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1 Introduction

Recently some researchers working in the theory of automatic sequences, in particular,
in stringology, became interested in the use of different analytical methods for the study
of the structure of sets of infinite words and languages. In particular, different metrics
describing distance between infinite words, limits of sequences of words and topologies,
both metrizable and non-metrizable, on the set of infinite words were studied. However,
in our opinion that we will try to justify in sections 2.2 and 2.4, the existing methods
are far from being appropriate for the reflecting the analytic structure of sets of words
and languages. In this paper we develop an alternative approach to the study of the an-
alytic structure of the family of infinite words. The principal idea is to use the so called
fuzzy pseudometric instead of ordinary metrics. However, fuzzy pseudometrics, as they
are defined by (George and Veeramani, 1994), also are not fully appropriate in order to
describe the structure of sets of infinite words. Therefore we revise the “classical” def-
inition of a fuzzy pseudometric by weakening one of its axioms and thus come to the
concept of a fragmentary fuzzy pseudometric; the use of the adjective “fragmentary”
will be explained in Remarks 2, 3 and justified in Section 4.1.
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The concept of a fragmentary fuzzy pseudometric, being “invented” as a tool for
the study of the set of infinite words, appeared to be of its own interest. Although
some properties of fragmentary fuzzy pseudometrics are analogous to the correspond-
ing properties of “ordinary” fuzzy pseudometrics, others may be essentially different.
In particular, a fragmentary fuzzy pseudometric generally induce a supratopology and
not an ordinary topology, as fuzzy pseudometrics do. Being interested in the concept of
a fragmentary fuzzy pseudometric itself, we develop basics of the theory of a fragmen-
tary fuzzy pseudometrics in the first part of the paper and then apply it to the case of
the set of infinite words.

The structure of the paper is as follows. In the second section we give a very brief
introduction into the theory of metric and topological spaces and describe some known
metrics on the set of infinite words. We discuss the shortages of ordinary metrics and
topologies for the adequate description of their analytic structure of the set of all infi-
nite words. Further, we recall here the concept of a t-normed used throughhout the paper
and the notion of a fuzzy pseudometric as it is defined by A. George and P. Veeramani,
which was the “starting point” for our concept of a fragmentary fuzzy pseudometric in-
troduced and studied in Section 3. This section, being one of the main parts of the work,
presents an introduction into the theory of fragmentary fuzzy pseudometrics. Besides,
we describe here the (supra)topological structure induced by a fragmentary fuzzy pseu-
dometric. In the 4th section, we develop the construction of a special fuzzy metric on
the set of right-infinite words. We illustrate all possible shapes such fragmentary fuzzy
metrics depending on the three-element long prefixes of the words. In 5th section we
consider the concept a principal fragmentary fuzzy metric and show that the fragmen-
tary fuzzy pseudometrics concstructed in Section 4 are pricipal. This fact allows to get
a more clear idea on the topological structure induced on the set of infinite words by
fragmentary fuzzy metrics. In the last, 6th section we summarize the main results of
this work as well as discuss some prospective directions for the work in this field.

2 Preliminaries

2.1 Introduction to (pseudo-)metrics and (pseudo-)metric spaces

Recall (see e.g. Frechet, 1906, Engelking, 1977, Kelly, 1955) that a pseudo-metric on a
set X is a mapping d : X ×X → [0,∞) such that for all x, y, z ∈ X:

(1d) d(x, y) = 0⇐= x = y;
(2d) d(x, y) = d(y, x);
(3d) d(x, z) ≤ d(x, y) + d(y, z).

In case axiom (1d) is replaced by a stronger axiom

(1′d) d(x, y) = 0⇐⇒ x = y;

we come to the definition of a metric. A pair (X, d) whereX is a set and d is a (pseudo-
)metric on X is called a (pseudo-)metric space.

In case a stronger version of the axiom (3d)

(3ud) d(x, z) ≤ max{d(x, y), d(y, z)};
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holds, a (pseudo-)metric is called an ultra(pseudo-)metric, see e.g. (Kelly, 1955).
Clearly, every ultra (pseudo-)metric is a (pseudo-)metric, but not vise-versa: the

standard metric on the plane is not an ultrametric.

2.2 Metrics on the set of infinite words

In the literature we have found two kinds of metrics (actually they are ultrametrics) on
the set of all infinite words. The first one, that we denote here by ρ, is defined as follows,
see e.g. (Allouche and Shallit, 2003).
Let

x = (x0, x1, x2, . . . xn, . . .) and y = (y0, y1, y2, . . . yn, . . .)

be infinite words. Then

ρ(x, y) =

{
0 if x = y

2−n otherwise where n = min{i : xi 6= yi}

We think that this metric does not give satisfactory information about actual “nearness-
type” relations between the words. For example, consider the following three words
x = (1, 1, 1, 1, 1, 1, 1, ...), y = (0, 1, 1, 1, 1, 1, 1, ...) and z = (0, 0, 0, 0, 0, 0, 0, ...).
Then ρ(x, y) = ρ(x, z) = 1, that is in the both cases the distance between these infinite
words is the largest possible value in the corresponding metric that equals to 1. Or,
if otherwise stated, all information is got by comparing the first digits of the strings.
However, in different situations, expert’s intuition may say that x in the above example
should be estimated “closer” to y than to z. Similar to metric ρ, is the so called Cantor
metric c : X × X → [0, 1], see e.g. (Calude et al., 2009) which also fully depends on
the first part, that is on the prefix of the word.

