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Abstract. Model Driven Development (MDD) witnessed a boom both in research and practical 

applications starting from 2001. Its main innovative idea was the model transformation languages 

as a real support for MDD. A couple of years ago MDD survived a deep crisis due to 

disillusionment by practitioners in support for it. However, recently it got a revival in the form of 

Domain Specific Languages, this again stimulated the research and usage of transformation 

languages. One of the obstacles for MDD adoption in industry has been the reluctance of 

practitioners to learn a new language. This paper offers a new approach how the well-known 

extension LINQ of the popular C# language can be used for defining model transformations. 

Especially the functional style supported by LINQ is promoted, which has not been widely used in 

the existing transformation languages.   

Keywords. LINQ, Model transformations, MDD, DSL. 

Introduction 

One of the cornerstones for Model Driven Development (MDD) of software is model 

transformations, which require specific languages and tools for their development. There 

are many such model transformation languages, but they are not well adopted by 

software development practitioners. This paper offers a new approach how the popular 

LINQ extension of the main Microsoft software development language C# can be used 

for model transformation development as well. In practice LINQ is mainly used for 

querying and modifying relational databases in a functional style. Particularly this well 

supported functional style – lambda expressions for inline function definition and 

facilities for function composition in LINQ are the main value also for a new style of 

transformation definition which could be quite familiar for practitioners.  

The first section of the paper discusses a brief history of MDD and its current status. 

The crucial role of model transformations and their support for MDD is emphasized 

there. Section 2 unveils the place of Microsoft technologies - .NET, C# and LINQ in 

software development. The existing support for MDD in the C# technical space is 
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covered there as well. A new architecture is offered which permits to use LINQ as a 

model transformation language, by integrating LINQ technical space to typical technical 

spaces for model transformation development. Section 3 evaluates the expressiveness of 

LINQ for some typical model transformation tasks, especially emphasizing the 

functional style. Two tasks of various kind and complexity are solved in LINQ. One the 

tasks is the diagrammatic visualization how a business process execution advances. The 

second task is a model transformation which transforms a Petri net into a functionally 

equivalent statechart. Section 4 provides a general comparison of LINQ to some popular 

model transformation languages. Section 5 compares LINQ features to the support of 

functional style in Java included in the version 8 of Java. 

1. State of the Art in Model Driven Development 

1.1. Initial Stage of Model Driven Development  

Models and modelling are one of the most important and most used new paradigms in 

the software development in this century. Though some kinds of models for software 

development were used starting from the nineties, a wide usage of models was enabled 

by the appearance of Unified Modeling Language (UML). The first usable version of 

UML – UML 1.1 – was published by OMG in 1998 (OMG, 1997 a). It was a reasonable 

unification of ideas coming from the previous graphical modelling notations such as 

OMT by J. Rumbough et al (1991) for capturing the ground principles of object-oriented 

design, entity-relationship (E-R) models by Chen (1976) for database design and some 

other notations. UML with its vast set of diagrams kinds – class diagrams, use case 

diagrams, sequence diagrams, activity diagrams etc. could support all phases of software 

development. In addition, OMG published also the MOF (Meta-Object Facility) (OMG, 

1997 b), introducing formally the metamodel concept and four MOF layers. But all this 

was oriented towards a more formal and precise definition of UML model syntax via 

metamodels. However the principles how such a wide spectrum of models should be 

used for software development were not present in UML. Therefore OMG in 2000 came 

with another crucial initiative – the Model Driven Architecture (MDA) (Siegel and 

OMG, 2001). MDA for the first time introduced a sequence of models to be used for 

software development. These models were CIM (Computation Independent Model, a 

sort of software requirements specification), PIM (Platform Independent Model, the 

logical design specification of the software system) and PSM (Platform Specific Model, 

the software implementation specification in the given target development platform) 

(OMG, 2003). At that time the main goal for MDA was set to create some automation 

for the transition from a PIM of a system to several PSMs related to different platforms. 

This goal required the introduction of the most important new technology for processing 

models – model transformations. It was expected that an automatic transformation could 

create a PSM for the chosen platform from the PIM of the software system. Later on a 

goal of at least partially automatic transition from PSM to the real system code in the 

given platform was added.  

To achieve these goals OMG initiated a request for creating an appropriate language 

for developing transformations – a model transformation language (OMG, 2002). This 

language should be tightly related to the MOF standard – models to be transformed were 

built according to the corresponding metamodels (the metamodels strictly specified the 

syntactic structure of models). Thus PIM models were assumed to be built according to 
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the standard UML metamodel, but PSMs could use an extension of UML via specific 

profiles. Due to all this, the expected transformation language was named MOF QVT 

(Queries, Views, Transformations), since initially also queries and model views were 

expected to be supported (in fact, later only the model-to-model transformation 

definition remained as a significant goal). 

