
Baltic J. Modern Computing, Vol. 4 (2016), No. 4, 910-933

http://dx.doi.org/10.22364/bjmc.2016.4.4.20

Metamodel Specialization for Graphical Language

and Editor Definition

Janis BARZDINS, Audris KALNINS

Institute of Mathematics and Computer Science, University of Latvia,

Raiņa bulvaris.29, Riga, LV-1459

 audris.kalnins@lumii.lv, janis.barzdins@lumii.lv

Abstract. This paper is a further development of ideas presented by the authors in the previous

papers on this topic. More concretely, in this paper three ideas have got a further development.

First, the usage of metamodel specialization for graphical language and editor definition will be

explained in a more detailed way. Second, a more general universal metamodel (UMM) will be

offered, which covers a richer class of graphical languages. Third, the offered universal metamodel

will enable a fluent transition from graphical language definition to their graphical editor

definition, UMM for graphical tool definition will be a relatively slight extension of UMM for

language definition. Finally, the paper presents also basic ideas for implementation of a graphical

tool building platform based on the proposed metamodel specialization approach.

Keywords. Metamodeling, metamodel specialization, graphical syntax definition, graphical DSL,

graphical editors.

Introduction

The paper is mainly devoted to the research domain which is now named language

workbenches – frameworks for complete support of various kinds of domain specific

languages (DSLs). This domain has been relatively widely investigated in the last twenty

years, with many such workbenches developed and widely used in practice. At the

beginning of the 2000s such tools were typically named metaCASE tools, but due to the

recent massive transition from traditional CASE tools for software development to the

more general concept of software development using DSLs the term language

workbench is much more appropriate.

Currently there are numerous workbenches for the complete support of graphical

DSLs. They support both the development of such languages by DSL designers and

creation of a complete support for a given language including graphical editor and the

language execution via compilers or interpreters. Therefore most of them are based on

the abstract syntax (domain metamodel) definition of the language via the classic MOF

approach as the first step and then adding a mapping from this syntax to graphical

http://dx.doi.org/10.22364/bjmc.2016.4.4.20

 Metamodel Specialization for Graphical Language and Editor Definition 911

notation elements for defining the diagram editors. First and foremost, these

workbenches are based on Eclipse GMF (WEB, a), where the abstract syntax is defined

via an EMF (WEB, b) metamodel, elements of concrete graphical syntax via GEF

metamodel and mapping between these models via mapping metamodel. While the

approach is quite universal, the practical usage is not so easy (Juliot, 2009). Therefore

several improvements of the approach, such as Obeo Designer (Juliot, 2009, WEB, c),

Sirius (WEB, d) or Eugenia (WEB, e) are offered. Another very popular workbench is

MetaEdit (Kelly and Tolvanen, 2008) which is based on a domain specific

metamodeling language GOPPRR (Graph-Object-Property-Port-Role-Relationship)

supporting a mix of domain concepts, graphical notations and tool-related elements. A

very pragmatic solution is the Microsoft DSL (Cook et al., 2007) workbench which also

uses domain and graphics metamodels and a mapping between them. Certainly, there are

much more similar workbenches, both commercial and open source. See a more detailed

analysis of the related research in our paper (Kalnins and Barzdins, 2016 b). All these

workbenches have as a primary goal the implementation of the given graphical language

either by code generation or interpretation. Therefore for simpler use cases, when the

main goal is just to create syntactically correct diagrams in the given graphical language,

simpler and more direct solutions are possible. The platform devoted most directly to

graphical DSL editor definition on the basis of the graphical syntax is the platform

developed by IMCS UL – Transformation Driven Architecture (TDA) (Barzdins et al.,

2007, 2008, Sprogis, 2010, 2013).

A common feature of all these workbenches is that they are based on a metamodel

instantiation, typically in a MOF (OMG, 2015 c) style 4-layer architecture. The

workbench itself has a fixed meta-metamodel, a tool for a given language (including

both the language definition, and editor and other components) is based on a metamodel

obtained by the instantiation. A model created by the tool user (in fact, a program in the

given DSL) is obtained by instantiation of this metamodel, and at runtime the

instantiated objects are present.

Now let us explain in more detail the instantiation approach. Let us take the TDA

and consider the graphical language definition by instantiation. According to TDA

principles this task is based on a Type metamodel for graphical languages. Fig. 1 shows

such a simplified type metamodel, to be named further simply a Type metamodel in

TDA. It is a fixed metamodel which contains type classes for all elements of a simple

graphical diagram language – GraphDiagram, Node, Edge and Compartment (of a Node

or Edge). In our approach the Compartment is any logical textual element in a diagram,

a line or multiline (thus our terminology slightly differs from that used e. g. in Eclipse

GMF (WEB, a) where only multiline texts are named compartments). The classes of

912 Barzdins and Kalnins

Type metamodel contain also the basic style attributes of diagram elements. A node

compartment may be a structured text, e.g. a text line for a class attribute consists of

attribute name, type, initial value etc., with relevant separator strings included. This

structuring is supported by the relevant attributes and associations of the

NodeCompartmentType class. The Type metamodel in TDA is, in fact, at MOF level M1

Fig. 1. Type metamodel in TDA

Fig. 2. Flowchart definition by a simple class diagram

 Metamodel Specialization for Graphical Language and Editor Definition 913

– it is a fixed class diagram. The syntax for a concrete diagram notation is defined as an

instance of this model – it is a UML object diagram. It is assumed that each node in a

diagram has one of the defined node types, each edge has one of the edge types and so

on.

