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Abstract. Ultrametric automata use p-adic numbers to describe the random branching of the
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1 Introduction

p-adic numbers are used in different sciences, including chemistry and physics
(Kozyrev, 2006, Vladimirov et al., 1995). There are numerous efficient applications
of p-adic theory to computer science, namely, to numerical analysis, data mining
and data analysis, experiment design, theoretical programming, cryptography etc.
(Murtagh, 2009, Krishnaswami et al., 2012, Anashin, 2010).

Application of p-adic numbers to automata theory started half a century ago by A.
G. Lunts (Lunts). A. G. Lunts paper deals with transducers rather than automata. In the
paper it was shown that a letter-to-letter transducer over an alphabet of pn symbols can
be described to a function which is p-adic metric.

p-adic methods have been successfully applied to the theory of formal languages
and automata which recognize languages ultrametric too. One of the earlier monographs
on this subject is research published by Jean-Eric Pin (Perrin, Pin, 2004). There are
several papers that deal with automata which recognize languages by ultrametric (in
particular, p-adic) methods. For example, a part of the paper (Grigorchuk, 2000) deals
with automata and uses ultrametric methods.

In 2013 Rūsiņš Freivalds introduced the idea of using basic properties of p-adic
numbers and of p-adic metric in Turing machines and finite automata to describe the
random branching of the process of computation (Freivalds, 2013). He proved that the
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use of p-adic numbers exposes new possibilities which are not inherent in deterministic
or probabilistic approaches. Moreover, in 1916 Alexander Ostrowski proved that any
non-trivial absolute value on the rational numbers Q is equivalent to either the usual
real absolute value or a p-adic absolute value. So using p-adic numbers was the only
remaining possibility not yet explored (Freivalds, 2013).

Ultrametric automata are similar to probabilistic automata but research has shown
that the capabilities of these types of automata can differ very much. Ultrametric au-
tomata are able to recognize nonrecursive languages (Freivalds, 2013) and can have sig-
nificant state complexity advantages over other types of automata (Balodis et al., 2013,
Balodis, 2014). Ultrametric automata can also solve some tasks that have various re-
quirements for computing complexity for Turing machines (Dimitrijevs et al., 2014,
Krišlauks et al., 2013).

In this paper, we present a survey on ultrametric automata types and their language
recognition capabilities. We begin with the definitions of p-adic numbers, operations
with p-adic numbers and definitions of ultrametric automata. Then we list and analyse
recent results about state complexity of ultrametric automata. In Section 2 we describe
language recognition capabilities of ultrametric automata. Then, in Section 3 we de-
scribe other types of ultrametric automata and their capabilities. In summary section
we list all results in concentrated form.

2 p-adic Numbers

A p-adic digit is a natural number between 0 and p − 1 where p is an arbitrary prime
number. A p-adic integer (ai)i∈N is an infinite sequence of p-adic digits written from
right to left. A p-adic integer can be written as a sequence of digits ...ai...a2a1a0.

For each natural number, there exists its p-adic representation and only a finite num-
ber of p-adic digits are not zeroes. Negative integers have a different representation in
p-adic numbers, namely, they have an infinite sequence of digits p− 1 to the left. If all
digits of a p-adic integer are p − 1 then we have the p-adic number -1. We can add,
subtract and multiply p-adic integers in the same way as natural numbers in base p.
The only division that is not possible in p-adic integers is division by p. For example,
if we want to have p-adic integer 1/p, equation p ∗ x = 1 should have a solution, but
multiplication by p-adic integer p gives zero in the right-most p-adic digit. That being
said, p-adic integers can represent any integer and most of the rational numbers, except
for those having a positive integral power of p in the denominator.

p-adic non-integers numbers can have a decimal point and are infinite to the left side
but finite to the right side. For example, p-adic number 1/p can be written as ...0000.1.
The field of p-adic numbers is denoted as Qp. For the curious reader, David A. Madore
has written extensively about p-adic numbers and further information on the subject can
be found in (Madore).