This request for transformation languages by OMG created a boom of various model 

transformation languages created by a number of research teams. First, it was recognized 

that the existing earlier graph transformation languages could be reused as MOF model 

transformation languages – they have been built for transforming (rewriting) graphs with 

typed and attributed nodes. Such graphs in fact are close to MOF models. Since graphs 

are simpler and more formal mathematical objects, even some formal graph 

transformation theory (based on algebra and category theory) had been developed. Thus 

a number of model transformation languages based on graph transformations soon 

appeared – AGG (Taentzer et al., 2005), PROGRES (Schurr et al., 1999), GreaT 

(Agrawal et al., 2003), Viatra (Taentzer et al., 2005), TGG (Konigs, 2005) etc. Two very 

important basic concepts in transformation languages were taken over from graph 

transformations – the concepts of rule and pattern. The pattern is a declarative 

description of subgraphs to be located in the source graph. A rule contains a source 

pattern (to be located, i.e. matched) and a target pattern – specifying how the located 

source subgraph should be modified. Typically there is no execution control structure 

superimposed over the rules – the rules are just let to be applied to the source graph in an 

arbitrary order, while there is a rule whose source pattern can be matched. Many model 

transformation languages share the same basic principles, however, some explicit 

procedural rule execution control is typically added.   

Several new model transformation languages appeared soon as well. The most 

prominent ones are ATL (Jouault and Kurtev, 2005), Tefkat (Lawley and Steel, 2005), 

UMLX (Willink, 2003), MTF (IBM, 2004), ATOM
3
 (de Lara and Vangheluwe, 2002), 

BOTL (Braun and Marschall, 2003), Fujaba (Fischer et al., 2000), Epsilon (Kolovos et 

al.., 2016). It should be noted that the OMG language MOF QVT language was 

significantly delayed, the first version appeared only in 2008 (OMG, 2008). The System 

Modelling Lab (SysLab) team at IMCS UL also participated in this “transformation 

language race” and created the MOLA language (Kalnins et al., 2005) in 2004, together 

with simpler support languages Lx (Rencis, 2008). A transformation language itself may 

be textual or graphical, e.g. ATL, Tefkat, MTF are textual, MOLA and Fujaba are 

graphical languages.  

Certainly, the languages should not only be defined, but also implemented. The 

implementation firstly requires a model repository. In general this repository should be 

MOF-compliant, since most models are built according to MOF standard. The most 

popular such repository, no doubt, is the Java-based Eclipse EMF (Steinberg et al., 

2008), which was created in due time for the transformation language boom, and it is 

supported by the largest number of transformation languages. There are also some other 

usable repositories, such as MDR (WEB, a) and GraLab (Dahm and Widmann, 2003) – 

both also Java based.  Secondly, for a transformation language to be usable, a complete 

tool support is required (as for any programming language) – a classical style IDE for 

textual languages or graphical editor for graphical languages, a compiler or interpreter, 

debugging facilities, service facilities for transformed model management, integration 

with modelling tools etc. The quality of tool support for different languages significantly 

differs. Probably the best supported language is ATL, which has also gained the widest 
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industrial usage. The MOLA support is also at a required level. Probably the worst 

supported language paradoxically is MOF QVT. 

Due to such a vast support for model transformations, initially there was a sufficient 

interest in software industry to use MDA in practice. However, soon it became clear that 

the basic goal setting of MDA is not completely appropriate for practice. Even the role 

of CIM was not sufficiently clearly set there. The industry also wanted to get tangible 

results, namely, if models are used, as much as possible code should be generated 

automatically from them. Thus other approaches appeared – also based on MOF 

compliant models and model transformations, but not tied to the fixed set of models in 

MDA. The most popular alternative is MDD (Model Driven development) or a very 

similar MDSD (Model Driven Software Development). There a set of created models 

can be chosen in a most appropriate way for the given software development domain, in 

order to get maximum benefit from the final code generation step. This approach is 

tightly related to another paradigm – UML and its profiles frequently is not the best 

modelling notation for the given domain. There domain specific modelling languages 

(DSML) frequently are used in MDD. Such languages may be standardized, such as 

BPMN or SPEM for process modelling, but for narrower domains custom DSMLs 

typically are created. This is especially typical for embedded or real-time software 

development. Usage of custom DSMLs requires an additional tool support – for model 

creation custom graphical editors are needed. This is another area for MDD application, 

see more in Section 1.3.  