Another known metric on the set of infinite words, denoted here by σ has a more
subtle principle of its definition:

Let x = (x0, x1, x2, . . . xn, . . .) and y = (y0, y1, y2, . . . yn, . . .) be infinite words,
and let for a given i ∈ ω (where by omega we denote the set of natural numbers includ-
ing 0) the number χi be defined by:

χi(x, y) =

{
0 if xi = yi where i is the i-th coordinate of the word
1 if xi 6= yi where i is the i-th coordinate of the word

Now let

σ(x, y) =

∞∑
i=0

1

2i
χi(x, y).

Then one can easily see that σ : X × X → [0, 1] is an ultrametric on the set of all
infinite words. In our opinion σ is more adequate for describing nearness of the words,
then ρ, since it takes into account information about a word on its whole length, but not
considers only the information contained in the prefixes of these words. However, this
metric also gives an accumulated information about nearness between the words and
neglects all concrete details of this information. For example, let x = (1, 0, 0, 0, 0, ...),
y = (0, 1, 1, 1, 1, ...) and z = (0, 0, 0, 0, 0, ...). Then σ(y, z) = 1, and σ(x, z) = 1, and
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hence this metric does not take into account the essential difference of these words, but
just accumulates all information in a single number.

Anyway, we think that ordinary metrics are not an adequate analytic tool for de-
scribing nearness-type relations between infinite words. Therefore instead of ordinary
metrics we propose to use the so called fuzzy metrics. In our opinion, that we try to
justify in this paper, fuzzy metrics are much more subtle and, if proper defined, will
give a more refined information about the nearness-type properties between the infinite
words.

2.3 Introduction to topology and supratopology

Recall, that a topology on a set X is a family T of its subsets, that is T ⊆ 2X such that

1. X, ∅ ∈ T ;
2. U, V ∈ T =⇒ U ∩ V ∈ T ;
3. {Ui : i ∈ I} ⊆ T =⇒

⋃
i∈I Ui ∈ T .

A pair (X,T ) where X is a set and T a topology on it is called a topological space.
In case T is a family of subsets of a setX satisfying the first and the third axioms of

the previous definition, then T is called supratopology on X . Thus, a supratopology on
X is a family of its subsets containing an empty set, the set X and closed under taking
unions.

Let ρ : X ×X → R+ be a metric on a set X and, given x0 ∈ X and r ∈ (0,∞)
let B(x0, r) = {x ∈ X : ρ(x0, x) < r} be the openball with center x0 and radiuss r.
Further let

Tρ = {O ∈ 2X : ∀x ∈ O ∃B(x, r) ⊆ O}.

Then Tρ is a topology on X; it is called the topology generated by a metric ρ, see e.g.
(Engelking, 1977).

2.4 Topologies in words combinatorics

There were several attempts to study the topological structure on the sets of finite, infi-
nite and both finite and infinite words. The paper (Calude et al., 2009) contains a survey
of different attempts to introduce an appropriate topology on such sets. The authors
distinguish two different approaches to this problem. The first one is based on topolo-
gies induced by metrics similar to the ones considered in Section 2.2, and hence having
no more information than the one contained in the corresponding metrics. In particular,
topologies defined by metrics ρ, and the Cantor metric c are fully determined by prefixes
of the corresponding words. The second is based on the partial order which in a natural
way can be introduced on the set of infinite words. However, since any natural order
on this set is heavily dependent on the starting part, that is the prefix of the word, the
resulting topology has a also an typical prefix character. The authors of (Calude et al.,
2009) describe different principles of defining meaningful topologies on the set of infi-
nite words and conclude that although some of these principles are not fully restricted
to the prefix order of words itself, but still they rely on it quite heavily. In conclusion the
authors say “It should be possible to derive far more general principles which apply to
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many more relations between words by changing the intuition about words being read
left to right. ” We hope that the topology generated by a fragmentary fuzzy metric in
Section 3.2 will make a certain contribution to the study of this problem.

2.5 Fuzzy (pseudo-)metrics

In 1951 K. Menger has introduced the concept of a statistical metric (Menger, 1951).
The theory of statistical metrics was developed, mainly in the second half of the pre-
vious century by different authors, see e.g. the monograph (Schweizer and Sklar,1960).
Basing on the concept of a statistical metric In (Kramosil and Michalek, 1975) intro-
duced the notion of a fuzzy metric,we call it KM-fuzzy metric. Actually a KM-fuzzy
metric is in a certain sense equivalent to the concept of a statistical metric, but there
is essential difference is in its definition and in the interpretation. While the statistical
metric Fxy(λ) on a set X is interpreted as “the probability that the obtained distance
between points x, y ∈ X is smaller than λ ∈ (−∞,+∞)” ... “the fuzzy approach to the
notion of a distance follows from the idea that the distance between two points is not an
actually existing real number, but it is a fuzzy notion, i.e. the only way which the dis-
tance in question is to ascribe some values from [0, 1] to various sentences proclaiming
something related to distance” (Kramosil and Michalek, 1975).

In (George and Veeramani, 1994, see also George and Veeramani, 1997), the orig-
inal concept of a fuzzy metric is slightly modified. On one hand this modification al-
lows many natural examples of fuzzy metrics and fuzzy pseudometrics, in particular
fuzzy (pseudo-)metrics constructed from ordinary (pseudo-)metrics. On the other hand
George - Veeramani’s fuzzy metrics are more appropriate for the definition and the
study of the induced topological structure. At present the larger part of the research
where fuzzy metrics are involved is done in the framework of George-Veeramani’s def-
inition of a fuzzy metric. In our work we revise George-Veeramani’s definition of a
fuzzy (pseudo-)metric by modifying one of its axioms thus coming to a concept that we
call a fragmentary fuzzy pseudometric.1 In order to recall the concept of a fuzzy pseu-
dometric (in George and Veeramani, 1994 sense) and related results needed in the main
text, first we have to define the notion of a t-norm that will be used also throughout the
paper.

