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Abstract. This paper is a further development of ideas presented by the authors in the previous 

papers on this topic. More concretely, in this paper three ideas have got a further development. 

First, the usage of metamodel specialization for graphical language and editor definition will be 

explained in a more detailed way. Second, a more general universal metamodel (UMM) will be 

offered, which covers a richer class of graphical languages. Third, the offered universal metamodel 

will enable a fluent transition from graphical language definition to their graphical editor 

definition, UMM for graphical tool definition will be a relatively slight extension of UMM for 

language definition. Finally, the paper presents also basic ideas for implementation of a graphical 

tool building platform based on the proposed metamodel specialization approach. 
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Introduction 

The paper is mainly devoted to the research domain which is now named language 

workbenches – frameworks for complete support of various kinds of domain specific 

languages (DSLs). This domain has been relatively widely investigated in the last twenty 

years, with many such workbenches developed and widely used in practice. At the 

beginning of the 2000s such tools were typically named metaCASE tools, but due to the 

recent massive transition from traditional CASE tools for software development to the 

more general concept of software development using DSLs the term language 

workbench is much more appropriate. 

Currently there are numerous workbenches for the complete support of graphical 

DSLs. They support both the development of such languages by DSL designers and 

creation of a complete support for a given language including graphical editor and the 

language execution via compilers or interpreters. Therefore most of them are based on 

the abstract syntax (domain metamodel) definition of the language via the classic MOF 

approach as the first step and then adding a mapping from this syntax to graphical 
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notation elements for defining the diagram editors. First and foremost, these 

workbenches are based on Eclipse GMF (WEB, a), where the abstract syntax is defined 

via an EMF (WEB, b) metamodel, elements of concrete graphical syntax via GEF 

metamodel and mapping between these models via mapping metamodel. While the 

approach is quite universal, the practical usage is not so easy (Juliot, 2009). Therefore 

several improvements of the approach, such as Obeo Designer (Juliot, 2009, WEB, c), 

Sirius (WEB, d) or Eugenia (WEB, e) are offered. Another very popular workbench is 

MetaEdit (Kelly and Tolvanen, 2008) which is based on a domain specific 

metamodeling language GOPPRR (Graph-Object-Property-Port-Role-Relationship) 

supporting a mix of domain concepts, graphical notations and tool-related elements. A 

very pragmatic solution is the Microsoft DSL (Cook et al., 2007) workbench which also 

uses domain and graphics metamodels and a mapping between them. Certainly, there are 

much more similar workbenches, both commercial and open source. See a more detailed 

analysis of the related research in our paper (Kalnins and Barzdins, 2016 b). All these 

workbenches have as a primary goal the implementation of the given graphical language 

either by code generation or interpretation. Therefore for simpler use cases, when the 

main goal is just to create syntactically correct diagrams in the given graphical language, 

simpler and more direct solutions are possible. The platform devoted most directly to 

graphical DSL editor definition on the basis of the graphical syntax is the platform 

developed by IMCS UL – Transformation Driven Architecture (TDA) (Barzdins et al., 

2007, 2008, Sprogis, 2010, 2013).  

A common feature of all these workbenches is that they are based on a metamodel 

instantiation, typically in a MOF (OMG, 2015 c) style 4-layer architecture. The 

workbench itself has a fixed meta-metamodel, a tool for a given language (including 

both the language definition, and editor and other components) is based on a metamodel 

obtained by the instantiation. A model created by the tool user (in fact, a program in the 

given DSL) is obtained by instantiation of this metamodel, and at runtime the 

instantiated objects are present. 

Now let us explain in more detail the instantiation approach. Let us take the TDA 

and consider the graphical language definition by instantiation. According to TDA 

principles this task is based on a Type metamodel for graphical languages. Fig. 1 shows 

such a simplified type metamodel, to be named further simply a Type metamodel in 

TDA. It is a fixed metamodel which contains type classes for all elements of a simple 

graphical diagram language – GraphDiagram, Node, Edge and Compartment (of a Node 

or Edge). In our approach the Compartment is any logical textual element in a diagram,   

a line or multiline (thus our terminology slightly differs from that used e. g. in Eclipse 

GMF (WEB, a) where only multiline texts are named compartments).  The classes of 
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Type metamodel contain also the basic style attributes of diagram elements. A node 

compartment may be a structured text, e.g. a text line for a class attribute consists of 

attribute name, type, initial value etc., with relevant separator strings included. This 

structuring is supported by the relevant attributes and associations of the 

NodeCompartmentType class. The Type metamodel in TDA is, in fact, at MOF level M1 

  

 

Fig. 1. Type metamodel in TDA 

 
 

Fig. 2. Flowchart definition by a simple class diagram 
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– it is a fixed class diagram. The syntax for a concrete diagram notation is defined as an 

instance of this model – it is a UML object diagram. It is assumed that each node in a 

diagram has one of the defined node types, each edge has one of the edge types and so 

on.  