With MDD the developed models become true development artefacts the same way 

as the developed code – the code is directly obtained from models. Therefore the models 

should be maintained as carefully as the code, for instance, versioned, etc. Thus models 

become a true part of software engineering process. This approach is named MDE – 

Model Driven Engineering. This is the most inclusive of all model related development 

approaches, besides software engineering it applies also data engineering, system 

engineering. This concept was mainly coined by J. Bezivin (2012), however no very 

precise definition of it is provided. It is more like a maximal use of models in all 

software development related activities. Certainly, software industry has expected more 

benefits from this most comprehensive approach, but, unfortunately, the expectations 

have not come true. 

 

1.2. MDA Crisis 

Starting from 2011 the first signs of industry dissatisfaction with the practical use of 

models in software development have emerged. This happened 10 years after the start of 

MDA initiated by OMG. The most significant signal was the keynote “Why did MDE 

Miss the Boat” by J. Bezivin (2011), the main promoter of MDE, at SPLASH 2011 

conference, later on repeated at several smaller conferences. The main message there 

was that the usage of MDE methodology and relevant tools in software industry has 

reached a standstill. Several reasons for this are mentioned – there are no convincing 

success stories of MDE application in industry, there is no clear methodology how MDE 

should be applied, most users still associate MDE with its original base MDA (the fixed 

set of models CIM-PIM-PSM, UML as the modelling language etc), metamodels on 

which MDE is based are too complicated for practitioners, there is no adequate support 

for model evolution. However, the conclusion is rather optimistic – if these issues would 

be removed, MDE could regain value in practice. Similar views are expressed by J. Den 
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Haan, the scientific leader of the Mendix company building software tools for MDD 

support in his 2011 presentation “Why there is no future for Model Driven 

Development” (den Haan, 2011). His analysis includes also the use of DSMLs for MDD 

– and as the main reason the lack of adequate support for evolution of models in a 

DSML and especially the DSML itself is mentioned. It occurs in practice that 

maintenance of models is more difficult than the maintenance of code and can outweigh 

the advantages in development. However his final conclusions are optimistic as well. 

Similarly, according to Gartner hype cycle reports on technologies for software 

development (WEB, b), MDA was at the cycle peak till 2010, slid into trough from 2011 

to 2013 and then disappeared at all from the Gartner technology list (unfortunately, 

Gartner reports have not considered  MDD or MDE). 

This disillusion with MDD in software industry has had also an impact on research in 

the area. This is especially visible in research on model transformation languages. A 

certain indicator for this can be the topics of papers in annual ICMT conferences which 

are dedicated exclusively to transformation language development, implementation, 

support and usage. Due to lack of significant new applications in industry also the 

interest in providing new transformation principles and new languages has dropped 

significantly in years 2012 – 2014. The main topics investigated were “internal 

problems” – transformation testing, validation, evolution. Only in the last two years the 

situation has revived again, see next section. 

1.3. New Stage in MDD – a Consistent Use of DSLs 

As it was already mentioned, an innovative aspect in MDD (when compared to MDA) 

was the usage of DSMLs instead of UML for creating models adjusted to the chosen 

domain. But nevertheless these models were mainly used as steps in the software 

development process. Recently in several software development domains Domain 

Specific Languages – DSLs have gained popularity as direct software development tools. 

Software systems are created in these languages instead of general-purpose languages 

(GPLs), and the source code is directly compiled to executable units or to some GPL. 

Typical examples of such domains are various embedded or real-time software systems, 

e.g. in automotive industry, avionics, telecommunication. The usage is based on the fact 

that the software there is mainly created by domain experts familiar with the hardware to 

be controlled, and precise engineering design notations (languages) frequently exist 

there. One such example is DSLs for the Autosar project (Koenemann and Nyssen, 

2013) . There several DSLs for building components of automotive software have been 

created (Graf and Voelter, 2009). A typical example of DSL for telecommunication is 

the Flick (Sultana, 2015) for programming non-standard routers. DSLs can be used also 

for some more traditional software development tasks. In the ReDSeeDS Fp 6 ICT 

project (WEB, c), in which the SysLab team also participated, the original approach was 

a traditional MDD-style chain of models, where a special RSL language was used for 

creating an extended formal CIM model containing system requirements. MOLA 

language was used to transform one model to the next in the chain, but the transformed 

model should also be completed manually (Kalnins et al., 2009). Thus a certain part of 

Java code could be generated for simple information systems. After the end of the 

project the leading team of the project from WUT under M. Śmialek decided to modify 

the goal and extended the RSL language even more by adding typical user interface 

elements, more precise business logic description and data persistence aspects. In the 

result RSL grew into a full-fledged DSL for simple web-based information systems from 
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which a major part of implementation in Java could be directly generated (Śmiałek and 

Nowakowski, 2015).  