The given Type metamodel supports the definition of a relatively wide class of

graphical languages by means of instantiation. Let us illustrate this on the Flowchart

diagram example. By Flowchart diagram we understand a graphical diagram which is

defined by the EMOF-level model in Fig. 2.

 Fig. 3. Flowchart syntax definition by instantiation in TDA

In this diagram there are four node types – start node, action node, decision node and

end node, and two edge types – flow and conditional flow. An action node contains a

text – the action name, and decision node – the condition. A conditional flow also has a

text attached – the condition value “Y” or “N” (for Yes or No). Other flowchart elements

have no texts. There is a restriction that no more than one flow can start from a start or

action node, but no more than two conditional flows can start from a decision node. Any

number of flows or conditional flows can enter a node (except a start node). And there

914 Barzdins and Kalnins

may be only one start node per flowchart. These restrictions are shown in Fig. 2 by

association multiplicities - appropriate abstract superclasses are introduced for this goal.

Three simple OCL (OMG, 2012) constraints are added to express some semantic

correctness rules for a diagram, e.g. that Action names must be unique per diagram.

The syntax of such Flowchart diagram can be specified by means of an instantiation

of the Type metamodel in Fig. 1, see Fig. 3.

However, only the basic structure of the intended flowchart syntax can be defined in

the object diagram in Fig. 3 – which edges can start from which nodes, what texts are

associated to the diagram elements. But the permitted element multiplicities cannot be

defined this way, and OCL constraints cannot be added. In the instantiation approach

shown in Fig. 3 the only way for specifying constraints is to use a custom constraint

language. This problem becomes even more serious, if we try to define tools for the

language support.

In papers (Kalnins and Barzdins, 2016 a, b, c) the authors have offered a new

approach based on metamodel specialization. The central element of this approach is a

Universal Metamodel (UMM) which is being specialized for a concrete language, for

instance flowcharts. This approach permits to use all UML class diagram features and

OCL constraints for defining graphical languages and their support tools (graphical

editors).

This paper is a further development of ideas presented by the authors in papers

(Kalnins and Barzdins, 2016 a, b, c). First, the basis of the approach – the metamodel

specialization is explained in a more detailed and understandable way. Second, the core

of the approach – the universal metamodel to be specialized for the given graphical

language is extended to cover a more general class of graphical languages. Third, the

related nature of both tasks is more clearly emphasized. It is shown that the universal

metamodel for the language editor definition is only a slight extension of the metamodel

for syntax definition, since some attributes to be used for details of user interaction

specification must be added.

The first section of the paper explains in detail the basic technology of the approach,

namely, the metamodel specialization. The next section presents the core concept – the

universal metamodel (UMM) for each of the tasks. Section 3 explains on examples how

a graphical syntax of a language is defined by a UMM specialization. Section 4 extends

the approach for an editor definition, and the concept of Universal Engine is explained in

detail. Finally, Section 5 provides the basic principles how an editor definition

workbench could be built using the proposed approach.

1. Metamodel specialization approach

Class specialization – creation of subclasses – is a well-known concept in UML. In a

sense, it is a cornerstone in building understandable class diagrams. It is also a widely

used approach in building metamodels in MOF (OMG, 2015 c). However, there is a

 Metamodel Specialization for Graphical Language and Editor Definition 915

variation of specialization which can provide a new idea in building class models. It is

the specialization of a whole metamodel.

The distinguishing feature in our approach is that only the created set of subclasses

together with a set of related redefinitions of attributes and associations – the specialized

metamodel is used for the given task.

A very important difference from the metamodel instantiation is that the specialized

metamodel is at the same MOF meta-layer as the original one. This fact permits to use

the same UML facilities as in the original metamodel, for example, OCL constraints.

 To make the specialization process simpler and more readable, only a restricted set

of UML class specialization facilities is used in our approach. The used metamodel

specialization facilities include:

• Create subclasses of the source metamodel

• Redefine attributes – add new default values, but do not redefine attribute

names, types and multiplicity (therefore no explicit redefines modifier is needed

here)

• Redefine association ends – names and multiplicity, explicit redefines modifier

is needed

• Add new OCL constraints to classes and attributes

• Do not add new (non-redefined) attributes and associations to subclasses

These restricted specialization facilities are sufficient for diagram syntax and editor

definition and make the result compact and easy readable. For example, the addition of

default values to attributes in the specialization is very natural for editor definition since

these values are assigned at the class instance creation – a basic action in an editor. A

specialization of a universal metamodel class may also be an abstract one (with the

standard UML semantics), if it has a further specialization to non-abstract classes. This

construct is typically used to simplify the association redefinition.

Since the concept of subclass is well-known from the very beginning of UML,

certainly there are some known use cases of metamodel specialization. The most

important such case is the OMG standard for Diagram Definition (DD) (OMG, 2015 b).