The given Type metamodel supports the definition of a relatively wide class of 

graphical languages by means of instantiation. Let us illustrate this on the Flowchart 

diagram example. By Flowchart diagram we understand a graphical diagram which is 

defined by the EMOF-level model in Fig. 2.  

 

 

 Fig. 3. Flowchart syntax definition by instantiation in TDA 

In this diagram there are four node types – start node, action node, decision node and 

end node, and two edge types – flow and conditional flow. An action node contains a 

text – the action name, and decision node – the condition. A conditional flow also has a 

text attached – the condition value “Y” or “N” (for Yes or No). Other flowchart elements 

have no texts. There is a restriction that no more than one flow can start from a start or 

action node, but no more than two conditional flows can start from a decision node. Any 

number of flows or conditional flows can enter a node (except a start node). And there 
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may be only one start node per flowchart. These restrictions are shown in Fig. 2 by 

association multiplicities - appropriate abstract superclasses are introduced for this goal. 

Three simple OCL (OMG, 2012) constraints are added to express some semantic 

correctness rules for a diagram, e.g. that Action names must be unique per diagram. 

The syntax of such Flowchart diagram can be specified by means of an instantiation 

of the Type metamodel in Fig. 1, see Fig. 3.  

However, only the basic structure of the intended flowchart syntax can be defined in 

the object diagram in Fig. 3 – which edges can start from which nodes, what texts are 

associated to the diagram elements. But the permitted element multiplicities cannot be 

defined this way, and OCL constraints cannot be added. In the instantiation approach 

shown in Fig. 3 the only way for specifying constraints is to use a custom constraint 

language. This problem becomes even more serious, if we try to define tools for the 

language support. 

In papers (Kalnins and Barzdins, 2016 a, b, c) the authors have offered a new 

approach based on metamodel specialization. The central element of this approach is a 

Universal Metamodel (UMM) which is being specialized for a concrete language, for 

instance flowcharts. This approach permits to use all UML class diagram features and 

OCL constraints for defining graphical languages and their support tools (graphical 

editors).  

This paper is a further development of ideas presented by the authors in papers 

(Kalnins and Barzdins, 2016 a, b, c). First, the basis of the approach – the metamodel 

specialization is explained in a more detailed and understandable way. Second, the core 

of the approach – the universal metamodel to be specialized for the given graphical 

language is extended to cover a more general class of graphical languages. Third, the 

related nature of both tasks is more clearly emphasized. It is shown that the universal 

metamodel for the language editor definition is only a slight extension of the metamodel 

for syntax definition, since some attributes to be used for details of user interaction 

specification must be added. 

The first section of the paper explains in detail the basic technology of the approach, 

namely, the metamodel specialization. The next section presents the core concept – the 

universal metamodel (UMM) for each of the tasks. Section 3 explains on examples how 

a graphical syntax of a language is defined by a UMM specialization. Section 4 extends 

the approach for an editor definition, and the concept of Universal Engine is explained in 

detail. Finally, Section 5 provides the basic principles how an editor definition 

workbench could be built using the proposed approach.  

1. Metamodel specialization approach  

Class specialization – creation of subclasses – is a well-known concept in UML. In a 

sense, it is a cornerstone in building understandable class diagrams. It is also a widely 

used approach in building metamodels in MOF (OMG, 2015 c). However, there is a 
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variation of specialization which can provide a new idea in building class models. It is 

the specialization of a whole metamodel.  

The distinguishing feature in our approach is that only the created set of subclasses 

together with a set of related redefinitions of attributes and associations – the specialized 

metamodel is used for the given task.  

A very important difference from the metamodel instantiation is that the specialized 

metamodel is at the same MOF meta-layer as the original one. This fact permits to use 

the same UML facilities as in the original metamodel, for example, OCL constraints. 

 To make the specialization process simpler and more readable, only a restricted set 

of UML class specialization facilities is used in our approach. The used metamodel 

specialization facilities include: 

• Create subclasses of the source metamodel 

• Redefine attributes – add new default values, but do not redefine attribute 

names, types and multiplicity (therefore no explicit redefines modifier is needed 

here) 

• Redefine association ends – names and multiplicity, explicit redefines modifier 

is needed 

• Add new OCL constraints to classes and attributes 

• Do not add new (non-redefined) attributes and associations to subclasses 

These restricted specialization facilities are sufficient for diagram syntax and editor 

definition and make the result compact and easy readable. For example, the addition of 

default values to attributes in the specialization is very natural for editor definition since 

these values are assigned at the class instance creation – a basic action in an editor. A 

specialization of a universal metamodel class may also be an abstract one (with the 

standard UML semantics), if it has a further specialization to non-abstract classes. This 

construct is typically used to simplify the association redefinition. 