2.5.1 t-norms The notion of a t-norm was introduced first in (Menger, 1951), and
later studied and applied in the research of many authors, see e.g. fundamental mono-
graphs (Schweizer and Sklar,1960, Klement et al., 2000).

Definition 1. (Menger, 1951, see also Schweizer and Sklar,1960) A t-norm is a binary
operation ∗ : [0, 1] × [0, 1] → [0, 1] on the unit interval [0, 1] satisfying the following
conditions:

(0t) ∗ is monotone: α ≤ β ⇒ α ∗ γ ≤ β ∗ γ ∀γ ∈ [0, 1];
(1t) ∗ is commutative: α ∗ β = β ∗ α for all α, β ∈ [0, 1];

1 The meaning of the adjective “fragmentary” and the reason to modify the original definition
of a fuzzy pseudometric is explained in Remarks 2 and 3.
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(2t) ∗ is associative: (α ∗ β) ∗ γ = α ∗ (β ∗ γ) for all α, β, γ ∈ [0, 1];
(3t) α ∗ 1 = α, α ∗ 0 = 0 for all α ∈ [0, 1].

A t-norm is called left-continuous in case it satisfies the following axiom

(4t) ∗ distributes over arbitrary joins (suprema): α ∗
(∨

i∈I βi
)
=
∨
i∈I(α ∗ βi)

for every α ∈ [0, 1] and for all {βi | i ∈ I} ⊆ [0, 1],

where
∨

denotes the operation of taking suprema in [0,1].

Example 1. Among the most important examples of t-norms are the following three
(see e.g. Schweizer and Sklar,1960, Klement et al., 2000):

– Let α ∗ β := α∧ β where ∧ denotes the operation of taking minimum in [0,1]. It is
called the minimum t-norm.

– Let α ∗ β := α · β be the product. This is the so called product t-norm.
– LetL = [0, 1] and α∗Lβ := max(α+β−1, 0). This is the well-known Łukasiewicz
t-norm.

Remark 1. It is known that ∧ is the largest t-norm, that is for any t-norm ∗ and any
α, β ∈ [0, 1] it holds α ∗ β ≤ α ∧ β. In particular, as one can easily verify, α ∧ β ≥
α · β ≥ α ∗L β and the inequality is strict if α, β ∈ (0, 1).

2.5.2 Fuzzy pseudometrics Let R+ = (0,∞), ∗ : [0, 1]× [0, 1]→ [0, 1] be a t-norm
and X be a set.

Definition 2. (George and Veeramani, 1994) A fuzzy pseudo-metric on the set X is a
pair (m, ∗), or simply m, where m : X ×X × R+ → (0, 1], satisfying the following
conditions for all x, y, z ∈ X and all s, t ∈ R+:

(1FPM) m(x, y, t) > 0;
(2FPM) m(x, y, t) = 1 whenever x = y;
(3FPM) m(x, y, t) = m(y, x, t);
(4FPM) m(x, z, t+ s) ≥ m(x, y, t) ∗m(y, z, s);
(5FPM) m(x, y,−) : R+ → [0, 1] is continuous.

If (m, ∗) is a fuzzy pseudometric on X , then the triple (X,m, ∗) is a called a fuzzy
pseudometric space.

If axiom (2FPM) is replaced by a stronger axiom

(2′FPM) x = y ⇐⇒ m(x, y, t) = 1

we get definitions of a fuzzy metric, and the corresponding fuzzy metric space.

Note that axiom (4FPM) combined with axiom (2FPM) implies that the fuzzy pseu-
dometric m(x, y, t) is non-decreasing on the third argument.

The following proposition gives the standard construction of a fuzzy metric from a
usual metric on the same set:
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Proposition 1. (George and Veeramani, 1994, George and Veeramani, 1997) Let (X, d)
be a pseudo metric space. Letmd be the fuzzy subset ofX×X×R+, that is a mapping
md : X ×X × R+ → (0, 1] defined by

md(x, y, t) =
t

t+ d(x, y)
.

Then (md, ∗) is a fuzzy metric in case ∗ = · is the product t-norm.

3 Fragmentary fuzzy pseudometrics

3.1 Fragmentary fuzzy pseudometrics: basic definitions and preliminary results

As it was said above, we need a certain modified version of Definition 2:

Definition 3. A fragmentary fuzzy pseudo-metric on the set X is a pair (m, ∗), or sim-
ply m where ∗ is a left semicontinuous t-norm and m : X × X × R+ → (0, 1] is a
mapping satisfying the following conditions for all x, y, z ∈ X , s, t ∈ R+:

(1FFPM) m(x, y, t) > 0;
(2FFPM) m(x, x, t) = t

t+1 ≥ m(x, y, t);
(3FFPM) m(x, y, t) = m(y, x, t);
(4FFPM) m(x, z, t+ s) ≥ m(x, y, t) ∗m(y, z, s);
(5FFPM) function m(x, y,−) : R+ → [0, 1] is continuous and non-decreasing.

If (m, ∗) is a fragmentary fuzzy metric on X , then the triple (X,m, ∗) is a called a
fragmentary fuzzy metric space.

Remark 2. Thus axioms (1FFPM), (3FFPM) and (4FFPM) are the same as the axioms
(1FPM), (3FPM) and (4FPM) respectively, but the axiom (2FPM) is replaced by the
axiom (2FPM).