To measure p-adic number we need the absolute value of a p-adic number. If p is a
prime number, then the p-adic ordinal of the rational number a, denoted by ordpa, is
the largest m such that pm divides a.
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Definition 1. For any rational number x its p-norm (p-adic absolute value) is

‖x‖p =

{
1/pordpx, if x 6= 0

0, ifx = 0.

For example, if p = 7, then ‖98‖7 = ‖2 ∗ 72‖7 = ‖72‖7 = 1/72 = 1/49, if p = 2,
then ‖98‖2 = ‖2‖2 = 1/2, but for any other prime number p, ‖98‖p = 1.

3 Definitions of Ultrametric Automata

Ultrametric automata are similar to probabilistic automata. Probabilistic finite automata
were introduced by Michael O. Rabin, and the reader can refer to (Rabin) for more
details about probabilistic automata.

Definition 2. A one-way p-ultrametric finite automaton is a tuple
(Q,S, δ, q0, F,Λ) where

– Q is a finite set of states,
– Σ is the input alphabet,
– δ : Q× S ×Q→ Qp is the transition function,
– q0 : Q→ Qp is the initial amplitude distribution,
– F ⊆ Q is the set of accepting states,
– Λ = (λ,♦) is the acceptance condition where λ ∈ R is the acceptance threshold

and ♦ ∈ {≥,≤}.

A probabilistic automaton has transition probabilities that are real numbers. In the
case of p-ultrametric automaton the transitions have amplitudes, which are p-adic num-
bers. Therefore, we can assume that, for a p-ultrametric automaton, prime number p
is also a parameter. Probabilistic automata have their initial distribution of probabili-
ties among the states and transitions are performed with probabilities. In ultrametric
automata every state has a initial amplitude, and by reading input word, transitions are
done with amplitudes. This means that final amplitudes of the states are calculated in
the same way as probabilities in probabilistic automata. To get the result after read-
ing the input word, the amplitude of every accepting state is transformed into p-norm
and the word is accepted if and only if sum of p-norms of accepting states satisfies the
acceptance condition.

To make reader more familiar with denotions on the figures and working principles
of ultrametric automata, we will provide an example with explanations. Consider the
following language in binary alphabet: L = {0n1m|n < m}. Ultrametric automaton
which recognizes the language L is shown on Figure 1.

The big arrow on Figure 1 that points to state q1 shows the initial amplitude of the
state. Other state has the initial amplitude zero. The arrows between states (including
arrows from state to itself) show the amplitudes of transitions. The arrow from q1 to q1
denotes, that when the automaton reads zero, the amplitude of the state q1 is multiplied
by two. The other arrow from state q1 means the transition to state q2 with amplitude
1/2. Therefore, when the first letter 1 is read, the state q2 gets the amplitude of state q1
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Fig. 1. Ultrametric automaton recognizing L.

multiplied by 1/2, and amplitude of state q1 becomes zero. This automaton is 2-adic
which means that all amplitudes are 2-adic numbers. The acceptance condition is ≥ 2
which means that when input is read the 2-norm of the amplitude of the state q2 (the
accepting state) should be at least 2. It is true only for the words from L. If the input
does not have ones or has any zero after any symbol 1, then the amplitude of q2 will
be zero. Otherwise the amplitude of q2 will be 2k, where k = n −m for input 0n1m,
2-norm of 2n−m is ‖2n−m‖2 = 2m−n, and this number will be at least 2 only ifm > n.