Since the concept of subclass is well-known from the very beginning of UML, 

certainly there are some known use cases of metamodel specialization. The most 

important such case is the OMG standard for Diagram Definition (DD) (OMG, 2015 b). 

There the Diagram Interchange (DI) metamodel is being specialized to its version for the 

given modeling notation, e.g. UMLDI. The full set of UML specialization facilities is 

used there because the original DI metamodel is at a very high abstraction level. Some 

other use cases are related to the support of DSL extension, and they are completely 

unrelated to the topic discussed in this paper. 

2. Universal Metamodel for graphical syntax and editor 

    Definition 

In general, the starting point for the application of the specialization approach to a 

modeling task is the Universal Metamodel (UMM) for this task. However, as already 

mentioned, we try to make UMMs for both tasks discussed in this paper as similar as 

possible – the UMM for editor definition is only a slight extension of the UMM for 
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graphical syntax definition of the language. Therefore in this section we, in fact, provide 

one common metamodel by precisely denoting which elements of this metamodel are 

extensions for editor definition.  

The intended application domain of our approach is graphical modeling languages 

with typical graph structure diagrams, consisting of nodes and edges with text elements 

added to both. However, some additional features are also supported, e.g. node nesting 

within another node.  

Fig. 4 shows this metamodel. For both use cases of the metamodel the same set of 

classes is used. The attributes used only for editor definition are in bold font, for 

graphical syntax definition they should be ignored. Similarly, for editor definition two 

new enumerations are added – they have bold outlines in Fig. 4. 

Now some comments on the classes of this metamodel are given. They reveal the 

general intention of the metamodel elements. Certainly, since according to our approach 

only specializations of this metamodel are used for graphical syntax (or editor) definition 

of a language, the precise semantics of metamodel elements will be explained on 

specialization examples in the following sections. 

 

 
                  Fig. 4. UMM for graphical syntax and editor definition 
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The classes of the metamodel represent the concepts of a typical graph diagram – the 

graph diagram itself, nodes and edges in it and how they can be related. Both 

compartment classes define the structure of texts for nodes and edges respectively. The 

top class GraphicalLanguage represents a language which can contain several diagram 

kinds (as UML does). From the structure point of view this metamodel is similar to the 

type metamodel in Fig. 1, though their usage is completely different. A node 

compartment may be a structured text. Its parts (e.g. attribute name, type, default value 

etc.) are attached via the parentCompart – subCompart association, the order is defined 

via the subComprtNo attribute, a nested containment is supported as well. Prefixes and 

suffixes represent fixed text elements (separators, keywords etc.) to be inserted at 

appropriate places. Thus the complete logical structure of a compartment text can be 

defined – how the visible textual value of a compartment is assembled from its parts. In 

fact, this definition is semantically equivalent to the text structure definition by a 

context-free grammar such as EBNF (Grune et al., 2012) – as typically it is done for 

structured texts in graphical language specifications. The CompartmentRow class 

represents another kind of text structuring – a compartment consisting of similar rows – 

as it is for attributes in a class node. See a detailed text structuring example in Section 4 

where a simple class diagram editor is defined. 

The described facilities for diagram structure definition – both at diagram graphics 

level for possible node-edge relations and at text structuring level are used both for 

diagram syntax definition and editor definition. For diagram syntax definition they 

specify how a syntactically correct diagram should look like. But for editor definition 

they specify how a correct diagram should be created. Certainly, the detailed semantics 

of the approach will become clear only in the next sections where UMM specialization 

examples for both use cases will be explained in detail. 

The additional attributes for editor definition (shown in bold in Fig. 4) define the 

way how the user interaction with the editor should occur. The palette-related attributes 

will be used to define a palette for a diagram kind – what elements it should contain and 

how they should look like. The inputContr attribute for compartments is used to specify, 

what kind of an input control should be used to enter this text (or part of a text). The 

complete structure of a dialog form for entering a text for a graphical diagram element in 

fact is determined by the text structuring facilities already explained. Certainly, the 

general behavior of such editor will become clear only when the second component of 

the editor – the Universal Engine will be explained. This will be done in Section 4 on the 

basis of UMM specialization examples for editors.  

