzx,

(g) πyx is isotonic,
(h) idBy

⊆ εxyπyx,
(i) πyxε

x
y ⊆ idBx

,
(j) εxy preserves ∩,
(k) πyx preserves ∪,
(l) εxy is a Boolean homomorphism,

(m) πyxε
x
y = idBx

,
(n) εxy is injective,
(o) πyx is surjective,
(p) if x, y ← z, then πzyε

x
z = εx∧yy πxx∧y ,

(q) if x← y ← z, then πzxε
y
z = πyx and πzyε

x
z = εxy .

Proof. We shall check here only the properties (j),(k),(m) and (p). Notice that (n) and
(o) are consequences of (m), and (q) is a consequence of (p), (a) and (e). Also, (l) is a
conjunction of (d) and (j).

(j) By (c), εxy(U1∩U2) ⊆ εxyU1∩εxyU2. On the other hand, suppose that v ∈ εxyU1∩
εxyU2. By the definition of εxy , then dyx(v) ∈ U1 ∩ U2 and, further, v ∈ εxy(U1 ∩ U2).

(k) By (g), πyxV1 ∪ πyxV2 ⊆ πyx(V1 ∪ V2). On the other hand, suppose that u ∈
πyx(V1 ∪ V2). Then u = dyx(v) for some v ∈ V1 ∪ V2 and, further, u belongs either to
πyxV1 or πyxV2.

(m) Clearly, πyxε
x
yU ⊆ U by (i). On the other hand, let u ∈ U . Since dyx is surjective,

u = dyx(v) for some v ∈ Valy . Then v ∈ εxyU and u ∈ πyxεxyU .
(p) Let x, y ← z. Then by (h,c,g) and (b,f,m),

πzyε
x
zU ⊆ εx∧yy πyx∧y(πzyε

x
z (εx∧yx πxx∧yU)) = εx∧yy πzx∧yε

x∧y
z πxx∧yU = εx∧yy πxx∧yU.

To prove the reverse inclusion, recall that the frame is saturated, and suppose that v ∈
εx∧yy πxx∧yU . This means that dyx∧y(v) = dxx∧y(u) for some u ∈ U . Then there is
w0 ∈ Valx∨y such that u = dx∨yx (w0) and v = dx∨yy (w0). By (F3), w0 = dx∨yz (w) for
some w ∈ Valz; hence, u = dzx(w) and v = dzy(w), see (F1). It follows that w ∈ εxzU
and v ∈ πzyεxzU . Therefore, εx∧yy πxx∧yU ⊆ πzyεxzU , as needed. ut



802 Cı̄rulis

Due to (j), the pair (εxy , π
y
x) becomes a kind of what is known as an embedding-

projection pair: by (l), εxy is a Boolean embedding, while (k) and (o) show that πyx can
be considered as a projection.

3.2 Entailment

Our main goal in this subsection is to find an appropriate consequence relation, or en-
tailment, � for statements.

The intuitive (and vague) idea behind the assertion (“metastatement” about two
statements from S) ‘(x, U) entails (y, V )’ is that it should be considered as a constraint

“every time” when x takes a value in U , y necessary has a value in V .

For x and y compatible, the constraint can be formalized as follows:

for every φ ∈ Val{x,y}, φ(y) ∈ V whenever φ(x) ∈ U ,

and amounts, due to (V2), (F3) and (F1), to the condition

if x, y ← z, then
(x, U) � (v, V ) iff, for every w ∈ Valz, dzy(w) ∈ V whenever dzx(w) ∈ U.

Rewritten in a more compact form, this condition reads as

if x, y ← z, then (x, U) � (v, V ) iff εxzU ⊆ εyzV. (4)

In particular, if also x← y, then

(x, U) � (y, V ) iff εxy(U) ⊆ V, (y, V ) � (x, U) iff V ⊆ εxy(U). (5)

However, we a looking for an entailment applicable to arbitrary statements. Notice
that the defining condition εxzU ⊆ εyzV in the prospective definition (4) is, by (3),
equivalent to the condition πzyε

x
zU ⊆ V which, due to Proposition 3.1(p), is equivalent

to the inclusion εx∧yx πxx∧yU ⊆ V not involving z anymore. Eventually, we assume the
following general definition.