Such DSLs can be both graphical and textual. Though DSL users see it as a normal 

programming environment, in most cases the support for such DSL is essentially based 

on models. This includes both graphical or textual editors and the language translation. 

Especially the graphical editors are built using model based graphical tool frameworks 

such as Eclipse GMF (Gronback, 2009) or MetaEdit (Kelly and Tolvanen, 2008). One 

such framework – GrTP/TDA (Barzdins et al., 2008) has been developed also at SysLab 

IMCS. Such frameworks typically use also model transformations internally, in case of 

TDA an original transformation language lQuery (Liepins, 2011, 2012) based on the 

functional programming language Lua (Ierusalimschy et al., 2007) is used. It should be 

noted that tasks to be solved by transformations in graphical tool context frequently are 

different from those in typical MDD – they are mainly model navigations and local in-

place updates. The DSL translation process typically also uses model transformation 

languages and is performed in several steps each having a different metamodel, therefore 

they are closer to traditional MDD tasks. However, the final step there is model-to-code 

transformation requiring another kind of languages – for model-to-text transformation 

(here we will not discuss this kind of languages closer).  

Thus the DSL tool building has again raised a need for practical use of model 

transformations. However here the tasks to be solved are more variable. This has raised 

the need for model transformation languages to become domain specific as well. A 

classic example here is the Epsilon language (Kolovos et al., 2016), which, in fact, 

consists of 9 sublanguages. Among these is Epsilon Object Language (EOL) for 

performing low-level model operations and Epsilon Transformation Language (ETL) for 

performing “standard” transformation tasks. But there is also Epsilon Flock language for 

model migration – transforming a model in response to its metamodel evolution. It 

contains typical model migration operations described at a high level and consequently 

in a more concise way than, e.g., via ETL. This language can be applied to some other 

simple transformations of the whole model as well – see comments on use of Flock for 

the initial step of PN2SC task in Section 4.2. The lQuery language is also domain 

specific – adapted to typical model modification tasks during a diagram building. In 

some cases a simple domain specific transformation can be better described as model 

mapping, therefore mapping languages are also used. For example, when domain 

specific workflow languages are to be transformed to their standard execution form by a 

workflow engine in TDA platform (Kalnins et al., 2014), a special mapping language 

occurs to be the best solution (Lace et al., 2014). And in the ReDSeeDS project some 

traditional model to model transformation steps could be better described by a dedicated 

mapping language (Kalnina et al., 2012) than by the universal MOLA language actually 

used.  

Most of the transformation languages mentioned so far are somehow related to Java 

programming language and its support platforms. First, most of the languages are 

implemented on the basis of EMF model repository in Eclipse, which is a completely 

Java-based environment. Many of the languages permit closer links to Java by 

supporting custom extensions based on Java types and constructs. Therefore it is a 

natural question – what is the situation related to the other most used software platform 

in practice – Microsoft .NET. 
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2. LINQ, .NET and MDD 

According to TIOBE Index for August 2016, C# is the 4
th

 most popular programming 

language (WEB, d). C# is a general purpose, object oriented, C like language. C# 

programs run on .NET Framework. Microsoft introduced the first version of C# in 2000. 

Since then several versions of C# have been released. Currently the actual version is C# 

6.0 released in July 2015. From previous versions we want to highlight C# 3.0, where 

LINQ and lambda expressions were introduced. LINQ – Language Integrated Query 

Language – is a .NET Framework component integrated in C# (or VB.NET) supporting 

native query capabilities. LINQ is inspired by the SQL language used to define database 

queries. However, LINQ queries may be used to query data in different data sources, e.g. 

LINQ to Entities (database), LINQ to XML, LINQ to Objects. LINQ in C# supports 

query syntax and method syntax. Query syntax is used to define SQL like queries. 

Method syntax is used to define queries as a chain of LINQ methods, with internal 

function parameters defined via lambda expressions. Though initially the query syntax 

was faster accepted due to its similarity to the classic SQL, now most of C# developers 

prefer the method syntax over query syntax as this approach is more universal and more 

naturally integrates with other C# features (see, e.g. Albahari and Albahari, 2015).  

Typically, C# developers use some version of Visual Studio for software 

development.  

2.1. MDD Technologies in .Net World 

As C# and .NET is one of the widely used programming techniques there have been 

attempts to bring MDD technologies to .NET technical space. Visual Studio 2015 

enterprise edition supports a special kind of projects – modelling project. In the 

modelling projects it is possible to create various UML diagrams – Class diagrams, 

Sequence diagrams, Use case diagrams, Activity diagrams and Component diagrams. 