There the Diagram Interchange (DI) metamodel is being specialized to its version for the

given modeling notation, e.g. UMLDI. The full set of UML specialization facilities is

used there because the original DI metamodel is at a very high abstraction level. Some

other use cases are related to the support of DSL extension, and they are completely

unrelated to the topic discussed in this paper.

2. Universal Metamodel for graphical syntax and editor

 Definition

In general, the starting point for the application of the specialization approach to a

modeling task is the Universal Metamodel (UMM) for this task. However, as already

mentioned, we try to make UMMs for both tasks discussed in this paper as similar as

possible – the UMM for editor definition is only a slight extension of the UMM for

916 Barzdins and Kalnins

graphical syntax definition of the language. Therefore in this section we, in fact, provide

one common metamodel by precisely denoting which elements of this metamodel are

extensions for editor definition.

The intended application domain of our approach is graphical modeling languages

with typical graph structure diagrams, consisting of nodes and edges with text elements

added to both. However, some additional features are also supported, e.g. node nesting

within another node.

Fig. 4 shows this metamodel. For both use cases of the metamodel the same set of

classes is used. The attributes used only for editor definition are in bold font, for

graphical syntax definition they should be ignored. Similarly, for editor definition two

new enumerations are added – they have bold outlines in Fig. 4.

Now some comments on the classes of this metamodel are given. They reveal the

general intention of the metamodel elements. Certainly, since according to our approach

only specializations of this metamodel are used for graphical syntax (or editor) definition

of a language, the precise semantics of metamodel elements will be explained on

specialization examples in the following sections.

 Fig. 4. UMM for graphical syntax and editor definition

 Metamodel Specialization for Graphical Language and Editor Definition 917

The classes of the metamodel represent the concepts of a typical graph diagram – the

graph diagram itself, nodes and edges in it and how they can be related. Both

compartment classes define the structure of texts for nodes and edges respectively. The

top class GraphicalLanguage represents a language which can contain several diagram

kinds (as UML does). From the structure point of view this metamodel is similar to the

type metamodel in Fig. 1, though their usage is completely different. A node

compartment may be a structured text. Its parts (e.g. attribute name, type, default value

etc.) are attached via the parentCompart – subCompart association, the order is defined

via the subComprtNo attribute, a nested containment is supported as well. Prefixes and

suffixes represent fixed text elements (separators, keywords etc.) to be inserted at

appropriate places. Thus the complete logical structure of a compartment text can be

defined – how the visible textual value of a compartment is assembled from its parts. In

fact, this definition is semantically equivalent to the text structure definition by a

context-free grammar such as EBNF (Grune et al., 2012) – as typically it is done for

structured texts in graphical language specifications. The CompartmentRow class

represents another kind of text structuring – a compartment consisting of similar rows –

as it is for attributes in a class node. See a detailed text structuring example in Section 4

where a simple class diagram editor is defined.

The described facilities for diagram structure definition – both at diagram graphics

level for possible node-edge relations and at text structuring level are used both for

diagram syntax definition and editor definition. For diagram syntax definition they

specify how a syntactically correct diagram should look like. But for editor definition

they specify how a correct diagram should be created. Certainly, the detailed semantics

of the approach will become clear only in the next sections where UMM specialization

examples for both use cases will be explained in detail.

The additional attributes for editor definition (shown in bold in Fig. 4) define the

way how the user interaction with the editor should occur. The palette-related attributes

will be used to define a palette for a diagram kind – what elements it should contain and

how they should look like. The inputContr attribute for compartments is used to specify,

what kind of an input control should be used to enter this text (or part of a text). The

complete structure of a dialog form for entering a text for a graphical diagram element in

fact is determined by the text structuring facilities already explained. Certainly, the

general behavior of such editor will become clear only when the second component of

the editor – the Universal Engine will be explained. This will be done in Section 4 on the

basis of UMM specialization examples for editors.

3. Graphical Language Definition by Metamodel specialization

 In this section we show how the specialization of the Universal Metamodel introduced

in the previous section is used for the precise graphical syntax definition of languages.

We remind that only non-bold attributes in the UMM in Fig. 4 are used for this purpose.

Fig. 5 presents the specialization of the UMM (in standard UML notation) for syntax

918 Barzdins and Kalnins

definition of the same flowchart diagram which was discussed in the introduction.

Classes of UMM there have a white background, but specialized classes – a colored one.

Fig. 5. Flowchart diagram syntax definition by specialization

 Metamodel Specialization for Graphical Language and Editor Definition 919

 In fact only the specialized classes matter, all relevant attributes and associations

are in this part.

We see that the specialized metamodel for flowcharts in Fig. 5 is quite similar to the

“naïve” flowchart metamodel in Fig. 2. Both metamodels have the same classes for node

and edge kinds in a flowchart, only in Fig. 5 they are subclasses of UMM classes.