It is also possible to represent the structure of ultrametric automaton with the help
of transition matrices and vector of the initial amplitudes. This is also true for proba-
bilistic automata, and sometimes it is easier to understand ultrametric automata with the
help of these mathematical tools, it also show how ultrametric automata are similar to
probabilistic automata. The matrix for the input symbol zero for automaton on Figure
1: (

2 0
0 0

)
For input symbol 1: (

0 1/2
0 1/2

)
The vector for initial amplitudes: (

1 0
)

Therefore, our automaton is (Q = {q1, q2}, S = {0, 1}, δ, q0 = (1, 0), F = {q2},Λ =
{2,≥}), where δ has transition matrices for both input symbols. Example of the action
of our automate for input word "011":

(
1 0
)(2 0

0 0

)(
0 1/2
0 1/2

)(
0 1/2
0 1/2

)
=
(
0 1/2

)
We obtain the amplitude 1/2, whose 2-norm is 2, therefore, this input satisfies the

acceptance condition.
Usage of all possible p-adic numbers in p-ultrametric automata is allowed. This was

allowed in the first definition of ultrametric automata because Paavo Turakainen defined
probabilistic finite automata where the "probabilities" can be arbitrary real numbers and
he has proven that languages recognizable by these probabilistic finite automata are
the same as for ordinary probabilistic finite automata. Ultrametric automata defined in
this way have great capabilities, for example, they are able to recognize nonrecursive
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languages (Freivalds, 2013). This is also the reason why more restricted versions of
ultrametric automata were introduced.

Definition 3. Finite p-ultrametric automaton is called integral if all the p-adic numbers
in its initial distribution and transition function are p-adic integers.

At the moment no examples of ultrametric integral automata recognizing nonre-
cursive languages are known. Now we will provide an example of ultrametric integral
automaton, which recognizes the following unary language: Cn = {1n}. Ultrametric
integral automaton, which works like a counter, is shown on Figure 2.

Fig. 2. Ultrametric integral automaton recognizing Cn.

In this case the automaton has the initial amplitude −1 in state q1 and n in the
accepting state q2, and then each symbol read decreases amplitude of q2 by one. It is
obvious that the amplitude of the accepting state will be zero only in the case of the
word that must be accepted. Therefore, the acceptance condition for the p-norm will be
≤ 0, because any non-zero rational number has positive amplitude.

Formally, the depicted automaton is the following: (Q = {q1, q2}, S = {1}, δ, q0 =
(−1, n), F = {q2},Λ = {0,≤}), where δ has the following transition matrix for the
only symbol 1: (

1 1
0 1

)
Example of the action of our automate for input word "111":

(
−1 n

)(1 1
1 0

)(
1 1
1 0

)(
1 1
1 0

)
=
(
−1 n− 3

)
In (Freivalds, 2013) even more restrictive definition was introduced.

Definition 4. A state of a p-ultrametric automaton is called regulated if there exist con-
stants λ, c such that for every input word the p-norm of amplitude γ of this state is
bounded by λ − c < ‖γ‖p < λ + c, and the total number of possible different ampli-
tudes is limited. A finite p-ultrametric automaton is called regulated if all of its states
are regulated.

Ultrametric regulated automata can recognize only regular languages
(Freivalds, 2013). However, ultrametric regulated automata can have
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much fewer states than deterministic and even probabilistic automata
(Freivalds, 2013, Balodis et al., 2013).

Ultrametric automata with other acceptance conditions were also considered. Two
results were published with ultrametric automata that do not have an acceptance thresh-
old, but instead they have an acceptance interval which is represented by two real num-
bers (Dimitrijevs et al., 2014, Dimitrijevs, Ščeguļnaja, 2015). The results achieved in
these papers are also achievable for ultrametric automata that are defined with accep-
tance threshold. On the other hand, with acceptance interval it is possible to reduce the
number of required states. For example, Kaspars Balodis has proven, that ultrametric
automaton requires at least 2 states to recognize the language Cn = {1n}. In the case
of acceptance interval it is possible to have one state, which is used like a counter, ini-
tial amplitude one, and multiplication of amplitude by p when an input symbol is read.
Then the acceptance interval would be [p−n; p−n], because ‖pn‖p = p−n. This allows
to recognize the language Cn.