Since we replaced the axiom (2FPM) by the axiom (2FFPM) we had to strengthen
axiom (5FPM) replacing it by axiom (5FFPM). The reason for this is that combina-
tion of axioms (2FFM) and (4FFPM) (as different from the combination of axioms
(2FPM) and (4FPM)) does not imply that the function m(x, y,−) : R+ → [0, 1] is
non-decreasing. Therefore we have to request this important property explicitely by
replacing axiom (5FPM) by axiom (5FFPM).

Remark 3. We think it to be reasonable to replace axiom (2FPM) by an axiom (2FFPM)
at least for two reasons.

First, as we will see in Section 4.1, just this generalized version of the definition of a
fuzzy pseudometric is an appropriate tool for the description of the “distance” between
two infinite words; this “distance” is defined inductively from certain fragments of fuzzy
pseudometrics. And second, constituting that a “distance” between two equal objects
should be fixed for every t ∈ R+ = (0,∞) and not to be a subject of some possible
evaluation, does not seem to be very natural in the context of defining “distance” by
means of fuzzy metrics. Note also that

lim
t→∞

m(x, y, t) = 1 whenever x = y

also in case of a fragmentary fuzzy pseudometric.
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Patterned after (Sapena, 2001) we introduce the following important for us concept:

Definition 4. A fragmentary fuzzy pseudometric is called a fragmentary fuzzy ultra
pseudometric if for every x, y, z ∈ X , t ∈ R+

m(x, y, t) ≥ min{m(x, z, t),m(z, y, t)}.

The next definition is “the fragmentary version” of the concept of a strong fuzzy
metric (Sapena and Morillas, 2009, Gregori et al., 2010):

Definition 5. A fragmentary fuzzy pseudometricm onX is called strong if, in addition
to the properties (1FFPM), (2FFPM), (3FFPM) and (5FFPM), the following modifica-
tion of axiom (4FFPM) is satisfied

(4sFFPM) m(x, z, t) ≥ m(x, y, t) ∗m(y, z, t) for all x, y, z ∈ X and for all t > 0.

To justify this adjective “strong” in this definition we show that actually in this con-
text the axiom (4FFPM) can be obtained “for free”, that is axiom (4sFFPM) is indeed
stronger than axiom (4FFPM). This is proved in the next proposition, cf the analogous
statement for fuzzy pseudometrics, (Sapena and Morillas, 2009):

Proposition 2. Let a mapping m : X ×X → R+ satisfy axioms (1FFPM), (2FFPM),
(3FFPM), (4sFFPM) and (5FFPM), Then m : X ×X ×R+ → [0, 1] is a fragmentary
fuzzy pseudometric.

Proof Referring to axioms (4sFFPM) and (5FFPM) we get the following series of
inequalities:

m(x, z, t+ s) ≥ m(x, y, t+ s) ∗m(y, z, t+ s) ≥ m(x, y, t) ∗m(y, z, s),

which holds for any x, y, z ∈ X and any t, s ∈ R+. 2

Definition 6. A fragmentary strong fuzzy pseudometric m : X ×X × R+ → (0, 1] is
call a fragmentary strong fuzzy ultra pseudometric if

m(x, y, t) ≤ m(x, z, t) ∧m(z, y, t)

for all x, y, z ∈ X , and every t ∈ R+.

By modifying in a natural way definitions of continuity and strong continuity (for
example, see George and Veeramani, 1997 and Gregori et al., 2009b) for mappings of
fuzzy (pseudo)metric spaces, see also Remark 3.17 in (Miñana and Šostak, 2015), we
come to the following:

Definition 7. If two fragmentary fuzzy pseudometric spaces (X,m, ∗m) and (Y, n, ∗n)
are given, then a mapping f : X → Y is called continuous if for every ε ∈ (0, t

1+t ),
every x ∈ X and every t ∈ R+ there exist δ ∈ (0, t

1+t ) and s ∈ R+ such that
n(f(x), f(y), t) > t

1+t − ε whenever m(x, y, s) > t
1+t − δ. In symbols:

∀ε ∈
(
0,

t

1 + t

)
,∀x ∈ X,∀t ∈ R+ ∃ δ ∈

(
0,

t

1 + t

)
,∃s ∈ R+ such that
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m(x, y, s) >
t

1 + t
− δ =⇒ n(f(x), f(y), t) >

t

1 + t
− ε.

In case when s always can be taken equal to t, the mapping f will be called strongly
continuous.

Patterned after the construction of the standard fuzzy pseudometric from an ordinary
pseudometric, see Proposition 1, we propose a construction of the standard fragmentary
fuzzy pseudometric:

Proposition 3. Let (X, d) be an pseudometric space and define the mappingmd : X×
X × R+ → (0, 1] by

md(x, y, t) =
t

t+ 1 + d(x, y)
.

Then md(x, y, t) is a fragmentary strong fuzzy pseudometric in case of the product
t-norm · and hence also in case of the Łukasiewicz t-norm (see Remark 1).

Proof . It is clear thatmd satisfies axioms (1FFM), (2FFM) and (3FFM). The continuity
of md is clear and the non-decreasness of md can be proved straightforward. To show
the validity of axiom (4sFFM), let x, y, z ∈ X . Then, applying the property d(x, y) ≤
d(x, z) + d(z, y) which holds for the pseudometric d, we easily verify that

md(x, y, t) =
t

t+ 1 + d(x, z)
≥

t

t+ 1 + d(x, y)
· t

t+ 1 + d(y, z)
= md(x, z, t) ·md(z, y, t).

2

Proposition 4. Let (X, d) be an ultra pseudometric space and define the mappingmd :
X ×X × R+ → (0, 1] by

md(x, y, t) =
t

t+ 1 + d(x, y)
.