Abstract superclasses are used with the same goal to simplify the usage of UML

multiplicities for a precise specification of node-edge relations – which edges can start

from which nodes. The main difference from Fig. 2 is that diagram element attributes are

replaced by the relevant compartment classes – the texts for nodes and edges are

important syntax elements as well. The attributes in Fig. 5 have a completely different

role, they specify some of the element style features which are significant for the syntax

definition. The values of these attributes are fixed via the OCL constraints attached to

them. Attributes from UMM not used here are not repeated in the specialization (but

formally they are present). The same OCL constraints expressing essential non-local

restrictions on flowchart elements are attached to three classes. Their form is slightly

different because attributes are replaced by compartment classes. It should be noted that

they are built completely in terms of the specialization classes and associations. Thus the

principle is supported that any syntactically valid flowchart is a direct instance of the

specialized metamodel.

Since all the information relevant for the metamodel reader is contained in the

specialization, we propose a custom notation for metamodel specialization in order to

make metamodel diagrams more compact. The custom notation for the same flowchart

example is shown in Fig. 6. There only the specialized classes are shown, with the UMM

class name (of which it is a subclass) shown in braces and in bold italic font. The

association end redefinition is shown without the redefines keyword, with the original

name from UMM in a similar style.

The semantics of standard UML class specialization certainly is retained completely.

For example, when an abstract class in the specialization has the name of the

corresponding UMM superclass inserted, it extends to all of its subclasses in the

specialization as well. The given custom notation will be used also for all the next

specialization examples.

Definitely, the flowchart diagram example is not a very complicated one. To see

how the approach applies to more realistic diagram definition, look at the EMOF level

class diagram editor definition fragment (Fig. 9) in Section 4. For syntax definition there

only the input control and palette related attributes should be removed (and some OCL

constraints modified). The complete syntax definition for such a class diagram would

require two more diagrams of a similar size.

We conclude this section by some comments on the current status of graphical

language syntax definition. The precise graphical syntax definition of languages has

been slightly neglected for a while. For example, the graphical syntax of UML up to the

version 2.4 (OMG, 2011) has been defined as informal comments and example pictures

in the UML documentation. Only starting from UML 2.5 (OMG, 2015 a), some

formalization is offered also for defining the graphical syntax of diagrams. It is based on

920 Barzdins and Kalnins

the new OMG standard for Diagram Definition (DD) (OMG, 2015 b). However, the

main goal of this standard is to enable diagram interchange (DI) between modeling tools

implementing the same language, but not a simple and precise diagram syntax

specification for tool developers. Therefore DD consists of Diagram Interchange (DI)

Fig. 6. Flowchart syntax definition in custom notation

and Diagram Graphics (DG) parts, each having a metamodel. The DI part permits to

describe the logical structure of a diagram at a very high abstraction level. The second

component of DD is the DG (Diagram Graphics) metamodel, which is oriented towards

a low level specification of graphical element rendering in a tool. The complete concrete

syntax specification for a diagram therefore requires also a transformation definition for

mapping DI elements to DG elements – standard graphic elements (shapes, lines and text

elements). To have a metamodel which describes the diagrams in the given language by

more understandable concepts it is proposed to specialize the DI metamodel to an

 Metamodel Specialization for Graphical Language and Editor Definition 921

interchange metamodel for the language. Thus, for UML diagrams the specialized

UMLDI metamodel is given as an example in the DD standard (OMG, 2015 b). It should

be noted that the UMLDI metamodel is obtained from DI metamodel by a specialization

approach quite similar to that used in this paper, yet more complicated specialization

features here have to be used. Due to all these complexities in the DD approach, the

main description of UML diagram syntax is still given informally in the UML 2.5

standard (OMG, 2015 a). There are also attempts to specify the graphical syntax by

means of specific graph grammars (Rekkers and Schurr, 1997, Costagliola et al, 2004), but

they also do not offer a simple solution because the application of rules there is much

more complicated than for textual grammars. Thus the problem of a simple, but at the

same time precise definition of the graphical syntax for a graphical modeling language is

still open.

4. Graphical Diagram Editor Definition by Metamodel

 specialization

As it was already stated the diagram syntax definition for a graphical language can be

easily extended to a graphical editor definition for this language. The complete version

of the universal metamodel from Fig. 4 must be used now – with attributes displayed in

bold also included. These attributes specify the basic properties of user interaction with

the editor – the palette structure and style for diagram creation and input controls for

entering the corresponding compartment values.

However, the usage of these attributes becomes clear only in the context of the new

concept for editor definition – the Universal Engine (UE). Universal engine is an abstract

editor whose generic behavior is explained in terms of UMM. It can work with instances

of UMM classes such as GraphDiagram, Node, Edge etc. and perform typical editing

actions related to them. The details of such actions are determined by attribute values of

these classes. Most of these attributes must have fixed values set for a language editor,

and these values are set only in the specialized metamodel for the given language.

Therefore the UE behavior is precisely defined only by a UMM specialization.

In a more practical setting there is one more extension of UMM for editor definition

in our approach. Typically any real diagram editor contains the concept of Project – a set

of related diagrams having a common usage. The contents of a project has to be

somehow visualized – frequently via a tree. However, since we want to restrict our

visualization facilities, a Project diagram is introduced instead. It contains Diagram

seeds – nodes from which the corresponding diagram can be accessed via double-click.

Thus a project diagram is a normal graph diagram (containing only nodes). To represent

this extension we add one more version of UMM for editors – see Fig. 7, where the only

added element is the Project class. As before, there the editor-related elements are in

bold style.