3. Graphical Language Definition by Metamodel specialization 

 In this section we show how the specialization of the Universal Metamodel introduced 

in the previous section is used for the precise graphical syntax definition of languages. 

We remind that only non-bold attributes in the UMM in Fig. 4 are used for this purpose. 

Fig. 5 presents the specialization of the UMM (in standard UML notation) for syntax 
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definition of the same flowchart diagram which was discussed in the introduction. 

Classes of UMM there have a white background, but specialized classes – a colored one.  

 
Fig. 5. Flowchart diagram syntax definition by specialization 
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    In fact only the specialized classes matter, all relevant attributes and associations 

are in this part. 

We see that the specialized metamodel for flowcharts in Fig. 5 is quite similar to the 

“naïve” flowchart metamodel in Fig. 2. Both metamodels have the same classes for node 

and edge kinds in a flowchart, only in Fig. 5 they are subclasses of UMM classes. 

Abstract superclasses are used with the same goal to simplify the usage of UML 

multiplicities for a precise specification of node-edge relations – which edges can start 

from which nodes. The main difference from Fig. 2 is that diagram element attributes are 

replaced by the relevant compartment classes – the texts for nodes and edges are 

important syntax elements as well. The attributes in Fig. 5 have a completely different 

role, they specify some of the element style features which are significant for the syntax 

definition. The values of these attributes are fixed via the OCL constraints attached to 

them. Attributes from UMM not used here are not repeated in the specialization (but 

formally they are present). The same OCL constraints expressing essential non-local 

restrictions on flowchart elements are attached to three classes. Their form is slightly 

different because attributes are replaced by compartment classes. It should be noted that 

they are built completely in terms of the specialization classes and associations. Thus the 

principle is supported that any syntactically valid flowchart is a direct instance of the 

specialized metamodel.  

Since all the information relevant for the metamodel reader is contained in the 

specialization, we propose a custom notation for metamodel specialization in order to 

make metamodel diagrams more compact. The custom notation for the same flowchart 

example is shown in Fig. 6. There only the specialized classes are shown, with the UMM 

class name (of which it is a subclass) shown in braces and in bold italic font. The 

association end redefinition is shown without the redefines keyword, with the original 

name from UMM in a similar style.  

The semantics of standard UML class specialization certainly is retained completely. 

For example, when an abstract class in the specialization has the name of the 

corresponding UMM superclass inserted, it extends to all of its subclasses in the 

specialization as well. The given custom notation will be used also for all the next 

specialization examples. 

Definitely, the flowchart diagram example is not a very complicated one. To see 

how the approach applies to more realistic diagram definition, look at the EMOF level 

class diagram editor definition fragment (Fig. 9) in Section 4. For syntax definition there 

only the input control and palette related attributes should be removed (and some OCL 

constraints modified). The complete syntax definition for such a class diagram would 

require two more diagrams of a similar size. 

We conclude this section by some comments on the current status of graphical 

language syntax definition. The precise graphical syntax definition of languages has 

been slightly neglected for a while. For example, the graphical syntax of UML up to the 

version 2.4 (OMG, 2011) has been defined as informal comments and example pictures 

in the UML documentation. Only starting from UML 2.5 (OMG, 2015 a), some 

formalization is offered also for defining the graphical syntax of diagrams. It is based on 
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the new OMG standard for Diagram Definition (DD) (OMG, 2015 b). However, the 

main goal of this standard is to enable diagram interchange (DI) between modeling tools 

implementing the same language, but not a simple and precise diagram syntax 

specification for tool developers. Therefore DD consists of Diagram Interchange (DI)  

 

 

Fig. 6. Flowchart syntax definition in custom notation  

and Diagram Graphics (DG) parts, each having a metamodel. The DI part permits to 

describe the logical structure of a diagram at a very high abstraction level. The second 

component of DD is the DG (Diagram Graphics) metamodel, which is oriented towards 

a low level specification of graphical element rendering in a tool. The complete concrete 

syntax specification for a diagram therefore requires also a transformation definition for 

mapping DI elements to DG elements – standard graphic elements (shapes, lines and text 

elements). To have a metamodel which describes the diagrams in the given language by 

more understandable concepts it is proposed to specialize the DI metamodel to an 
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interchange metamodel for the language. Thus, for UML diagrams the specialized 

UMLDI metamodel is given as an example in the DD standard (OMG, 2015 b). It should 

be noted that the UMLDI metamodel is obtained from DI metamodel by a specialization 

approach quite similar to that used in this paper, yet more complicated specialization 

features here have to be used. Due to all these complexities in the DD approach, the 

main description of UML diagram syntax is still given informally in the UML 2.5 

standard (OMG, 2015 a). There are also attempts to specify the graphical syntax by 

means of specific graph grammars (Rekkers and Schurr, 1997, Costagliola et al, 2004), but 

they also do not offer a simple solution because the application of rules there is much 

more complicated than for textual grammars. Thus the problem of a simple, but at the 

same time precise definition of the graphical syntax for a graphical modeling language is 

still open. 