Rihards Krišlauks and Kaspars Balodis have also considered an other possible ac-
ceptance condition for ultrametric automata, defining them with accepting and rejecting
states. The formal definition is the following (Krišlauks, Balodis, 2015):

Definition 5. A finite one-way p-ultrametric one-head automaton (1upfa or 1upfa(1))
is a sextuple 〈S,Σ, s0, δ, QA, QR〉 where

– S is a finite set—the set of states,
– Σ is a finite set ($ /∈ Σ)—input alphabet,
– s0 : S → Qp is the initial amplitude distribution,
– δ : (Σ ∪ {$})× S × S → Qp is the transition function,
– QA, QR ⊆ S are the sets of accepting and rejecting states, respectively.

The automaton works as follows: At every timestep, each of its states has an associated
p-adic number called its amplitude. The automaton starts with an initial amplitude dis-
tribution s0. It subsequently proceeds by processing the input word’s w = w1 . . . wn
symbols one at a time. The amplitude distribution after processing the i-th symbol is
denoted as si, with si(y) =

∑
x∈S si−1(x) · δ (wi, x, y) for every y ∈ S. After the n-th

symbol, the end marker $ is similarly processed, obtaining the final amplitude distribu-
tion sn+1. If the sum of the p-norms of final amplitudes over accepting states is greater
than the sum of final amplitudes over rejecting states, i.e. if

∑
x∈QA

‖sn+1(x)‖p >∑
x∈QR

‖sn+1(x)‖p, then the word w is said to be accepted, otherwise—rejected.

In the following sections we will consider ultrametric automata that are defined with
an acceptance threshold. We will tell the reader in the case of considering other types
of ultrametric automata.

4 State complexity

In this section we to summarize the results in recent publications about state complexity
advantages of ultrametric finite automata. Most of the results show cases when ultramet-
ric automata require much fewer states than deterministic, nondeterministic, alternating
and probabilistic automata.
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One of the first published results on the state complexity advantages of ultramet-
ric automata was a comparison between deterministic and ultrametric regulated au-
tomata. In (Balodis et al., 2013) the following regular language was considered. Let
w = (w1, w2, ..., wm) ∈ {0, 1, ..., k− 1}m, and consider the following two operations:

1. a cyclic shift: fa(w1, w2, ..., wm) = (wm, w1, w2, ..., wm−1);
2. increasing the first element: fb(w1, w2, ..., wm) = ((w1 + 1)mod k,w2, ..., wm).

Let x ∈ {a, b}∗. Define fx1x2...xn
(w) = fxn

(...fx2
(fx1

(w))...). The considered lan-
guage is Lk,m = {x ∈ {a, b}∗|fx(0m) = 0m}. Balodis et al. proved that a deter-
ministic automaton requires at least km states. For all prime numbers p, an ultrametric
automaton can recognize Lk,m with k∗m states. In this case it is possible to construct a
regulated ultrametric automaton. Stronger results are achieved for every prime p > m:
p-ultrametric automata can recognize Lp,m with m+ 1 states (Balodis et al., 2013). In
this case the ultrametric automaton is not regulated.

Therefore, exponential state complexity advantages have been achieved. To con-
clude about the state complexity advantages of ultrametric regulated automata over de-
terministic automata, we have to mention the following two results. There is a proof
that for any arbitrary prime number p there is a constant cp such that if a language
M is recognized by a regulated p-ultrametric finite automaton with k states, then there
is a deterministic finite automaton with (cp)

k∗logk states recognizing the language M
(Balodis et al., 2013). Second, there is a proof that such a difference in state complex-
ity is obtainable: for any arbitrary prime p there is a language, which is recognized
by a p-ultrametric regulated automaton with p + 2 states, and this language requires
at least p! = cp∗logp states for the deterministic automaton to recognize this language
(Freivalds, 2013).