922 Barzdins and Kalnins

 .

Fig. 7. The practical extension of UMM for editor definition

 Metamodel Specialization for Graphical Language and Editor Definition 923

Now we can provide a list of typical actions supported by the UE for editors:

 Manage the current project, in particular, add new diagrams to it of the kinds

defined by the available specializations (using the palette of the project

diagram)

 When a diagram is opened (existing or new), its palette is opened as well. The

palette for a diagram kind is generated by UE on the basis of its specialization

(diagram element types having the related palette style attributes set)

 A new element in the diagram is created when the user clicks on the relevant

palette element and selects its position in the diagram (or end nodes for a new

edge)

 If the element contains text compartments in its specialization, the

corresponding dialog form is opened by UE, the form contents is defined via

the corresponding input control attributes in the specialization (and the

subcompartment structure)

 Each subcompartment has its own input control included in the form for parent

compartment, for multi-row compartments the value entry row-by-row is

supported

 Compartments of an existing element may be opened for modification

 UE supports a number of standard actions not dependent on a specialization –

creating, saving and opening a project, modifying a diagram layout, modifying

a diagram element style, copying a diagram element etc.

 UE checks the applicability of user actions on the basis of the diagram syntax

defined in the specialization and checks the validity of user input on the basis of

provided OCL constraints

Further details of the behavior of UE will be explained on editor definition examples.

There is one general note on the used UMM specialization style. While for syntax

definition the values of attributes were fixed by OCL constraints attached to the

attributes, for editor definition it is more natural to define the values simply as default

values in UML. This is because many of these values are used as defaults just at the

moment of creation of a new element (e.g. node style attributes), later on they can be

modified by the user via the supported “auxiliary” functionality of UE (UE simply

doesn’t permit to modify the strictly fixed attributes). The default value may be specified

by a constant or a true OCL expression, but also OCL constraints may be used for non-

modifiable values. The custom notation – only the specialization – will be used for both

examples. Certainly, when defining an editor, we must think that the editor works on

instances of the specialized metamodel and the user creates instances of specialized

diagrams kept in a specialized project as a repository. This doesn’t contradict to the

principles of UE presented before because any instance of a specialized class can be

treated also as an instance of the corresponding superclass from UMM (this view is used

in Section 5 for implementing the editor platform based on the specialization approach).

Fig. 8 shows the editor definition for flowchart diagrams according to the syntax

defined in the previous section.

924 Barzdins and Kalnins

Fig. 8. Flowchart editor definition

The editor definition contains the same specialized classes as the flowchart syntax

definition in Fig. 5 and 6. Now more attributes have values set – here using the default

value feature. First, some comments on the Project definition. Our language contains just

one diagram type, therefore the specialized FlowchProjDiagram contains only one seed

node type – FlowchSeed. Since the palette attributes are specified for this node kind, the

project diagram will show a generated palette with just one element – the flowchart seed.

 Metamodel Specialization for Graphical Language and Editor Definition 925

When the user clicks on this element, a new seed node is created and the simplest form

consisting of just one text field and the caption Name is shown. When the user there

enters a string, this value is used both as the seed and diagram name (see how the caption

value for a flowchart is set). The new flowchart diagram appears when the user double-

clicks the seed.

A flowchart diagram (new or existing) appears with a generated palette containing

four node elements and two edge elements – for all specialized non-abstract node or

edge classes – they all have the palette related attribute values set. Abstract classes in the

specialization are not used for palette element creation – they are not uniquely linked to

one specialized node or edge class. To create a node in the diagram the user has to click

the corresponding palette node and then click on a free place in the diagram canvas. The

node is created in this position – UE can automatically move the existing diagram

elements to find enough space. Before the new node appears, UE opens a generated

dialog form, if the node class owns at least one compartment. If there are several

compartments attached, they appear in the same form (in the order specified by

subCompartNo attribute value). If the compartment has subcompartments, a subform is

shown when the user selects this compartment (see this feature in detail in the next

example). The flowchart editor has compartments defined only for Action and Decision

nodes. Each of them has only one compartment to be entered via the simplest input kind

– the text input, therefore a dialog form with one text field is shown for these nodes.

To create an edge (here a flow or conditional flow), the user has to click the

corresponding palette element and then select an existing start node and end node in the

diagram. If there is a compartment attached, the relevant dialog form is opened. In our

example the conditional flow has one compartment – for entering the condition value.

The specified input control is a listbox, where the user can select a value only from the

displayed item list. The itemList attribute defines the values in this list, here it is a fixed

list containing two values – Y and N. Since the user can select only one of these values,

there no more a need for an OCL constraint on the compartment value, as it was

specified in the syntax definition in Fig. 5. Certainly, OCL constraints still may be

needed for more complicated situations – the name compartment for the Action node has

the same constraint as in the syntax definition. But in editor definition it has a new

semantics – the editor evaluates this constraint when the user has completed the value

input. If it evaluates to false, a standard error message on invalid value is displayed.