4. Graphical Diagram Editor Definition by Metamodel 

       specialization 

As it was already stated the diagram syntax definition for a graphical language can be 

easily extended to a graphical editor definition for this language. The complete version 

of the universal metamodel from Fig. 4 must be used now – with attributes displayed in 

bold also included. These attributes specify the basic properties of user interaction with 

the editor – the palette structure and style for diagram creation and input controls for 

entering the corresponding compartment values. 

However, the usage of these attributes becomes clear only in the context of the new 

concept for editor definition – the Universal Engine (UE). Universal engine is an abstract 

editor whose generic behavior is explained in terms of UMM. It can work with instances 

of UMM classes such as GraphDiagram, Node, Edge etc. and perform typical editing 

actions related to them. The details of such actions are determined by attribute values of 

these classes. Most of these attributes must have fixed values set for a language editor, 

and these values are set only in the specialized metamodel for the given language. 

Therefore the UE behavior is precisely defined only by a UMM specialization. 

In a more practical setting there is one more extension of UMM for editor definition 

in our approach. Typically any real diagram editor contains the concept of Project – a set 

of related diagrams having a common usage. The contents of a project has to be 

somehow visualized – frequently via a tree. However, since we want to restrict our 

visualization facilities, a Project diagram is introduced instead. It contains Diagram 

seeds – nodes from which the corresponding diagram can be accessed via double-click. 

Thus a project diagram is a normal graph diagram (containing only nodes). To represent 

this extension we add one more version of UMM for editors – see Fig. 7, where the only 

added element is the Project class. As before, there the editor-related elements are in 

bold style. 
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Fig. 7. The practical extension of UMM for editor definition 
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Now we can provide a list of typical actions supported by the UE for editors:  

 Manage the current project, in particular, add new diagrams to it of the kinds 

defined by the available specializations (using the palette of the project 

diagram) 

 When a diagram is opened (existing or new), its palette is opened as well. The 

palette for a diagram kind is generated by UE on the basis of its specialization 

(diagram element types having the related palette style attributes set) 

 A new element in the diagram is created when the user clicks on the relevant 

palette element and selects its position in the diagram (or end nodes for a new 

edge) 

 If the element contains text compartments in its specialization, the 

corresponding dialog form is opened by UE, the form contents is defined via 

the corresponding input control attributes in the specialization (and the 

subcompartment structure) 

 Each subcompartment has its own input control included in the form for parent 

compartment, for  multi-row compartments the value entry row-by-row is 

supported 

 Compartments of an existing element may be opened for modification 

 UE supports a number of standard actions not dependent on a specialization – 

creating, saving and opening a project, modifying a diagram layout, modifying 

a diagram element style, copying a diagram element etc.  

 UE checks the applicability of user actions on the basis of the diagram syntax 

defined in the specialization and checks the validity of user input on the basis of 

provided OCL constraints 

Further details of the behavior of UE will be explained on editor definition examples. 

There is one general note on the used UMM specialization style. While for syntax 

definition the values of attributes were fixed by OCL constraints attached to the 

attributes, for editor definition it is more natural to define the values simply as default 

values in UML. This is because many of these values are used as defaults just at the 

moment of creation of a new element (e.g. node style attributes), later on they can be 

modified by the user via the supported “auxiliary” functionality of UE (UE simply 

doesn’t permit to modify the strictly fixed attributes). The default value may be specified 

by a constant or a true OCL expression, but also OCL constraints may be used for non-

modifiable values. The custom notation – only the specialization – will be used for both 

examples. Certainly, when defining an editor, we must think that the editor works on 

instances of the specialized metamodel and the user creates instances of specialized 

diagrams kept in a specialized project as a repository. This doesn’t contradict to the 

principles of UE presented before because any instance of a specialized class can be 

treated also as an instance of the corresponding superclass from UMM (this view is used 

in Section 5 for implementing the editor platform based on the specialization approach). 