Ultrametric integral automata have better capabilities than regulated ultrametric
automata and we can expect greater state complexity advantages. A language Ln =
{awbwa|w ∈ {0, 1}∗ and |w| = n} was recently considered. One-way deterministic
and even nondeterministic automata require at least 2n states (Damanik, 1996). This
language can be recognized with ultrametric integral automaton (for all prime num-
bers p) with constant state complexity. In Figure 3 such an ultrametric automaton is
depicted (Dimitrijevs, 2016b). To construct integral this ultrametric automaton we have
to choose a prime number q, which is not equal to p (therefore, 1/q remains p-adic in-
teger). The automaton has four logical parts. The amplitude of q3 will be equal to zero
if and only if the positions of the 1s are the same in both word parts w, the amplitude
of state q7 will be zero if and only if the lengths of both parts w are equal. States q8,
q9 and q11 will have an amplitude of zero if and only if the input word has a correct
structure: b after a, the second letter a after b, and no letters present after the second
letter a. States q12 and q13 ensure the check for equality |w| = n (if |w| = n, state q13
will have amplitude zero).

The result was also improved by enhancing the language Ln. For every positive in-
teger k there exists a language, which consists of words of lengthO(n), requires at least
kn states to be recognized by a nondeterministic finite automaton, but for every prime
number p, an integral p-ultrametric finite automaton can recognize this language with
constant state complexity. Increasing the base of the exponent k by one increases the
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Fig. 3. A p-ultrametric automaton recognizing Ln.
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required number of states for ultrametric integral automaton by 4 (Dimitrijevs, 2016b).
The state complexity still remains a constant, not depending on the length of input word.

Next results show advantages of ultrametric automata over probabilistic automata.
The paper (Balodis, 2014) contains results, where probabilistic automata require more
states than p-ultrametric automata. Here the language is quite simple: Cn = {1n}. A
probabilistic automaton requires 3 states, while a p-ultrametric automaton requires 2
states. There exists a probabilistic automaton with 3 states and a p-ultrametric automa-
ton with 2 states, both recognizing Cn. The strength of this result is in the fact that it is
proven for all prime numbers p as parameters of p-ultrametric automaton.

In (Ambainis, 1996) the authors considered a language Lm with the m letter alpha-
bet {a1, a2, ..., am} consisting of all words that contain each of the letters a1, a2, ..., am
exactly m times. There exists a probabilistic finite automaton with isolated cutpoint,
which accepts Lm and has O(m ∗ (logm)2/loglogm) states. A deterministic finite au-
tomaton requires at least (m+ 1)m states to recognize this language (Ambainis, 1996).
For every prime number p, language Lm can be recognized by an integral p-ultrametric
automaton with two states (Dimitrijevs, 2016b).

In the case of probabilistic automata with bounded error the difference can be more
significant. In (Dimitrijevs, 2016b) the following language was considered, defined for
all integers k > 0:EV ENODDk

yes = {aj2k |j is a nonnegative even integer}. It is
known that the languageEV ENODDk

yes requires at least 2k+1 states to be recognized
by a one-way probabilistic automaton with bounded error (Ambainis, 2012). A two-way
nondeterministic automaton also requires at least 2k+1 states (Say, Yakaryilmaz, 2014).
It is possible to recognize the language EV ENODDk

yes with 2-ultrametric automaton
with two states (Dimitrijevs, 2016b).

It is worth to mention that the language EV ENODDk
yes requires at least k + 1

states to be recognized by an alternating automaton (Geffert, 2014), therefore this gives
us also an example of advantages over alternating automata.

5 Recognizable languages

The aim of this section is to show which languages can be recognized with different
types of ultrametric automata, including ultrametric automata with limited number of
states.

First, we remind the reader that regulated ultrametric automata can recognize only
regular languages.