Similarly, the second OCL constraint related to condition values is a complex one

involving the values on all edges outgoing from a decision node. This constraint has to

be retained from the syntax definition as it is. Now it reports as an error, e.g. the

situation when the user tries to enter the value “Y” also for the second edge exiting the

given node. The edge multiplicity constraints in plain UML notation are also treated this

way, e.g. an error message is shown when the user tries to start the second Flow from an

Action node or he/she tries to place the second Start node in a diagram. Thus only

correct flowchart diagrams according to the syntax definition can be built. Certainly, the

editor designer has to take into account the way how static constraints in syntax

926 Barzdins and Kalnins

Fig. 9. The attribute fragment of EMOF class editor definition

definition are interpreted as active constraints in the editor, thus adaptations of OCL

constraints may be sometimes needed.

 Metamodel Specialization for Graphical Language and Editor Definition 927

Now the second editor example – a class diagram editor for the subset of UML

which corresponds to the EMOF metamodel (OMG, 2015 c). Fig. 9 shows an editor

fragment – the features related to Attribute in a Class – the multiline Attribute

compartment and all details of an Attribute according to EMOF specification. The

complete editor definition has to support the Class and Enumeration nodes and

Association and Generalization edges. The Class node in its turn includes all features for

EMOF support. To define all this, two more diagrams of similar size are required.

The main goal of this example is to illustrate how node compartments with a

complicated structure are defined in our approach. This refers both to graphical syntax

definition and editor definition. The example in Fig. 9 shows the complete definition of

the Attribute compartment in a Class node. It is a typical multiline compartment where

each line has a complicated substructure. In addition, the Class name and isAbstract

compartments are also included – to illustrate the specific notation for showing that a

class is abstract. A more elaborated use of OCL constraints in the context of editor

definition is also shown.

The metamodel attributes which have to be set to a constant value are defined via

the default value option, but those whose value must be set via a proper OCL expression

are defined by OCL constraints, especially when this value is dependent on other

diagram elements and may change over time.

The multiline nature of the AttributeCompartment is defined by the choice of the

input control – MultilineInput. This control displays all existing lines in a multiline field,

with a possibility to add a new line or delete an existing one. Each line there represents a

separate class attribute, the editing of such line is enabled by the AttributeRow class in

the specialization (which specializes the CompartmentRow in UMM – a feature directly

introduced for such situations). Since such row is also a Compartment, it can have a

substructure defined via the specializations of subComp association (here six

subcompartments are present according to the attribute syntax in UML). The editor (in

fact, UE) supports this feature by opening a new dialog form for editing an existing row

or entering a new one. This form contains a field for each subcompartment, their order is

defined via the subCompNo attribute. The visible text value of the line is obtained by

concatenating all these values. The IsDerivedAttr subcompartment uses the checkbox for

entering the Boolean value, but entering the true value results in creating the string “/”

(according to the attribute trueValueRepresent setting) – and false results in nothing.

Several subcompartments have the values of prefix or suffix attributes set, these string

values are prefixed (or suffixed) during the concatenation, e.g. prefix “:” for the attribute

type. If the subcompartment value is empty, prefixes or suffixes are ignored. For

attribute type and multiplicity input the Combobox input control is used. Like Listbox, it

presents an item list to select from, but permits also simple text input for entering a

different value. The item list is specified via the itemList attribute. It is set to a fixed

string set for multiplicity. But it uses an OCL constraint for the type. This is because the

item list can dynamically extend, when the user adds instances of other diagram

elements (here instances of Enumeration – not shown in the fragment in Fig. 9). One

more situation is demonstrated for the Modifiers subcompartment – it itself has a nested

928 Barzdins and Kalnins

substructure, with a number of features present or absent. Therefore each feature is

entered via checkbox and has a string for representing true, but the delimiter attribute

specifies how the strings should be separated during the concatenation, if more than one

is present. The complete string value of Modifiers is included in braces using the prefix

and suffix.

The OCL constraint for attribute name is a typical input value check, producing an

error message when a duplicated attribute name is entered for a class.

Now some comments on the Class name compartment. According to the UML

specification the fact whether a class is abstract is visualized by the font style of the class

name. The user can enter the isAbstractCompartment value via the standard checkbox –

the UE internally stores the entered value as strings true or false. But this compartment

itself must not be visualized, therefore the attribute isVisible is set to false in this

subclass. Instead, the ClassNameCompartment style must be set to italic if the class is

abstract and to bold if it is not. Exactly this fact is specified by the OCL constraint

attached to ClassNameCompartment (the definition by a constraint ensures also that the

given relationship remains in force when the user modifies the isAbstract value).

The provided examples confirm the fact that a typical diagram editor functionality

can be defined this way. Certainly, advanced value prompting and value checks present

in commercial UML editors would require significantly more complicated OCL

constraints, frequently related to the abstract syntax of the language as well. However,

our approach is mainly oriented towards such graphical DSML support where typically

only features similar to those shown here are required.