Thenmd(x, y, t) is a fragmentary strong fuzzy ultra pseudo-metric in case of the t-norm
∧ and hence (by Remark 1 also in case of any other t-norm.

Proof As in the case of Proposition 3, it is clear that md satisfies axioms (1FFM),
(2FFM) and (3FFM). The continuity of md is clear and the non-decreasness of md can
be proved straightforward. Noticing that the axiom d(x, y) ≤ max{d(x, z), d(z, y)} of
the ultra pseudometric d implies the inequality

t

t+ 1 + d(x, z)
≥ t

t+ 1 + d(x, y)
∧ t

t+ 1 + d(y, z)
,

we conclude that md(x, z) ≥ md(x, y) ∧md(y, z). 2

In (Gregori and Romaguera, 2004) a fuzzy pseudo-metric m on X is called station-
ary, if m does not depend on t, i.e. if for every x, y ∈ X , the function mx,y(t) =
m(x, y, t) is constant. We will need the following specification of this property.

Definition 8. A fragmentary fuzzy metric m on X is said to be stationary on the inter-
val [c, d] ⊆ R+, if for each x, y ∈ X , the function mx,y(t) = m(x, y, t) is constant on
[c, d].
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3.2 Supratopology and topology induced by a fragmentary fuzzy pseudometric

Let m : X × X × R+ → (0, 1] be a fragmetary fuzzy pseudometric. We follow
the lines of the construction of a topology from a fuzzy metric, developed back in
(George and Veeramani, 1994) in order to define the topology induced by a fragmen-
tary fuzzy metric. However, since the axiom
(2FPM) x = y =⇒ m(x, y, t) = 1 ∀x, y ∈ X, ∀t ∈ R+

of the fuzzy pseudometric, in case of a fragmentary fuzzy pseudometric is replaced by
the axiom
(2FFPM) m(x, x, t) = t

1+t ≥ m(x, y, t) ∀x, y ∈ X,∀t ∈ R+,
we have to made essential modification in the construction.

Given a point x ∈ X , and t ∈ R+ we define the “ball” with center x, at the level t
and radiuss ε ∈

(
0, t

1+t

)
as follows:

B(x, ε, t) =

{
y ∈ X : m(x, y, t) >

t

1 + t
− ε
}
.

Note that

t ≤ s =⇒ B(x, ε, t) ⊆ B(x, ε, s) and ε ≤ δ =⇒ B(x, ε, t) ⊆ B(x, δ, t).

We use the family of balls

B =

{
B(x, ε, t) | x ∈ X, t ∈ R+, ε ∈

(
0,

t

1 + t

)}
to induce the family Tm of “open” subsets of the set X:

Tm =

{
O ∈ 2X : ∀x ∈ X ∃t ∈ R+,∃ε ∈

(
0,

t

1 + t

)
such that B(x, ε, t) ⊆ O

}
.

In (George and Veeramani, 1994, George and Veeramani, 1997) it is proved that in
case of a fuzzy pseudometric m the family

B∗ = {B(x, ε, t) | x ∈ X, t ∈ (0,∞), ε ∈ (0, 1)} ,

defined in an analogous way, satisfies necessary conditions to be a base for the topology
Tm on X . We cannot prove an analogous theorem in our case, since the family B (as
different from the family B∗) contains only “balls” with sufficiently “small” radiuss ε ∈(
0, t

1+t

)
. When reasoning patterned after Section 3 in (George and Veeramani, 1994),

we cannot guarantee that for every y ∈ B(x, ε, t) there exists a ball B(y, δ, s) such that
B(y, δ, s) ⊆ B(x, ε, t). Therefore the collection of all “balls”

B =

{
B(x, ε, t) | x ∈ X, t ∈ (0,∞), ε ∈

(
0,

t

1 + t

)}
generally does not satisfy the criteria to be a base for a topology. Hence by taking arbi-
trary unions of the balls from the family B we obtain a supratopology Tm, but generally
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not a topology. We call it a supratopology induced by fragmentary fuzzy pseudometric
m.2

Fortunately, in case of a fragmentary fuzzy strong ultra pseudometric, that is the
most important for our principal merits case the induced supratopology is indeed a
topology. We show this in the following Theorem:

Theorem 1. Let m : X ×X × ×R+ → (0, 1] be an fragmentary fuzzy ultra pseudo-
metric. Then for every y ∈ B(x, ε, t) it holds B(y, ε, t) ⊆ B(x, ε, t).

Proof To show thatB(y, ε, t) ⊆ B(x, ε, t) let z ∈ B(y, ε, t). Thenm(x, y, t) > t
1+t−ε

and, since m is fragmentary, m(x, x, t) = t
t+1 . Now, recalling that m is a fragmentary

fuzzy ultra pseudometric we conclude that m(y, y, t) > t
1+t − ε, that is y ∈ B(y, ε, t).

Now, let z ∈ B(y, ε, t). Then

m(x, z, t) ≥ m(x, y, t) ≥ m(x, y, t) ∧m(y, z, t) ≥
(

t

1 + t
− ε
)
∧
(

t

1 + t
− ε
)

and hence z ∈ B(x, ε, t). 2

Further we consider some properties of a supratopology induced by a fragmentary
fuzzy strong pseudometric without assumption that it is “ultra’.