On the other hand, it is enough to have ultrametric automaton with one state to
recognize nonregular language. The language L1 = {x|x ∈ {0, 1}∗ and |x|0 ≥ |x|1},
where |x|a denotes the number of symbols a in x, is mentioned in (Dimitrijevs, 2016a).
L1 can be easily shown to be nonregular based on the argument that the difference be-
tween the number of zeroes and the number of ones can increase infinitely. It is possible
to construct a p-ultrametric automaton (for every prime number p) with one accepting
state with initial amplitude 1. When the automaton reads symbol 1, it multiplies the
amplitude by p. When the symbol zero is read, the amplitude is then multiplied by p−1.
After reading the input word the amplitude of the state will be p|x|1−|x|0 . The p-norm of
this number is equal to 1/p|x|1−|x|0 = p|x|0−|x|1 . The automaton will accept the input
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word x if and only if the p-norm of the amplitude is at least 1, and this is possible only
when |x|0 ≥ |x|1 (Dimitrijevs, 2016a).

The paper (Dimitrijevs, 2016a) has also a proof for the following theorem.

Theorem 1. For every prime number p, the languages recognizable by p-ultrametric
automata with one state form a proper subset of languages recognizable by one-way
deterministic counter automata.

Therefore, ultrametric automata with one state can surpass deterministic finite automata,
but cannot surpass one-way deterministic automata with a counter.

In (Dimitrijevs, 2016a) is one more limitation for ultrametric automata with one
state.

Theorem 2. For every prime number p, a p-ultrametric integral automata with one
state can recognize only regular languages.

Therefore, only unrestricted ultrametric automata with one state can surpass de-
terministic automata. The next logical step is to consider context-sensitive languages
that are not context-free (threrefore, are not recognizable by nondeterministic push-
down automata). In (Dimitrijevs, 2016a) the following non-context-free language was
considered: L2 = {x|x ∈ {0, 1, 2}∗ and |x|0 < |x|1 and |x|1 < |x|2}. This language
was recognized with unrestricted ultrametric automaton with two states. The next im-
provement has shown that non-context-free language can be recognized with integral
ultrametric automaton with two states. On Figure 4 ultrametric integral automaton is
depicted which recogizes the following non-conntext-free language: L3 = {x|x =
{a, b, c, d}∗ and |x|a = |x|b = |x|c before the first symbol d} (Dimitrijevs, 2016a).
The languages in both results can be recognized for any prime number p.

Fig. 4. Ultrametric automaton recognizing L3.

It turns out that two states are even enough to recognize nonrecursive languages.
This is true for general ultrametric automata, and the question about the possibility to
recognize nonrecursive languages with ultrametric integral automata is still open. Let
β = ...a3a2a1a0 be an arbitrary p-adic number, which is not a p-adic integer, p be an
arbitrary prime number and all ai = {0, 1}. We define a language Lβ in the following
way: a binary sequence belongs to Lβ if and only if it is equal to the last digits of β.
p-adic numbers can only be finite to the right side from a decimal point. Assume that
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number β has k p-adic digits after the decimal point. Ultrametric automaton which rec-
ognizes Lβ can be seen on Figure 5 (Dimitrijevs, 2016a). This result also was achieved
for all prime numbers p.

Fig. 5. Ultrametric automaton recognizing Lβ .

In 2014 Maksims Dimitrijevs and Irina Ščeguļnaja have considered an other aspect
of the languages, recognizable by ultrametric automata (Dimitrijevs et al., 2014). They
considered languages that have some requirements on the computing complexity for
deterministic Turing machines. Ultrametric automata are able to recognize some lan-
guages that require quadratic time complexity, logarithmic space complexity or linear
reversal complexity for deterministic Turing machines. These results are also true for
integral ultrametric automata and for all prime numbers p (Dimitrijevs, 2015).

6 Other types of automata

In this section two-way automata, multihead automata and pushdown automata are con-
sidered. We list recently achieved results for mentioned types of automata in the context
of ultrametric automata.

In (Dimitrijevs, 2016b) binary palindromes were considered to show that two-way
ultrametric automata in some cases require fewer states than one-way ultrametric au-
tomata. Two-way ultrametric integral automaton can recognize binary palindromes with
three states, while one-way ultrametric automaton without restrictions requires at least
four states. This is true for all prime numbers p. The following two figures show one-
way and two-way ultrametric automata that recognize binary palindromes. On Figure
6 q is a prime number, which is not equal to p. This number was used in the paper to
show how to construct ultrametric integral automaton.