5. Editor Workbench implementation Principles

In this section we briefly provide the basic principle how an editor definition workbench

based on metamodel specialization could be implemented. This implementation

complies with the main principle of the approach that the Universal engine (UE) is based

on the original UMM. The proposed practical Universal engine runtime will consist of

several parts. In a sense, this architecture will be similar to the existing TDA platform

structure (Sprogis, 2010, 2013), from which some parts could be more or less directly

reused. A new component is the Specialization Engine (SE), which is the sole

component managing the current model (project) processed by the editor according to

the specialized metamodel. In addition, it provides a view (in fact, a copy) of model

fragments (typically, the current diagram being edited) to be used by other parts of UE

according to UMM. These other parts are the Graph Diagram Engine (or Presentation

Engine) – GDE, the Dialog Engine (DE) and the Main Engine (ME).

The Graph Diagram Engine performs all “technical” work in rendering diagrams –

simply displays a diagram, adds a new element with a known content to it and updates

the layout accordingly, modifies the layout upon a user request etc. It also accepts the

user actions in a diagram area and, if the action is a “logical” (not purely technical one),

creates a notification (event) for other UE components to react upon. The main value of

this engine is a nontrivial algorithm for creating readable diagram layouts. The Dialog

Engine performs all the technical work in displaying the generated dialog forms for

compartments and reacting to user inputs in form fields – but it doesn’t perform logical

 Metamodel Specialization for Graphical Language and Editor Definition 929

processing of the input values. The Main engine in the existing TDA (in fact, a universal

interpreter) performs all logical actions on the basis of the given Type metamodel

instance. The Main engine in the existing TDA is very complicated and contains a large

functionality not relevant for the specialization approach, because in the existing version

many low level actions can be configured or even custom functionality can be added to

them (via custom model transformation procedures). All these actions are supposed to

have a standard behavior in this approach.

The Graph Diagram Engine (or Presentation Engine) – GDE and Dialog Engine

(DE) could be reused nearly completely from their versions in TDA. The Main Engine

also could be reused to a significant level, but with some code modifications (certainly,

only a part of it is really needed here). This is based on the fact that UMM is very close

to the Type metamodel (in fact, a subset) in TDA – only the coding differs in some

places.

The diagram set built using a defined editor is stored in a Project repository (PR)

according to the specialized MM (SMM) – as a normal instance set. This repository is

being serviced only by SE, no direct diagram editing occurs there. The diagram editing

occurs (by UE components) only in a Temporary repository (TR) which contains

instances according to UMM. Normally only the current diagram must be kept there

(sometimes two diagrams are required). SE supports the copying of a diagram from PR

(according to SMM) to TR (according to UMM). In fact, this is a simple operation, since

an instance of an SMM class is also an instance of the corresponding UMM class, and

attributes are the same (not redefined, only values are set). Only the links of redefined

associations have to be stored as links of the original associations.

In addition, when UE modifies an instance in TR or creates a new instance, it has to

notify SE about the modifications (reference is by a technical Guid attribute maintained

by SE and UE), then SE synchronizes the elements in PR.

The OCL expression evaluation is done by SE only in PR (upon requests by UE).

The UE behavior is fixed to a standard schema, no explicit configuration is planned.

For a diagram new elements are created according to the supplied palette for this

diagram kind. Node or edge compartment editing also occurs according to the supplied

compartment dialog schema for the element. Pop-up menus also are fixed.

The palettes and dialog schemas for elements are created from specializations. There

will be a language developer mode in the workbench, where one or more UMM

specializations will be built, in totality constituting a graphical language. When the

specialization is complete, it is “compiled” to a palette tree, which contains the palette

for the project diagram – in its turn containing palette seeds for all defined diagram types

in the language. Under each project palette seed a local palette tree for the corresponding

diagram type is stored. This tree contains the diagram palette with an element for each

specialized node or edge. Under each such element the complete compartment subtree

for this element (as defined in the specialization) is built. Such a subtree related to a

diagram element is called the element template. For all attributes with default values set

in the specialization these values are present in the template. All palette tree elements are

instances of the palette tree metamodel classes – an instance for each SMM element –

930 Barzdins and Kalnins

node, edge or compartment. Fig. 10 shows the Palette tree metamodel and its relations to

the UMM for editor definition. Some purely “technical” runtime-related attributes are

added to UMM classes there as well.

Fig. 10. The “practical” UMM version together with Palette tree metamodel.

 Metamodel Specialization for Graphical Language and Editor Definition 931

Certainly, a more efficient implementation of the modified Main engine may require

some modifications of the palette tree metamodel, but the general idea will be preserved.

Thus the components of UE have to build a true diagram element from the

corresponding template by setting the remaining “dynamic” attribute values according to

the editor user wishes. Fig. 11 shows a fragment of the Palette tree with element

templates for the flowchart editor in Section 4. This fragment is shown as an object

diagram in UML.

Fig. 11. Fragment of the Palette tree for Flowchart editor

932 Barzdins and Kalnins

The proposed implementation schema for a specialization based editor workbench thus

is expected to require not a very large effort since several components of UE could be

reused from the existing TDA. The only completely new component would be the

specialization engine for synchronizing the model in PR with its parts in TR and

performing some general management. The language developer workplace could be

implemented on the basis of an appropriate open-source UML tool in Eclipse, e.g.

Papyrus (WEB, f). Then one the existing OCL interpreters, e.g. Eclipse OCL (WEB, g)

could be used as well. All this is possible since metamodel specialization is completely

based on standard UML features. The specialization compiler to the Palette tree format

could be built as an Eclipse plugin, most probably in one of the model transformation

languages available there.