Definition 3.2. A statement (x, U) entails (y, V ), in symbols, (x, U) � (y, V ), if
εx∧yy πxx∧yU ⊆ V .

Two other forms of the defining condition are useful. Recall that values u ∈ Valx
and v ∈ Valy are consistent (in symbols, u ∼ v) if dxx∧y(u) = dyx∧y(v) or, equivalently,
v ∈ (dyx∧y)−1(dxx∧y(u)). Thus, if x← y, then u ∼ v iff u = dyx(v).

Lemma 3.3. For all statements (x, U) and (y, V ),

(a) (x, U) � (y, V ) if and only if U ⊆ εx∧yx W and εx∧yy W ⊆ V for some W ∈ Bx∧y ,
(b) (x, U) � (y, V ) if and only every element of Vy that is consistent with an element

of U belongs to V.
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Proof. (a) Suppose that the left-side condition is fulfilled. Put W := πxx∧yU ; then
πxx∧yU ⊆ W , i.e., U ⊆ εx∧yx W by (3). Further, εx∧yy (W ) ⊆ V by the supposition.
Conversely, suppose thatU ⊆ εx∧yx W and εx∧yy W ⊆ V . Then by Proposition 3.1(i,m,c)
πxx∧yU ⊆W and εx∧yy πxx∧yU ⊆ εx∧yy W ⊆ V , i.e., (x, U) � (y, V ), as needed.

(b) By the definition of consistency, the right-side condition says that

(∀v ∈ Valy)(∀u ∈ U) (if v ∈ (dyx∧y)−1dxx∧y(u), then v ∈ V ).

The left-hand assertion (x, U) � (y, V ) can be rewritten in an expanded form as

(∀u ∈ U) (dyx∧y)−1(dxx∧y(u)) ⊆ V.

Clearly, the two assertions are equivalent. ut

We now easily obtain several natural properties of entailment.

Theorem 3.4. In S,

(a) � is reflexive and transitive,
(b) (x,∅) � (y, V ) � (z, Valz),
(c) (x, U1) � (x, U2) if and only if U1 ⊆ U2,
(d) (x, U) � −−(x, U) � (x, U),
(e) (x, U) � (y, V ) if and only if −(y, V ) � −(x, U),
(f) (x, U) � (y, V1), (y, V2) if and only if (x, U) � (y, V1) ∩ (y, V2),
(g) (x, U1), (x, U2) � (y, V ) if and only (x, U1) ∪ (x, U2) ⊆ (y, V ).

Proof. (a) Clearly, � is reflexive. It is also transitive: if U � V and V � W , then
εx∧yy πxx∧yU ⊆ V , and in virtue of Proposition 3.1(g,c),

εy∧zz πyy∧z(ε
x∧y
y πxx∧yU) ⊆ εy∧zz πyy∧zV ⊆W.

On the other hand, by Proposition 3.1(h,c,g),(b,f) and (p),

εx∧zz πxx∧zU ⊆ εx∧zz (εx∧y∧zx∧z πx∧zx∧y∧z(π
x
x∧zU))

= εx∧y∧zz πxx∧y∧zU

= εy∧zz εx∧y∧zy∧z πx∧yx∧y∧zπ
x
x∧yU

= εy∧zz πyy∧zε
x∧y
y πxx∧yU,

whence, together with the previous inclusion, εx∧zz πxx∧zU ⊆W , i.e., (x, U) � (z,W ).
Among the remaining properties, only (e) requires a comment. Assume that (x, U) �

(y, V ), and choose some v ∈ −V and u ∈ Valx. If v ∼ u, i.e., dxx∧y(u) = dyx∧y(v),
then u /∈ U , as otherwise v ∈ V by the assumption (see Lemma 3.3(b)). Thus,
(y,−V ) � (x,−U) and−(y, V ) � −(x, U). The converse now follows due to (d). ut

At last, logical equivalence of statements is defined in terms of entailment in the
usual way:

(x, U) ' (y, V ) :≡ (x, U) � (y, V ) and (y, V ) � (x, U).