One can easily verify the following proposition:

Proposition 5. Assume that (X1,m1, ∗m1) and (X2,m2, ∗m2) are fragmentary fuzzy
pseudometric spaces. Then a mapping

f : (X1,m1, ∗m1)→ (X2,m2, ∗m2)

is continuous (in the sense of definition 7) if and only if the mapping of the correspond-
ing supratopological spaces

f : (X1, Tm1
)→ (x2, Tm2

)

is continuous (that is ∀V ∈ Tm2 ⇒ f−1(V ) ∈ Tm1 ).

Definition 9. Let (X,m, ∗) be a fragmentary fuzzy pseudometric space and A ⊆ X .
ThenA is called bounded if there exist t ∈ (0,∞) and r ∈ (0, 1) such thatm(x, y, t) >
t

1+t − r for all x, y ∈ A.

We get the following by reasoning in the same way as in the proof of Theorem 3.9
in (George and Veeramani, 1994):

Theorem 2. Every set A which is compact in the supratopology induced by a fragmen-
tary fuzzy pseudometric m is bounded.

The following theorem establishes connections between convergence of sequences
in a fragmentary fuzzy pseudometric and their convergence in the induced supratopol-
ogy.

2 Of course, we can use the family B as a subbase for some topology on X . However, we think
that it is more natural in this case to remain on the level of a supratopology
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Theorem 3. Let (X, ∗, t) be a strong fuzzy t
1+t -pseudometric space. Then for a se-

quence (xn)n∈N ⊆ X , it holds xn → x in the supratopology Tm if and only if
limn→∞m(xn, x, t) =

t
1+t .

Proof Suppose xn → x in the supratopology Tm. Then for each t ∈ R+, and for
each ε ∈

(
0, t

1+t

)
and B(x, ε, t) 6= ∅ there exists n0 such that xn ∈ B(x, ε, t) for

all n ≥ n0. Hence m(x, xn, t) ≥ t
1+t − ε for all n ≥ n0. Since on the other hand,

m(x, xn, t) ≤ t
1+t , we conclude, that limn→∞m(x, xn, t) =

t
1+t .

Conversely, assume that limn→∞m(x, xn, t) =
t

1+t . Then for each ε ∈
(
0, t

1+t

)
there exists n0 such that for all n ≥ n0 it holds m(xn, x, t) ≥ t

1+t − ε. However, this

means that xn ∈ B(x, ε, t). Since this holds for every ε ∈
(
0, t

1+t

)
that is for every

non-empty ball B(x, ε, t), we conclude that limn→∞ xn = x in the supratopology Tm.
2

4 Fragmentary fuzzy ultra pseudometric on the set of infinite
words

4.1 Construction of a fragmentary fuzzy ultra pseudometric on the set of infinite
words

Let X be the set of infinite words. We define a sequence

{dn | n ∈ N ∪ {0}}

of ultra pseudometrics onX as follows. Let x = (x0, x1, x2, . . .), y = (y0, y1, y2, . . .) ∈
X and let χi(x, y) = 0 if xi = yi and χi(x, y) = 1 if xi 6= yi. We define:
d0(x, y) = χ0(x, y);

d1(x, y) = χ0(x, y) +
χ1(x,y)

2 ;

d2(x, y) = χ0(x, y) +
χ1(x,y)

2 + χ2(x,y)
22 ;

. . .
dn(x, y) =

∑n
i=0

χi(x,y)
2i ;

. . .

Proposition 6. Every dn is an ultra pseudometric.

Proof Obviously every χi(x,y)
2i is an ultra pseudo metric. From here we conclude that

every dn(x, y) is an ultra pseudo metric by induction referring to the following easily
provable Lemma:

Lemma 1. Let d1, d2 : X×X → R+ be ultra pseudo metrics. Assume that d1(x, y) ∈
{0}∪ [a, 1] for any x, y ∈ X and that d2(x, y) ∈ [0, a2 ]. Then d = d1 + d2 : X ×X →
[0, 1] is an ultra pseudometric.
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Basing on this sequence of ultra pseudometrics and referring to Proposition 4 we
construct the sequence of fragmentary fuzzy strong ultra pseudometrics on the set X of
all right-infinite words:
µ0(x, y, t) =

t
t+1+d0(x,y)

;
µ1(x, y, t) =

t
t+1+d1(x,y)

;
µ2(x, y, t) =

t
t+1+d2(x,y)

. . .;
µn(x, y, t) =

t
t+1+dn(x,y)

. . .
Further we define the following family of mappings:
m0(x, y, t) = µ0(x, y, t);
m1(x, y, t) = µ1(x, y, t) ∨ µ0(x, y, 1);
m2(x, y, t) = µ2(x, y, t) ∨ µ1(x, y, 2);
. . .;
mn(x, y, t) = µn(x, y, t) ∨ µn−1(x, y, n− 1);
. . .

Proposition 7. Mappings mn : X × X × R+ → [0, 1] are fragmentary strong fuzzy
ultra metrics on the set X of infinite words.

Proof From propositions 4 and 6 we know that each µn is a fragmentary fuzzy strong
ultra pseudometric, that is µn(x, z, t) ≥ µn(x, y, t) ∧ µn(y, z, t). Since mn(x, y, t) =
µn(x, y, t) ∨ an where an is some constant, it is clear that mn(x, y, t) is a fragmentary
fuzzy ultra pseudometric and besides mn(x, z, t) ≥ mn(x, y, t) ∧ mn(y, z, t), that is
mn is strong. 2

Finally, we construct a mapping m : X ×X × R+ → (0, 1] as follows:

m(x, y, t) =



m0(x, y, t) if 0 < t ≤ 1
m1(x, y, t) if 1 < t ≤ 2
m2(x, y, t) if 2 < t ≤ 3

. . .
mn(x, y, t) if n < t ≤ n+ 1

. . .