Fig. 8 shows the editor definition for flowchart diagrams according to the syntax 

defined in the previous section. 
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Fig. 8. Flowchart editor definition 

The editor definition contains the same specialized classes as the flowchart syntax 

definition in Fig. 5 and 6. Now more attributes have values set – here using the default 

value feature. First, some comments on the Project definition. Our language contains just 

one diagram type, therefore the specialized FlowchProjDiagram contains only one seed 

node type – FlowchSeed. Since the palette attributes are specified for this node kind, the 

project diagram will show a generated palette with just one element – the flowchart seed. 
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When the user clicks on this element, a new seed node is created and the simplest form 

consisting of just one text field and the caption Name is shown. When the user there 

enters a string, this value is used both as the seed and diagram name (see how the caption 

value for a flowchart is set). The new flowchart diagram appears when the user double-

clicks the seed. 

A flowchart diagram (new or existing) appears with a generated palette containing 

four node elements and two edge elements – for all specialized non-abstract node or 

edge classes – they all have the palette related attribute values set. Abstract classes in the 

specialization are not used for palette element creation – they are not uniquely linked to 

one specialized node or edge class. To create a node in the diagram the user has to click 

the corresponding palette node and then click on a free place in the diagram canvas. The 

node is created in this position – UE can automatically move the existing diagram 

elements to find enough space. Before the new node appears, UE opens a generated 

dialog form, if the node class owns at least one compartment. If there are several 

compartments attached, they appear in the same form (in the order specified by 

subCompartNo attribute value). If the compartment has subcompartments, a subform is 

shown when the user selects this compartment (see this feature in detail in the next 

example). The flowchart editor has compartments defined only for Action and Decision 

nodes. Each of them has only one compartment to be entered via the simplest input kind 

– the text input, therefore a dialog form with one text field is shown for these nodes.  

To create an edge (here a flow or conditional flow), the user has to click the 

corresponding palette element and then select an existing start node and end node in the 

diagram. If there is a compartment attached, the relevant dialog form is opened. In our 

example the conditional flow has one compartment – for entering the condition value. 

The specified input control is a listbox, where the user can select a value only from the 

displayed item list. The itemList attribute defines the values in this list, here it is a fixed 

list containing two values – Y and N. Since the user can select only one of these values, 

there no more a need for an OCL constraint on the compartment value, as it was 

specified in the syntax definition in Fig. 5. Certainly, OCL constraints still may be 

needed for more complicated situations – the name compartment for the Action node has 

the same constraint as in the syntax definition. But in editor definition it has a new 

semantics – the editor evaluates this constraint when the user has completed the value 

input. If it evaluates to false, a standard error message on invalid value is displayed.  

Similarly, the second OCL constraint related to condition values is a complex one 

involving the values on all edges outgoing from a decision node.  This constraint has to 

be retained from the syntax definition as it is. Now it reports as an error, e.g. the 

situation when the user tries to enter the value “Y” also for the second edge exiting the 

given node. The edge multiplicity constraints in plain UML notation are also treated this 

way, e.g. an error message is shown when the user tries to start the second Flow from an 

Action node or he/she tries to place the second Start node in a diagram. Thus only 

correct flowchart diagrams according to the syntax definition can be built. Certainly, the 

editor designer has to take into account the way how static constraints in syntax  
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Fig. 9. The attribute fragment of EMOF class editor definition 

definition are interpreted as active constraints in the editor, thus adaptations of OCL 

constraints may be sometimes needed. 
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Now the second editor example – a class diagram editor for the subset of UML 

which corresponds to the EMOF metamodel (OMG, 2015 c). Fig. 9 shows an editor 

fragment – the features related to Attribute in a Class – the multiline Attribute 

compartment and all details of an Attribute according to EMOF specification. The 

complete editor definition has to support the Class and Enumeration nodes and 

Association and Generalization edges. The Class node in its turn includes all features for 

EMOF support. To define all this, two more diagrams of similar size are required. 

The main goal of this example is to illustrate how node compartments with a 

complicated structure are defined in our approach. This refers both to graphical syntax 

definition and editor definition. The example in Fig. 9 shows the complete definition of 

the Attribute compartment in a Class node. It is a typical multiline compartment where 

each line has a complicated substructure. In addition, the Class name and isAbstract 

compartments are also included – to illustrate the specific notation for showing that a 

class is abstract. A more elaborated use of OCL constraints in the context of editor 

definition is also shown. 

The metamodel attributes which have to be set to a constant value are defined via 

the default value option, but those whose value must be set via a proper OCL expression 

are defined by OCL constraints, especially when this value is dependent on other 

diagram elements and may change over time.  