We do not consider this relation in more detail (but see Section 4).
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3.3 Logical operations

Items (d) and (e) of the previous theorem show that we already have a reasonable
negation-like operation − on S, while items (f) and (g) show that the operations ∩ and
∪, if considered as partial operations on S, are rather restricted forms of conjunction,
resp. disjunction in the preordered set of all statements. We are now going to demon-
strate how they can be extended for an arbitrary pair of statements (x, U) and (y, V )
with x and y compatible.

Assume that x ∨ y exists for some x and y, and let

(x, U) f (y, V ) := (x ∨ y, εxx∨yU ∩ ε
y
x∨yV ) = (x ∨ y, εxx∨yU) ∩ (x ∨ y, εyx∨yV ),

(x, U) g (y, V ) := (x ∨ y, εxx∨yU ∪ ε
y
x∨yV ) = (x ∨ y, εxx∨yU) ∪ (x ∨ y, εyx∨yV ).

Both operations f and g are, evidently, idempotent, commutative and associative There-
fore, these operations are partial semilattice operations extending ∩, resp., ∪; due to
Proposition 3.1(d), they even prove to be connected by de Morgan laws. For instance,

−((x, U) f (y, V )) = −(x ∨ y, εxx∨yU) ∪ −(x ∨ y, εyx∨yV )

= (x ∨ y, εxx∨y(−U)) ∪ (x ∨ y, εyx∨y(−V )) = −(x, U) g−(y, V ).

However, (S,f,g) is not a partial lattice, because the operations induce different order
relations (still related to �; cf. (5)):

(x, U) f (y, V ) = (x, U) iff y ← x and U ⊆ εyxV,
(x, U) g (y, V ) = (y, V ) iff x← y and εxyU ⊆ V.

Nevertheless, the subsequent theorem, which generalizes items (f) and (g) of Theo-
rem 3.4, shows that the operations f and g can be used for characterizing some greatest
lower bounds and least upper bounds in S w.r.t. the preorder �.

Theorem 3.5. In (S,�),

(a) provided that y and z are compatible,

(x, U) � (y, V ), (z,W ) iff (x, U) � (y, V ) f (z,W ),

(b) provided that x and y are compatible,

(x, U), (y, V ) � (z,W ) iff (x, U) g (y, V ) � (z,W ).

Proof. (a) Assume that y and z are compatible. To prove the ‘if’ part, it suffices to show
that

(y, V ) f (z,W ) � (y, V ), (z,W ).

We check the first of the two entailments: by Proposition 3.1(a,g,i),

εy∧(y∨z)y πy∨zy∧(y∨z)(ε
y
y∨zV ∩ εzy∨zW ) = εyyπ

y∨z
y (εyy∨zV ∩ εzy∨zW ) ⊆ πy∨zy εyy∨zV ⊆ V ;

the other one is proved similarly.
To prove the ‘only if’ part, assume that εx∧yy πxx∧yU ⊆ V and εx∧zz πxx∧zU ⊆ W .

We have to show that
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ε
x∧(y∨z)
y∨z πxx∧(y∨z)U ⊆ ε

y
y∨zV , εzy∨zW .

The first assumption implies that εx∧yy∨zπ
x
x∧yU = εyy∨zε

x∧y
y πxx∧yU ⊆ εzy∨zV (Proposi-

tion 3.1(b,c)); therefore, to prove the first of needed inclusions, it suffices to note that

ε
x∧(y∨z)
y∨z πxx∧(y∨z)U ⊆ ε

x∧(y∨z)
y∨z εx∧yx∧(y∨z)π

x∧(y∨z)
x∧y πxx∧(y∨z)U = εx∧yy∨zπ

x
x∧yU .

by Proposition 3.1(h,c,g) and (b,f). The other one is proved similarly.
The proof of (b) is similar; however, some details are different. Assume that x and

y are compatible.
To prove the ‘if’ part, it suffices to show that (x, U), (y, V ) � (x, U) g (y, V ).