However, there is no close integration between models and code. Static structure, for 

instance, class diagrams, of course, corresponds to classes and properties in the code, but 

apart from descriptive mappings there is no behaviour related integration between 

models and code. 

Visual Studio has a support for DSL tool definition – Visual Studio extension 

“Modeling SDK” (WEB, e). It is possible to generate C# code (or any other text, 

including textual code in any programming language) from models created using DSL, 

for code generation the text template language T4 (WEB, f) is used. This language 

consists of text blocks – fragments of a text to be generated with placeholder variables 

inserted, and control blocks – sections of a code in C# which navigate the source model, 

control the order of generation and generate values of placeholder variables. In general, 

the Modeling SDK supports the creation of a Domain model (simplified class diagram) 

of the DSL to be created, defining a diagrammatic visualization of such models 

(graphical programs in this DSL) and executable code generation from these models 

using T4 (Cook et al., 2007). 

Of course, apart from Microsoft proposed MDD related technologies there are also 

third party solutions for MDD adaption in .NET world, but these approaches cover only 

some aspects of MDD.  

One of the approaches positioned as MDD technology for .NET is Xomega project 

(WEB, g). It is possible to use a database or an object model to generate an application 
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implementing CRUD operations for model elements. Various .NET related target 

environments are supported, e.g. WPF, ASP.NET. 

Another MDD framework is open source framework NReco (WEB, h). It is usable 

only for ASP.NET application development. Actually this is only XML based DSL for 

ASP.NET application development. There only model to text transformation (actually 

XML to text transformation) is used for code generation. 

Another MDD related approach is Novulo (WEB, i). In this approach multiple 

models (user interface, process models and Data models) are used. Models are used to 

generate code.  

One of the MDD aspects is model-to-model transformations. There are few model 

transformation languages using .NET technical space. The most popular and mature one 

is GrGen.NET (Jakumeit et al., 2010). GrGen.NET is a graph rewrite system therefore it 

supports transformation of graph models. It consists of Graph model language, Pattern 

language, Rewrite Language and Rule Application Language. Actually, it is a full 

transformation language working in .NET technical space.  

Another, a later model transformation language using .NET technical space is NMF 

or .NET Modelling Framework (WEB, j). The best document describing this approach is 

Master thesis by Georg Hinkel (2013). The supported transformation language, NTL, has 

a structure similar to QVT-R (OMG, 2011a) and consists of rules, patterns and 

declarative rule dependency descriptions, however, fragments in plain C# can be easily 

incorporated. NMF now has its own model repository, which to a certain degree supports 

model interchange with Eclipse EMF (Steinberg et al, 2008), see more in Section 4.3.  

2.2. LINQ 

As it was already stated in Section 1, model transformation tasks also are domain 

specific. We think that for many domains true model transformation languages for 

application development in C# are actually not necessary. We think that LINQ features 

are sufficient to define model transformations for these domains. 

LINQ mainly is a query language. Originally it was designed for convenient data 

selection from relational databases. But data selection is an important part of 

transformation tasks as well. LINQ typically works on object model representing a 

database or some other data source. Actually, the object model used in LINQ is very 

similar to MOF metamodels.  

Besides data selection, transformation tasks include also data modification (including 

create and delete). LINQ has some means for data modification (create and delete) as 

well. 

Thus LINQ provides all necessary means for model transformation definition. In 

addition, all these features can be defined in a true functional style. The question is 

whether these means are easy to use and adequate for transformation definition.  

The only serious gap between LINQ and model transformation languages is technical 

spaces. LINQ supports various technical spaces including databases, object collections, 

XML files, etc, but currently does not support model repositories (including the most 

popular one – Eclipse EMF (Steinberg et al, 2008)) most often used in the model 

transformation development. In the next section we propose a LINQ adapter for model 

repositories thus enabling model transformation development in LINQ. 



942  Kalnins et al. 

 

2.3. LINQ as Model Transformation Language 

The most popular model repository to store source and target models for model 

transformations is Eclipse EMF (Steinberg et al, 2008). Since LINQ is usable for various 

data sources we propose to add one more data source – model repositories (see Fig. 1). 

 

Fig. 1. Model repositories for LINQ 

Instead of basing LINQ adapter directly on Eclipse EMF API (Steinberg et al, 2008) 

we decided to use RA API (Kozlovics and Barzdins, 2012). RA API is an interface 

supporting various model repositories including Eclipse EMF (Steinberg et al, 2008), 

besides, it already has a C# wrapper.  

The most important part of the developed LINQ adapter for model repositories is the 

class TDAQueryable implementing IQueryable<T> interface. The class implements 

methods required to query data in model repositories.  