Conclusions

The paper proposes a further development of ideas presented previously by authors on

the usage of metamodel specialization for the definition of graphical languages and their

support tools. The approach has been explained in a more detailed way, especially the

Universal metamodel and Universal engine. The provided examples of language and

editor definition show that the specifications obtained by metamodel specialization are

precise, complete and sufficiently simple at the same time, and they use only standard

features of UML class diagram. A more detailed insight into the editor workbench

implementation has been provided as well. It contains sufficient details to estimate the

required implementation effort, which is not large. We see that the main application area

for the approach is graphical DSL support, and the popularity of graphical DSL is

growing significantly. We plan to approve the approach in practice by implementing at

IMCS UL a new specialization-based platform for graphical DSL support, using the

ideas presented here. And we see that in perspective the approach could be applied to a

much broader class of tasks.

 Acknowledgements

This work is supported by the Latvian National research program SOPHIS under grant

agreement Nr.10-4/VPP-4/11

References

Barzdins J. et al. (2007). GrTP: Transformation Based Graphical Tool Building Platform. In: Proc.

of MDDAUI‘07 Workshop of MODELS 2007, Nashville, Tennessee, USA, CEUR Workshop

Proceedings, volume 297, 4 pp.

Barzdins J., Rencis E., Kozlovics S. (2008) The Transformation-Driven Architecture. In

Proceedings of DSM'08 Workshop of OOPSLA 2008, Nashville, Tennessee, University of

Alabama at Birmingham, 60 – 63.

Cook S., Jones G., Kent S., Wills A. C. (2007). Domain-Specific Development with Visual Studio

DSL Tools. Addison-Wesley Professional, Boston.

 Metamodel Specialization for Graphical Language and Editor Definition 933

Costagliola G., Deufemia V., Polese G. (2004). A Framework for Modeling and Implementing

Visual Notations with Applications to Software Engineering. ACM Trans. Softw. Eng.

Methodol., 13(4): 431–487.

Grune D. et al. (2012). Modern Compiler Design. Springer, New York.

Juliot E., Benois J. (2009) Viewpoints creation using Obeo Designer or how to build Eclipse DSM

without being an expert developer? Obeo Whitepaper. http://spotidoc.com/doc/197222/

Kalnins A., Barzdins J., (2016 a) Metamodel Specialization for DSL Tool Building, In Databases

and Information Systems, DB&IS 2016 Proceedings, CCIS 615, Springer, 68-82.

Kalnins A., Barzdins J., (2016 b) Metamodel Specialization for Graphical Modeling Language

Support, In: Proceedings of MODELS 2016, 19th ACM/IEEE International Conference on

Model Driven Engineering Languages and Systems, ACM, 103-112.

Kalnins A., Barzdins J., (2016 c). Metamodel Specialization for Diagram Editor Building, In

Databases and Information Systems IX, Selected Papers from DB&IS 2016, Frontiers in

Artificial Intelligence and Applications, Vol. 291, IOS Press, 87-100.

Kelly S., Tolvanen (2008), Domain-Specific Modeling: Enabling Full Code Generation, John

Wiley & Sons, Hoboken, New Jersey.

OMG (2011). Unified Modeling Language (UML) – Version 2.4.1 – OMG document

formal/2011-08-05.

OMG (2012). Object Constraint Language (OCL) – Version 2.3.1 – OMG document formal/2012-

05-09.

OMG (2015 a). Unified Modeling Language (UML) – Version 2.5 – OMG document

formal/2015-03-01.

OMG (2015 b). Diagram Definition (DD) – Version 1.1 – OMG document formal/2015-06-01.

OMG (2015 c). Meta Object Facility (MOF) Core Specification – Version 2.5 – OMG document

formal/2015-06-05.

Rekkers J., Schurr A. (1997). Defining and Parsing Visual Languages with Layered Graph

Grammars, J. Vis. Lang. Comput., 8(1), 27–55.

Sprogis A. (2010). The Configurator in DSL Tool Building. In: Computer Science and Information

Technologies, Scientific Papers, University of Latvia, volume 756, 173–192.

Sprogis A. (2013). Configuration Language for Domain Specific Tools and its Implementation.

PhD thesis (in Latvian), University of Latvia, Riga.

WEB (a). Graphical Modeling Framework (GMF, Eclipse Modeling subproject), http://
www.eclipse.org/modeling/graphical.php.

WEB (b). Eclipse Modeling Framework (EMF). https://projects. eclipse.org/projects/

modeling.emf/

WEB (c). Obeo Designer: Domain Specific Modeling for Software Architects. http://www.

obeodesigner.com/.

WEB (d). Sirius Overview. http://www.eclipse.org/sirius/overview.html

WEB (e). EuGENia Live. http://eugenialive.herokuapp.com/.

WEB (f). Papyrus Project in Eclipse. http://projects.eclipse.org/projects/modeling.mdt.papyrus.

WEB (g). Eclipse OCL (Object Constraint Language). https://projects.eclipse.org/projects/

modeling.mdt.ocl.

Received November 30, 2016, accepted December 3, 2016