Evidently, εxx∨yU ⊆ εxx∨yU ∪ ε
y
x∨yV , whence (see Proposition 3.1(e)) (x, U) � (x ∨

y, εxx∨yU ∪ ε
y
x∨yV ). The other inclusion is demonstrated similarly.

To prove the ‘only if’ part, suppose that εx∧zz πxx∧zU ⊆ W and εy∧zz πyy∧zV ⊆ W .
We have to show that

ε
(x∨y)∧z
z πx∨y(x∨y)∧zε

x
x∨yU, ε

(x∨y)∧z
z πx∨y(x∨y)∧zε

y
x∨yV ⊆W .

But

ε(x∨y)∧zz πx∨y(x∨y)∧zε
x
x∨yU = ε(x∨y)∧zz εx∧z(x∨y)∧zπ

x
x∧zU = εx∧zz πxx∧zU ⊆W

by Theorem 3.1(p,b) and the first assumption. The other inclusion is proved similarly.
ut

We mention an alternative version of disjunction and conjunction on S:

(x, U) ∧ (y, V ) := (x ∧ y, πxx∧yU ∩ π
y
x∧yV ) = (x ∧ y, πxx∧yU) ∩ (x ∧ y, πyx∧yV ),

(x, U) ∨ (y, V ) := (x ∧ y, πxx∧yU ∪ π
y
x∧yV ) = (x ∧ y, πxx∧yU) ∪ (x ∧ y, πyx∧yV ).

These are total operations; moreover, they both are idempotent commutative, and asso-
ciative. However, none of them correlates well with entailment: the analogue of Theo-
rem 3.5 for these operations does not hold true. This is the main reason why we do not
make use of them.

3.4 Quantifiers

Thus, the operations f, g and − on S may be considered as logical operations with
statements, namely, as conjunction, disjunction and negation, respectively. We still need
some algebraic facilities for treating quantifiers over statements. An appropriate tool is
provided by algebraic logic, where a unary operation Q on a Boolean algebra B is said
to be an (existential) quantifier (also, cylindrification) if it satisfies three axioms

Q(0) = 0, p ≤ Q(p), Q(p ∧Q(q)) = Q(p) ∧Q(q);

see, e.g., Halmos (1955), (1956). A quantifier is always a closure operator on B; more-
over, its range is a subalgebra of B. These two conditions jointly are characteristic for
quantifiers (Theorem 3 in Halmos (1956)), and we take them for a definition of Boolean
quantifier.
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Example 3.6. For x ← y, the function Qx on By defined by Qx(V ) := εxyπ
y
xV is a

quantifier. Indeed, by Proposition 3.1(h), (c,g) and (m),

V ⊆ Qx(V ), if V1 ⊆ V2 ∈ By, then Qx(V1) ⊆ Qx(V2), Qx(Qx(V )) = Qx(V ),

i.e., Qx is a closure operator. By Proposition 3.1(l,k), Qx preserves ∪, so that the range
of Qx is closed under unions. It is closed also under complementation: if V ∈ Qx(By),
then V = Qx(V ′) for some V ′ ∈ By and, using Proposition 3.1(d,m,d),

−V = −εxyπyxV ′ = εxy(−πyxV ′) = εxyπ
y
xε
x
y(−πyxV ′) = εxyπ

y
x(−εxyπyxV ′) = Qx(−V ),

i.e.,−V ∈ Qx(By). Thus, the range ofQx is a Boolean subalgebra ofBy , andQx itself
is a quantifier. C

Therefore, the statement (y,Qx(V )) may be regarded as resulting from (y, V ) by
existential quantification. The following observation allows us to replace it by an equiv-
alent simpler one:

(y,Qx(V )) ' (x, πyx(V )).

One direction here follows from Theorem 3.1(m), the other one is a tautology. (The
idea that an existential quantifier is expressible by the left adjoint of the preimage
map εxy is known well; in an abstract form, it is common in categorical logic; see, e.g.
Pitts (2000)).