LINQ to entities generate C# classes for database entities. Similarly, in our approach for 

all metamodel classes in a model repository C# classes are generated. Besides the classes 

generated from the metamodel, one context class managing repository objects is also 

generated. The Context class, like in LINQ to Entities (WEB, k), provides instance sets 

for each metamodel superclass. The context class also ensures change propagation and 

manages communication between the model repository (managed through RA API) and 

LINQ methods. 

3. Case Studies 

In this section we discuss two transformation case studies with LINQ used as a model 

transformation language. We start with the simpler case – visualization of a process 

execution progress. We assume that we have the process definition as a diagram and we 

want to change the line colour of the executed process instances. 

A more complicated transformation case study Petri Nets to Statecharts (van Gorp 

and Rose, 2013) is discussed in Section 3.2. This case study is interesting because of the 

need for a complicated data selection and management operations. It permits to evaluate 
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the expressiveness of a model transformation language. In addition, this case study was 

discussed in TTC 2013 (van Gorp et al., 2013), therefore there are publicly available 

solutions of this case study in other transformation languages. 

3.1. Model Transformation Example: Process Visualization 

In this section we describe a model transformation use case within the business process 

management domain. It emerged from the ESF project Process management program 

systems’ construction technology and its support tools
1
 carried out by the Institute of 

Mathematics and Computer Science (IMCS), University of Latvia.  The main task is to 

visualize the given process execution.  

Usually the processes are described by some sort of business process modelling 

language, e.g. a graphical one like BPMN, but it could be also another visual language. 

Every step of the process is represented by some element of the modelling language, e.g. 

a BPMN activity is depicted as a rounded rectangle, but BPMN gateway is a diamond. 

An execution of a particular process goes through the elements of the process according 

to the semantics of the modelling language. Monitoring of the execution can be done 

through visualisation. The simplest way is to mark those process elements which have 

been executed. It can be achieved by changing the colour of the process elements, e.g. 

they can be outlined red. Marking of executed elements, may be used also for other 

visual representation, e.g. change of font colour if process elements are depicted 

textually. 

Let us define abstract syntax of a very simple process modelling language (see Fig. 

2). 

 
Fig. 2. Process definition language metamodel 

 

Processes are defined by the Process class. A process has a name and it consists of 

elements. The abstract Elements class has two subclasses, thus there are two types of 

process elements, actions and flows, defined by the Action and Flow classes. Actions 

describe steps of the process. They may be user actions (UserAction) when the performer 

of the action is a human, system actions (System Action) when the performer is a 

                                                 
1
 Agreement no. 2010/0325/2DP/2.1.1.1.0/10/APIA/VIAA/109 (2010-2013). 
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computer, call actions (Call) which trigger an execution of another  process (referenced 

by the calledProcess association) and decision actions (Decision) which select next 

actions depending on some constraints. It is possible to obtain following actions using 

flows. Every flow has a start action (referenced by start association) and end action 

(referenced by end association). Every action may serve as a start or end for any number 

of flows. The execution of the process starts from any action which has no incoming 

flows. When the execution of an action is finished any actions reachable by outgoing 

flows may be started. The execution of the process ends when there are no more started 

actions.  The execution traces are stored according to the metamodel depicted in Fig. 3.  

 

 
Fig. 3. Process execution metamodel 

 

When a process has started, the ProcessInstance object (we will call it simply a 

process instance) is created. The type link is created to the appropriate process definition 

(Process object). When an action has started, the ElementInstance object is created for 

the action (referenced by type link) and for the flow (also referenced by the type link) 

which is used to start the action. ElementInstance objects are put into the process 

instance (referenced by the owner link). An ElementInstance object is connected to the 

ElementInstance object which has triggered the start of the object by the previous link. 

Thus the next executed instances are denoted by next links (there may be more than one 

next instance).  The finished instances have the value of the attribute finished equal to 

TRUE. 

So far we have defined the abstract syntax of process definition language. We 

assume that there may be more than one visual representation (concrete syntax) for a 

process. Therefore we define abstract classes that represent a generic visualization (see 

Fig. 4). 

 
Fig. 4. Generic visualization metamodel 

 

Every process may be visualized by any number of process visualizations. Every 

process element may be visualized by any number of ElementVisualization objects. It 

should be noted that in a single process visualization there may be shown more than one 

process and also multiple process elements may be depicted as a single visualization 
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element. Let us define particular means for process visualization – simple graphical 

diagrams (see Fig. 5). 