The multiline nature of the AttributeCompartment is defined by the choice of the 

input control – MultilineInput. This control displays all existing lines in a multiline field, 

with a possibility to add a new line or delete an existing one. Each line there represents a 

separate class attribute, the editing of such line is enabled by the AttributeRow class in 

the specialization (which specializes the CompartmentRow in UMM – a feature directly 

introduced for such situations).  Since such row is also a Compartment, it can have a 

substructure defined via the specializations of subComp association (here six 

subcompartments are present according to the attribute syntax in UML). The editor (in 

fact, UE) supports this feature by opening a new dialog form for editing an existing row 

or entering a new one. This form contains a field for each subcompartment, their order is 

defined via the subCompNo attribute. The visible text value of the line is obtained by 

concatenating all these values. The IsDerivedAttr subcompartment uses the checkbox for 

entering the Boolean value, but entering the true value results in creating the string “/” 

(according to the attribute trueValueRepresent setting) – and false results in nothing. 

Several subcompartments have the values of prefix or suffix attributes set, these string 

values are prefixed (or suffixed) during the concatenation, e.g. prefix “:” for the attribute 

type. If the subcompartment value is empty, prefixes or suffixes are ignored. For 

attribute type and multiplicity input the Combobox input control is used. Like Listbox, it 

presents an item list to select from, but permits also simple text input for entering a 

different value. The item list is specified via the itemList attribute. It is set to a fixed 

string set for multiplicity. But it uses an OCL constraint for the type. This is because the 

item list can dynamically extend, when the user adds instances of other diagram 

elements (here instances of Enumeration – not shown in the fragment in Fig. 9). One 

more situation is demonstrated for the Modifiers subcompartment – it itself has a nested 
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substructure, with a number of features present or absent. Therefore each feature is 

entered via checkbox and has a string for representing true, but the delimiter attribute 

specifies how the strings should be separated during the concatenation, if more than one 

is present. The complete string value of Modifiers is included in braces using the prefix 

and suffix. 

The OCL constraint for attribute name is a typical input value check, producing an 

error message when a duplicated attribute name is entered for a class.  

Now some comments on the Class name compartment. According to the UML 

specification the fact whether a class is abstract is visualized by the font style of the class 

name. The user can enter the isAbstractCompartment value via the standard checkbox – 

the UE internally stores the entered value as strings true or false. But this compartment 

itself must not be visualized, therefore the attribute isVisible is set to false in this 

subclass.  Instead, the ClassNameCompartment style must be set to italic if the class is 

abstract and to bold if it is not. Exactly this fact is specified by the OCL constraint 

attached to ClassNameCompartment (the definition by a constraint ensures also that the 

given relationship remains in force when the user modifies the isAbstract value). 

The provided examples confirm the fact that a typical diagram editor functionality 

can be defined this way. Certainly, advanced value prompting and value checks present 

in commercial UML editors would require significantly more complicated OCL 

constraints, frequently related to the abstract syntax of the language as well. However, 

our approach is mainly oriented towards such graphical DSML support where typically 

only features similar to those shown here are required. 

5. Editor Workbench implementation Principles 

In this section we briefly provide the basic principle how an editor definition workbench 

based on metamodel specialization could be implemented. This implementation 

complies with the main principle of the approach that the Universal engine (UE) is based 

on the original UMM. The proposed practical Universal engine runtime will consist of 

several parts. In a sense, this architecture will be similar to the existing TDA platform 

structure (Sprogis, 2010, 2013), from which some parts could be more or less directly 

reused. A new component is the Specialization Engine (SE), which is the sole 

component managing the current model (project) processed by the editor according to 

the specialized metamodel. In addition, it provides a view (in fact, a copy) of model 

fragments (typically, the current diagram being edited) to be used by other parts of UE 

according to UMM. These other parts are the Graph Diagram Engine (or Presentation 

Engine) – GDE, the Dialog Engine (DE) and the Main Engine (ME).  

The Graph Diagram Engine performs all “technical” work in rendering diagrams – 

simply displays a diagram, adds a new element with a known content to it and updates 

the layout accordingly, modifies the layout upon a user request etc. It also accepts the 

user actions in a diagram area and, if the action is a “logical” (not purely technical one), 

creates a notification (event) for other UE components to react upon. The main value of 

this engine is a nontrivial algorithm for creating readable diagram layouts. The Dialog 

Engine performs all the technical work in displaying the generated dialog forms for 

compartments and reacting to user inputs in form fields – but it doesn’t perform logical 
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processing of the input values. The Main engine in the existing TDA (in fact, a universal 

interpreter) performs all logical actions on the basis of the given Type metamodel 

instance. The Main engine in the existing TDA is very complicated and contains a large 

functionality not relevant for the specialization approach, because in the existing version 

many low level actions can be configured or even custom functionality can be added to 

them (via custom model transformation procedures). All these actions are supposed to 

have a standard behavior in this approach.      