Theorem 4. The mapping m : X × X × R+ → [0, 1] is a fragmentary fuzzy strong
ultra pseudometric.

The proof is straightforward from Proposition 7.

4.2 Possible shapes of the fragmentary fuzzy strong ultra metric. m in the first
3 stages

We illustrate the shape in the initial interval (0, 3] of the constructed fragmentary fuzzy
ultra pseudometric m describing the distance between infinite words x = (x0x1x2...)
and y = (y0y1, y2...) in dependence on the first three values x0, x1, x2, y0, y1, and y2.
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Distance in the case  when the  first three letters ar e equal 

Fig. 1. The metrics for the Case 1

1. The case x0 = y0, x1 = y1, x2 = y2. Then

m(x, y, t) =
t

t+ 1
for t ∈ (0, 3].

2. The case x0 = y0, x1 = y1, x2 6= y2. Then

m(x, y, t) =


t
t+1 if 0 < t ≤ 2

2
3 if 2 < t ≤ 5

2
t

t+ 5
4

if 5
2 < t ≤ 3

3. The case x0 = y0, x1 6= y1, x2 = y2. Then

m(x, y, t) =


t
t+1 if 0 < t ≤ 1

1
2 if 1 < t ≤ 3

2
t

t+ 3
2

if 3
2 < t ≤ 3
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third are different

Fig. 2. The metrics for the Case 4

4. The case x0 = y0, x1 6= y1, x2 6= y2. Then

m(x, y, t) =



t
t+1 if 0 < t ≤ 1

1
2 if 1 < t ≤ 3

2
t

t+ 3
2

if 3
2 < t ≤ 2

4
7 if 2 < t ≤ 7

3
t

t+ 7
4

if 7
3 < t ≤ 3

5. The case x0 6= y0, x1 = y1, x2 = y2. Then

m(x, y, t) =
t

t+ 2
for t ∈ (0, 3]

6. The case x0 6= y0, x1 = y1, x2 6= y2. Then

m(x, y, t) =


t
t+2 if 0 < t ≤ 2

1
4 if 2 < t ≤ 9

4
t

t+ 9
4

if 9
4 < t ≤ 3
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Distance in the case when the first two letters are not equal, but the third 
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Fig. 3. The metrics for the Case 7

7. The case x0 6= y0, x1 6= y1, x2 = y2. Then

m(x, y, t) =


t
t+2 if 0 < t ≤ 1

1
3 if 1 < t ≤ 5

4
t

t+ 5
2

if 5
2 < t ≤ 3

8. The case x0 6= y0, x1 6= y1, x2 6= y2. Then

m(x, y, t) =



t
t+2 if 0 < t ≤ 1

1
3 if 1 < t ≤ 5

4
t

t+ 5
2

if 5
4 < t ≤ 2

4
9 if 2 < t ≤ 11

5
t

t+ 11
4

if 11
5 < t ≤ 3

5 Principal fragmentary fuzzy pseudometrics

When defining a (supra)topology induced by a fragmentary fuzzy pseudometric, for
each x ∈ X , we have to take into consideration all ε ∈

(
0, t

1+t

)
as well as all t ∈ R+.
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The structure of the topology becomes more lucid and simple if the families

Bt =
{
B(x, ε, t) : x ∈ X, ε ∈

(
0,

t

1 + t

)}
induce the same topology on the set X for all t ∈ R+. In other words this means that
Bt =

{
B(x, ε, t) : ε ∈

(
0, t

1+t

)}
is a local base at the point x for the supratopology

Tm. Pattern after (Gregori et al., 2009a) we call such fragmentary fuzzy metrics princi-
ple.

For our merits we will need the following specification of this property.

Definition 10. A fragmentary fuzzy pseudometric m : X ×X ×R+ → (0, 1] is called
principal on the interval [c, d] ⊆ (0,∞) if the families

Bt =
{
B(x, ε, t) : ε ∈

(
0,

t

1 + t

)}
induce the same topology on the set X for all t ∈ [c, d].

5.1 “Principality” of the fragmentary fuzzy ultra pseudometric m constructed
in Section 4.1

Theorem 5. Fragmentary fuzzy ultra pseudometric m on the family of infinite words
constructed in Section 4.1 is principal.

To prove this theorem we first establish two lemmas:

Lemma 2. Let d : X ×X → [0, 1] be a pseudometric and a fuzzy pseudo-metric m :
X×X×R+ → [0, 1] be such thatm(x, y, t) = t

t+1+d(x,y) for each t ∈ [c, d] ⊆ (0,∞).
Then the fuzzy pseudometric m : X ×X × R+ → [0, 1] is principal on [c, d]

To prove this lemma it is sufficient to show that for each x ∈ X , for each t ∈ [c, d]

and for each ε ∈
(
0, t

1+t

)
we can find δ ∈

(
0, t

1+t

)
such that B(x, δ, t) = B(x, ε, c).

Then

B(x, ε, c) =

{
y :

c

c+ 1 + d(x, y)
>

t

1 + t
− ε
}
,

and

B(x, δ, t) =

{
y :

t

t+ 1 + d(x, y)
>

t

1 + t
− δ
}
.

Since t ∈ [c, d] we can find α ∈ (0,+∞) such that t = c + α. Now the requested
condition that

B(x, δ, t) = B(x, ε, c)

can be reformulated as follows: For a given α and ε we must find δ ∈
(
0, t

1+t

)
such

that
c

c+ b
= 1− ε⇐⇒ c+ α

c+ α+ b
.
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Making elementary calculations we get from here that

δ =
εt

t+ α(1− ε)
.