In his seminal paper Rūsiņš Freivalds has shown that regulated two-way ultrametric
automata can recognize non-regular languages (Freivalds, 2013). We follow with the
exact text of the theorem.

Theorem 3. For every prime p ≥ 3 there exists a regulated 2-way finite integral p-
ultrametric automaton recognizing the language {0n1n}.

This result is similar to the case of probabilistic automata with bounded error
- two-way probabilistic automata are also able to recognize nonregular languages
(Freivalds, 1982).
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Fig. 6. A one-way p-ultrametric automaton
recognizing palindromes.

Fig. 7. A two-way p-ultrametric automaton
recognizing palindromes.

Rūsiņš Freivalds has also published a result for regulated ultrametric pushdown au-
tomata (Freivalds, 2013). There exists language that can be recognized by 3-ultrametric
regulated one-way pushdown automaton, but cannot be recognized by determinis-
tic one-way pushdown automata and probabilistic one-way pushdown automata with
bounded error.

Rihards Krišlauks and Kaspars Balodis considered the hierarchy of two-way ul-
trametric multihead automata (Krišlauks, Balodis, 2015). They considered the different
definition of ultrametric automata, that have accepting and rejecting states. They have
proven for all k > 1 that two-way ultrametric automaton with k+1 heads can recognize
languages, that cannot be recognized by two-way ultrametric automaton with k heads.

Maksims Dimitrijevs and Irina Ščeguļnaja have compared one-way ultrametric and
nondeterministic multihead automata (Dimitrijevs, Ščeguļnaja, 2015). They have shown
for all k ≥ 1 that for all prime numbers p one-way nondeterministic automata with k
heads can recognize languages, that form proper subset of languages, recognizable by
one-way ultrametric automata with k heads.

7 Summary

Research of the past four years has shown some of the capabilities of ultrametric au-
tomata. Most of the research concentrate on state complexity advantages, the recogni-
tion power and different models of ultrametric automata. Most of results were proven
for all prime numbers p.

Regulated ultrametric automata can have exponential state complexity advantages
over deterministic automata. Ultrametric integral automata can have constant state com-
plexity, while nondeterministic automata require exponential state complexity, where
base of the exponent can be arbitrary large. Ultrametric automata can also have fewer
states than probabilistic automata with unbounded error. For specific prime numbers p
there exist languages that require constant number of states for ultrametric automata,
but require exponential number of states for two-way nondeterministic and one-way
probabilistic automata with bounded error. Ultrametric automata can also have constant
state complexity when alternating automata require linear number of states.

Ultrametric automata with one state can recognize nonregular langauges, but cannot
surpass deterministic counter automata. Ultrametric integral automata with one state
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can recognize only regular languages. Ultrametric integral automata with two states
can recognize non-context-free languages, while unrestricted ultrametric automata with
two states can recognize nonrecursive languages. Ultrametric integral automata are able
to recognize some of the languages, that require quadratic time complexity, logarithmic
space complexity or linear reversal complexity for deterministic Turing machines.

Two-way ultrametric automata can have fewer states than one-way ultrametric au-
tomata. Two-way regulated ultrametric automata can recognize nonregular languages,
while one-way regulated ultrametric automata can’t. There exists language that can be
recognized by 3-ultrametric regulated one-way pushdown automaton, but cannot be
recognized by deterministic one-way pushdown automata and probabilistic one-way
pushdown automata with bounded error. For all k > 1 two-way ultrametric automaton
with k+ 1 heads can recognize languages, that cannot be recognized by two-way ultra-
metric automaton with k heads. For all k ≥ 1 one-way nondeterministic automata with
k heads can recognize languages, that form proper subset of languages, recognizable
by one-way ultrametric automata with k heads.
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