To introduce the usual notation for quantifiers, it is necessary to make use of variable
subtraction; therefore, in the rest of the section the underlaying frame F is supposed to
be subtractive. We write ∃x(y, V ) for Qy−x(y, V ), i.e., assume the following definition
of the quantifier ∃x in S:

∃x(y, V ) := (y − x, πyy−xV ).

Dually, universal quantifiers on a Boolean algebra is characterized as an interior
operators whose range is a subalgebra. To give an example, we have to introduce one
more family of mappings µyx : By → Bx, where x← y:

µyx(V ) := {u ∈ Valx : (dyx)−1(u) ⊆ V }.

Each µyx is the right adjoint of εxy :

εxyU ⊆ V iff U ⊆ µyxV.

Now, the operation Q′x on By defined by Q′x := εxyµ
y
x is an universal quantifier, and

if x← y, then (y,Q′x(V )) ' (x, µyxV ).

We omit proofs of these claims: they are similar to those related with the operation Qx,
and assume the definition

∀x(y, V ) := (y − x, µyy−xV ).

For illustration, we list a few natural and easily verified properties of existential
quantifiers.
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Theorem 3.7. In S,

(a) if y ← z, then ∃y(x, U) � ∃z(x, U),
(b) if (x, U) � (y, V ) and x ⊥ y, then ∃x(x, U) � (y, V ),
(c) if x ⊥ y, then ∃x(y, V ) ' (y, V ).

Proof. (a) We have to prove that ε(x−y)∧(x−z)x−z πx−y(x−y)∧(x−z)π
x
x−yU ⊆ πxx−zU . But if

y ← z, then x−z ← x−y (Lemma 2.10(c)), and the inclusion reduces, by Proposition
3.1(a,f), to the tautology πxx−zU ⊆ πxx−zU .

(b) Let (x, U) � (y, V ), i.e., εx∧yy πxx∧yU ⊆ V . But if x ⊥ y, then x ∧ y = o
(Theorem 2.9) and εx∧yy πxx∧yU = εoyπ

x
oU , whence ∃x(x, U) � (y, V ).

(c) Assume that x ⊥ y; then y − x = y by Lemma 2.10(d). Hence, (y, V ) =
(y − x, πyy−xV ) = ∃x(y, V ). ut

An inspection of this proof shows that the considered properties of existential quan-
tifiers are connected with certain properties of independency and subtraction of vari-
ables. Other desirable properties of quantification my call for additional specific as-
sumptions on the structure of Var and, consequently, of F . For example, if we want
statements ∃y−x(y, V ) and (x, πyxV ) to be logically equivalent, then the equivalence
y − (y − x) ↔ x should be fulfilled in Var. This latter equivalence proves to be a
consequence of (F6), but, seemingly, cannot be derived from the definition (2) without
any additional assumption on the relations← or ⊥.

Properties of universal quantifiers on S will not be considered here in detail, for they
can be expressed in terms of existential quantifiers in the usual way.

Proposition 3.8. For all x, y ∈ Var and V ∈ By , ∀x(y, V ) = −∃x(y,−V ).

Proof. In view of Theorem 3.4(d), it suffices to show that −πyx(V ) = µyx(−V ). For
every u ∈ Valx,

u ∈ µyx(−V ) iff (dyx)−1u ⊆ −V
iff for all v ∈ Valy, if u = dyxv then v /∈ V
iff for no v ∈ V, dyxv = u

iff u /∈ πyxV. ut

This ends our construction of the statement algebra of an fd-frame.

4 Conclusion

We have noted in Introduction that some semantic anomalies may appear for certain
logical languages taking account of functional dependency between variables, when the
set of total assignments accessible in a model is restricted. In the paper, another, purely
algebraic and assignment-free semantics for such languages is presented. The basic
concept is that of fd-frame, which incorporates variables, their value sets and functional
dependences between them. Associated with a frame is an algebraic structure S (alge-
bra of statements), elements of which are interpreted as statements ’a variable x has a
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value in a subset U ’; this algebra provides an entailment relation� on S (a kind of con-
sequence relation), negation, partial conjunction and disjunction, and both quantifiers
over statements. However, as noticed in subsection 3.4, properties of quantifiers depend
of the structure of the set of functional dependences of the frame; this point requires
further investigation.