Obviously δ = εwhen t = c and δ decreases from ε to εt
t+(d−c)(1−ε) as t increases from

c to d.
2

Lemma 3. If a fragmentary fuzzy pseudometricm : X×X×R+ → (0, 1] is stationary
on an interval [c, d], then it is also principal on this interval.

The proof is obvious, since stationarity in this case means that m(x, y, t) = m(x, y, s)
for all t, s ∈ [c, d] and hence topologies generated by all fragmentary fuzzy pseudomet-
rics m(x, y, t), where t ∈ [c, d], coincide.

2

Proof of the theorem
From the construction of the fragramentary fuzzy ultra pseudometric m(x, y, t), see
Subsection 4.1, see also Subsection 4.2, it is clear that, for a given infinite word x =
(xo, x1, x2, . . .), this fragmentary fuzzy ultra pseudometric determines one of the fol-
lowing three types of sequences of numbers

0 = c0 < c1 < c2 < c3 . . . c2k−1 < c2k < c2k+1 < . . .

0 = c0 < c1 < c2 < c3 . . . c2k−1 < c2k < c2k+1

0 = c0 < c1 < c2 < c3 . . . c2k−1 < c2k

such that on the interval (c0, c1] and on each interval [c2k, c2k+1] for k ∈ ω the frag-
mentary fuzzy metric m(x, y, t) is defined by the formula m(x, y, t) = t

t+1+d(x,y) and
on each interval [c2k−1, c2k] for k ∈ ω the fragmentary fuzzy ultra psdeudometric is
stationary.

Consider first the case

0 = c0 < c1 < c2 < c3 . . . c2k−1 < c2k < c2k+1 < . . . .

Referring to Lemma 2 we conclude that the topologies generated by the framentary
fuzzy ultra pseudometric m(x, y, t) coincide for all t ∈ (c0, c1] and all t ∈ [c2k, c2k+1],
k ∈ ω. On the other hand, referring to Lemma 3, we see that the topologies generated
by the fragmentary fuzzy ultra pseudometric m(x, y, t) coincide for all t ∈ [c2k−1, c2k],
k ∈ N. Since the end points of the intervals belong to the both types of the intervals,
by induction we conclude that the topologies generated by all t ∈ (0,∞) coincide and
hence the fragmentary fuzzy ultra pseudometric is principal.

In case of a finite sequence 0 = c0 < c1 < c2 < c3 . . . c2k−1 < c2k < c2k+1 we are
reasoning as in the first case and finish the proof noticing that at the last infinite interval
(c2k+1,∞) the fragmentary fuzzy ultra pseudometric is stationary.

In case of a finite sequence 0 = c0 < c1 < c2 < c3 . . . c2k−1 < c2k we are
reasoning as in the first case and finish the proof noticing that at the last infinite in-
terval (c2k+1,∞) the fragmentary fuzzy ultra pseudometric is defined by the formula
m(x, y, t) = t

t+1+d(x,y) and hence is principal.
2
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6 Conclusions

In this paper we have introduced the concept of a fragmentary fuzzy pseudometric as a
modification of the well-known concept of a fuzzy metric as it is defined in the paper
(George and Veeramani, 1994). The need of such modification was caused by the idea
to apply “metric-type” function for the research of the structure of the set of infinite
words as well as to study some other problems of words combinatorics. Since, in our
opinion, fragmentary fuzzy pseudometrics are of their own interest, we first study basic
properties fragmentary fuzzy pseudometrics as well as the (supra)topology they induce.
In the last two sections we apply the above defined concepts and the obtained results
to introduce a fragmentary fuzzy ultra pseudometric on the set of infinite words and to
study the resulted structure.

The concept of a fragmentary fuzzy pseudometric, being a useful modification of the
“ordinary” fuzzy pseudometric (George and Veeramani, 1994) is not its generalization
since axiom (2FFPM) in the definition of a fragmentary fuzzy pseudometric contradicts
axiom (2FPM) in the definition of a fuzzy pseudometric. As a possible direction for
a further research we consider the introduction and the study of a “fuzzy metric-type”
function that would contain both ordinary fuzzy pseudometrics and fragmentary fuzzy
pseudometrics as special cases. The idea for the definition of such a function could be
by replacing axiom (2FFPM) by the following more general axiom

(2ϕFPM) m(x, x, t) = ϕ(t) ≥ m(x, y, t) ∀x, y ∈ X,∀t ∈ R+,

where ϕ : R+ → [0, 1] is a non-decreasing function such that limt→∞ ϕ(t) = 1, and
leaving the rest of the axioms (1FFPM), (3FFPM), (4FFPM), (5FFPM) unchanged. The
functionm : X×X×R+ → (0, 1] satisfying these conditions could be called a fuzzy ϕ-
pseudometric and the corresponding pair (X,m) a fuzzy ϕ-pseudometric space. Then
one will gain “ordinary” fuzzy pseudometrics by taking ϕ(t) = 1 for all t ∈ R+ and
fragmentary fuzzy metrics by taking ϕ(t) = t

1+t . Many other special examples could
be obtained in such a way.

As a challenge for the future research we consider to undertake a deeper study of
the properties of fuzzy ϕ-pseudometrics, in particular, of fragmentary fuzzy pseudo-
metrics. As the first one of such properties to be studied we see completeness, com-
plementations, the uniform structure, different types of continuous mappings of such
spaces, in particular, contractions. It would be useful also to investigate the problem of
the existence and the uniqueness of a fixed point for mappings of such spaces.
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Höhle, U. (1980). Upper semicontinuous fuzzy sets and applications, J. Math. Anal. Appl., 78,

659-673.
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