The GraphDiagram class represents graphical diagrams which are used to represent 

processes. We may think that every process definition is represented as a single 

GraphDiagram object. A graph diagram contains nodes (class Node) and edges (class 

Edge). An edge connects exactly two nodes. A node is shown in a diagram as a box. The 

box has a shape (e.g. rectangle, circle), line colour, background colour and text within 

the box. An edge has a shape (e.g. arrow), colour and text. Actions are shown as nodes, 

flows as edges. Thus every instance of the Action class has a visualization link to a Node 

class instance, but every instance of the Flow class has a visualization link to an Edge 

class instance. Depending on the type of the action the appropriate box has a particular 

shape, line and background colours. However this is not important for the transformation 

task described below, so we omit these details. 

  

 
Fig. 5. Graph diagram metamodel 

 

Let us get back to the task. Assume that there are defined several processes and 

several visualizations for every process. Process instances are executing within the 

system. We need to mark the visual elements of a particular process instance if they have 

already finished their execution. Given a single ProcessInstance object (process 

instance), we Find all ProcessVisualization elements that visualize process elements 

(ElementInstance objects) within the given process instance (having an owner link to the 

given instance), which have been already executed (finished equals TRUE). We mark 

ProcessVisualization elements of executed process instances according to their types. 

 Node – make line color red (set the attribute lineColor value to “red”). 

 Edge – make line color red (set the attribute lineColor value to “red”). 

 

In the Listing 1 C# method implementing the transformation is given. The method 

has one parameter - Id of the ProcessInstance whose execution progress should be 

displayed. All LINQ queries are executed in some LINQ context. In this case study the 

context class is named ProcVisContext. (User provides the desired name of context class 

when generating C# classes for model repository.) The first task is to find the required 

process instance using its Id (Line 5-6). Afterwards the executed (those where  

pe.finished is true) process element instances are found. 
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For the selected transformation task various modifications are possible. To better 

demonstrate LINQ query possibilities we have selected a modification where the 

elements of executed sub processes are coloured as well. Subprocesses are called using 

call elements, therefore process element instances whose type is Call are selected. For 

each call element instance a set of next elements is found. Among next elements there 

may be elements executed in other process instances which follow elements in the 

current process. Afterwards we find Id of the process instance containing the selected 

element. We are interested to find other process instances, therefore only Ids of other 

process instances are left. For each called process instance this method is recursively 

called. 

Afterwards the executed elements in the processed process instance are coloured. At 

first a type of the executed process element is found. Afterwards visualisation of the 

element type is found. For the visualization its type is clarified. If the type is Node or 

Edge, the line colour of the element is modified. Although it is not considered in the 

discussed case study, other means of visualization could be used. For the type 

clarification the type cast operation is used. If the type cast is successful, an element 

instance of the type is created. Otherwise, value of a variable is null. Null conditional 

operator is used to evaluate whether the type cast was successful. 

Transformation completes with SaveChanges operation persisting changes to the 

model repository. 

 
static void ProcessVisualization(Int32 processInstanceId) 

{ 

using (ProcVisContext dc = new ProcVisContext()) 

{ 

  ProcessInstance pi = dc.ProcessInstances.First(pii => pii.Id == 

processInstanceId); 

  List<ElementInstance> eleminst = pi.instances.Where(pe => 

pe.finished).ToList(); 

  var idList = eleminst.Where(piac => piac.type is Call).SelectMany(iac 

=> iac.next).Select(oo => oo.owner.Id).Where(ids => ids != 

processInstanceId).Distinct().ToList(); 

  foreach (var pids in idList) 

  { ProcessVisualization(processInstanceId);} 

  var visualizations = eleminst.Select(eii => eii.type).SelectMany(v => 

v.visualization).ToList(); 

  foreach (var v in visualizations) 

  { 

    DiagramElement n = v as Node; 

    n = n ?? v as Edge; 

    if (n != null) 

    { 

      n.lineColor = "red"; 

    } 

  } 

  dc.SaveChanges(); 

} 

} 

Listing 1. Process visualization transformation in LINQ 

While working on the case study it appeared that expressiveness of the LINQ allows 

to define the same transformation in various ways. For example, it is possible to write a 

long LINQ constraint and select chains, or to split them in smaller chains. Instead of 

Select and SelectMany it is possible to use a foreach loop processing each collection 
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element separately. The authors think that the approach with foreach loops is more 

understandable for inexperienced LINQ users. However, the approach with condition 

and select chains allows to express the transformation algorithm in a shorter and more 

declarative way. We believe that the selection of style is a matter of taste and both 

approaches are usable. 

We think that the possibility to define the discussed transformation in various 

programming styles demonstrates expressiveness of the LINQ language. This case study 

confirmed that LINQ could have been used as a transformation language for similar 

transformation tasks. 

 

3.2. Petri Nets to Statecharts Transformation 

In this section we describe the LINQ implementation of the Transformation Tool Contest 

(TTC) 2013 case – a transformation of Petri nets to Statecharts (van Gorp and Rose, 

2013). Both Petri nets and statecharts are well known extensions of finite automata. 