The equivalence relation ' corresponding to the preorder � may be regarded as
logical equivalence of statements in a frame. It can be verified that ' is even a congru-
ence relation of S; we thus could build up the quotient algebra of S modulo '. Recall
analogical constructions in the traditional propositional and first-order calculi, where
identifying logically equivalent logical formulas gives rise to the so called Lindenbaum-
Tarski algebra of abstract propositions, which is, in the case of classical logics, always a
Boolean algebra. We postpone to another paper this construction of Lindenbaum-Tarski
algebra for S, and note here only, that it, in particular, turns out to be an orthoposet. It
could be possible to approach in this way the representation problem stated just after
Example 2.4.

We now describe a logical language for which fd-frames provide a semantics; so, it
is a language appropriate to speak about this semantic framework. Let L be a first-order
language with

– a denumerable set Var of variables,
– for each n-tuple x := (x1, x2, · · · , xn) of mutually distinct variables, a set Px

(possibly, empty) of n-place predicate symbols,
– logical connectives ¬,∧,∨ and quantifier symbols ∃, ∀.

Atomic formulas of L are those of the form Px with P ∈ Px (therefore, L may be
treated, like Alechina’s Lfd, as a many-sorted language with just one variable of each
sort); other formulas of L are formed from these applying connectives and quantifiers
in a usual way. Let Frm stand for the set of all formulas.

If Var is really the scheme of an fd-frame, then it may have incompatible subsets
of variables, and then not every formula in Frm can be recognized as meaningful. We
define recursively the set MFrm of formulas meaningful relatively to the scheme, and
the type τ(α) of every meaningful formula α. Roughly, the type of a formula is the join
of those variables which it depends on.

– if α = P (x1, x2, · · · , xn) and the subset {x1, x2, · · · , xn} of Var is compatible,
then α ∈MFrm and τ(α) := x1 ∨ x2 ∨ · · · ∨ xn,

– if α ∈MFrm, then ¬α ∈MFrm and τ(¬α) := τα,
– if α, β ∈MFrm and τ(α) is compatible with τ(β), then τ(α∧ β) = τ(α∨ β) :=
τ(α) ∨ τ(β),

– if α ∈ MFrm, then (∃x)α, (∀x)α ∈ MFrm and τ((∃x)α) = τ((∀x)α) =:
τ(α)− x.

Therefore, all formulas are meaningful in the case when every finite subset of variables
is compatible. Now, an fd-model of L is a system A consisting of a subtractive frame
F (with Var its set of variables) and a subset |P | of Valτ(α) for every atomic formula
α := P (x1, x2, . . . , xn) from MFrm.

We further recursively define the valuation VA of formulas in a given fd-model A as
a function MFrm→ S:
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– if Px1x2 . . . xn ∈MFrm, then
VA(Px1x2 . . . xn) := (x1 ∨ x2 ∨ · · · ∨ xn, |Px1x2 . . . xn|),

– if α ∈MFrm, then VA(¬α) := −VA(α),
– if α, β ∈MFrm, then VA(α ∧ β) := VA(α) f VA(β),
– if α, β ∈MFrm, then VA(α ∨ β) := VA(α) g VA(β),
– if α ∈MFrm, then VA((∃x)α) := ∃x(VA(α)),
– if α ∈MFrm, then VA((∀x)α) := ∀x(VA(α)).

Finally, we can introduce the following basic semantical notions:
– a formula α is true in a fd-model A if it is meaningful and VA(α) = Valτ(α),
– α entails β in A if both α and β are meaningful and VA(α) � VA(β),
– a formula α is valid if it is true in every fd-model where it is meaningful,
– α logically implies β if α entails β in every fd-model where both α and β are mean-
ingful.

This ends the description of semantics of L. The language together with this se-
mantics give rise to a logic, which may be called a logic of functional dependency.
Investigation of metalogical properties of this logic L, including development of an
appropriate deductive system, and its comparison with Alechina’s logic mentioned in
Introduction is a natural task for further work.
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