The Graph Diagram Engine (or Presentation Engine) – GDE and Dialog Engine 

(DE) could be reused nearly completely from their versions in TDA. The Main Engine 

also could be reused to a significant level, but with some code modifications (certainly, 

only a part of it is really needed here). This is based on the fact that UMM is very close 

to the Type metamodel (in fact, a subset) in TDA – only the coding differs in some 

places. 

The diagram set built using a defined editor is stored in a Project repository (PR) 

according to the specialized MM (SMM) – as a normal instance set. This repository is 

being serviced only by SE, no direct diagram editing occurs there. The diagram editing 

occurs (by UE components) only in a Temporary repository (TR) which contains 

instances according to UMM. Normally only the current diagram must be kept there 

(sometimes two diagrams are required). SE supports the copying of a diagram from PR 

(according to SMM) to TR (according to UMM). In fact, this is a simple operation, since 

an instance of an SMM class is also an instance of the corresponding UMM class, and 

attributes are the same (not redefined, only values are set). Only the links of redefined 

associations have to be stored as links of the original associations. 

In addition, when UE modifies an instance in TR or creates a new instance, it has to 

notify SE about the modifications (reference is by a technical Guid attribute maintained 

by SE and UE), then SE synchronizes the elements in PR.  

The OCL expression evaluation is done by SE only in PR (upon requests by UE).  

The UE behavior is fixed to a standard schema, no explicit configuration is planned. 

For a diagram new elements are created according to the supplied palette for this 

diagram kind. Node or edge compartment editing also occurs according to the supplied 

compartment dialog schema for the element. Pop-up menus also are fixed.  

The palettes and dialog schemas for elements are created from specializations. There 

will be a language developer mode in the workbench, where one or more UMM 

specializations will be built, in totality constituting a graphical language. When the 

specialization is complete, it is “compiled” to a palette tree, which contains the palette 

for the project diagram – in its turn containing palette seeds for all defined diagram types 

in the language. Under each project palette seed a local palette tree for the corresponding 

diagram type is stored.  This tree contains the diagram palette with an element for each 

specialized node or edge. Under each such element the complete compartment subtree 

for this element (as defined in the specialization) is built. Such a subtree related to a 

diagram element is called the element template. For all attributes with default values set 

in the specialization these values are present in the template. All palette tree elements are 

instances of the palette tree metamodel classes – an instance for each SMM element – 
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node, edge or compartment. Fig. 10 shows the Palette tree metamodel and its relations to 

the UMM for editor definition. Some purely “technical” runtime-related attributes are 

added to UMM classes there as well.  

 

 

Fig. 10. The “practical” UMM version together with Palette tree metamodel. 
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Certainly, a more efficient implementation of the modified Main engine may require 

some modifications of the palette tree metamodel, but the general idea will be preserved.  

Thus the components of UE have to build a true diagram element from the 

corresponding template by setting the remaining “dynamic” attribute values according to 

the editor user wishes. Fig. 11 shows a fragment of the Palette tree with element 

templates for the flowchart editor in Section 4. This fragment is shown as an object 

diagram in UML. 

          

 
 

Fig. 11. Fragment of the Palette tree for Flowchart editor 
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The proposed implementation schema for a specialization based editor workbench thus 

is expected to require not a very large effort since several components of UE could be 

reused from the existing TDA. The only completely new component would be the 

specialization engine for synchronizing the model in PR with its parts in TR and 

performing some general management. The language developer workplace could be 

implemented on the basis of an appropriate open-source UML tool in Eclipse, e.g. 

Papyrus (WEB, f). Then one the existing OCL interpreters, e.g. Eclipse OCL (WEB, g) 

could be used as well. All this is possible since metamodel specialization is completely 

based on standard UML features. The specialization compiler to the Palette tree format 

could be built as an Eclipse plugin, most probably in one of the model transformation 

languages available there. 

Conclusions 

The paper proposes a further development of ideas presented previously by authors on 

the usage of metamodel specialization for the definition of graphical languages and their 

support tools. The approach has been explained in a more detailed way, especially the 

Universal metamodel and Universal engine. The provided examples of language and 

editor definition show that the specifications obtained by metamodel specialization are 

precise, complete and sufficiently simple at the same time, and they use only standard 

features of UML class diagram. A more detailed insight into the editor workbench 

implementation has been provided as well. It contains sufficient details to estimate the 

required implementation effort, which is not large. We see that the main application area 

for the approach is graphical DSL support, and the popularity of graphical DSL is 

growing significantly. We plan to approve the approach in practice by implementing at 

IMCS UL a new specialization-based platform for graphical DSL support, using the 

ideas presented here. And we see that in perspective the approach could be applied to a 

much broader class of tasks. 
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