They are modelling notations used for describing various kinds of processes.  

Petri nets in fact are a simplified subset of UML activity diagrams (OMG, 2011b). In 

activity terminology they contain only simple action nodes, start, fork and join nodes as 

control nodes and control flows. No behaviour branching mechanism is included. In 

Petri Net terminology the actions are named places, control nodes are named transitions 

and control flows are simply edges (see an example in Fig. 6, the upper part). The 

execution semantics of both notations is defined by a token mechanism, certainly, Petri 

nets is a simple subcase in this aspect. The basic concept there is the possibility for a 

place to contain one or more (control) tokens, a place with a token is said to be active. 

Initially the start place contains just one token. A transition is enabled when all its source 

(input) places contain at least one token. An enabled transition can fire, then a token is 

removed from each source place and a token is added to each target (output) place. A 

typical situation in modelling a system is that no place contains more than one token, 

thus an “execution” of a Petri net means a permitted sequence of sets of active places.  

The statecharts discussed in this case are a simple subset of UML state diagrams. 

They contain simple (basic) states and compound states (AND and OR states) which 

contain other states (child states), there is also an initial state. An AND state node 

contains several regions, which are child OR states. All these regions are active in 

parallel. On the contrary, an OR state contains a set of nodes linked by transitions, only 

one of these nodes may be active. The state transitions are represented by hyperedges 

(possibly having several source or target state nodes), these hyperedges are graphically 

shown as simple edges (when there is one source and one target node) or as fork/join 

nodes plus edges from source nodes and to target nodes (see an example in Fig. 6, lower 

part). Transitions have no events or guard conditions. We will use only transitions where 

all source and target nodes are simple states. The behaviour of a statechart is defined as a 

consistent sequence of sets of active nodes – configurations. Informally, a configuration 

is consistent, if together with a state all its nesting states are active as well. In addition, 

only one OR state child may be active, but all children of an AND state must be active. 

Thus the behaviour semantics is a permitted transition from a configuration (active state 

set) to configuration. A transition can occur according to a hyperedge if all its source 

states are active (in our case it is sufficient that basic source states are active). In the 

result all basic source states become inactive and all basic target states become active 
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(and relevant compound states according to configuration definition), we assume that 

basic source and target states do not overlap.  

Thus the behaviour both for Petri nets and statecharts is a set of permitted sequences 

of sets of active elements (sets of active places in one case and sets of active states in the 

other). The execution is completely non-deterministic in both cases – the simple 

syntaxes do not include any data-based conditions to make it deterministic. The basic 

principles of determining a possible execution path are also similar – source elements of 

a transition must be active. The main difference is that a set of places in a Petri net is 

flat, but states in a statechart have a hierarchic structure. The possible concurrent activity 

of places thus is implicit (defined by transition configuration), concurrent activity of 

states is determined also by the state hierarchy. This is the main obstacle in building a 

simple mapping from Petri nets to statecharts. 

The given task is to define a structure-preserving transformation from a Petri net to 

an equivalent statechart. Structure preserving here means that we map each place to a 

basic state node and each transition to a hyperdege. The relevant hierarchy of AND/OR 

states has to be added to make it all consistent. The equivalence means that the possible 

execution sequences are equal with respect to this mapping. Eshuis (2005) proved that 

such a transformation algorithm exists, which creates a correct result in most cases, but 

can also fail in some cases when a solution does exist. It should be noted that such a 

solution does not always exist, e.g. the Petri net must be safe – no place is allowed to 

hold more than one token during any execution sequence. The algorithm is quite 

complicated – an initial “draft” statechart is built, which then is gradually optimized by 

improving its state hierarchy structure, the reached progress is marked by removing 

relevant elements from the net. The success is signalled by the fact that no excess 

elements of certain kind have been retained in the source net. 

 

Fig. 6. Petri net and equivalent statechart, hyperedges are shown as forks/joins –  

taken from (van Gorp and Rose, 2013) 

 This algorithm has been chosen for TTC 2013 – and also for implementation in 

LINQ, because it puts interesting requirements on the chosen transformation language, 
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both for implementing a recursive optimization of the target model and having a 

necessity to select elements from the source model using a quite complicated pattern. In 

addition it should be noted that the task has a practical value as well. As already pointed 

out, in fact it is a transformation from a subset of UML activity notation to a subset of 

state diagram notation. Such task is required in some software development 

methodologies, where requirements to a system are specified by activity diagrams 

(corresponding to use cases), but implementation is related to state diagrams. In 

particular, many implementation DSLs, especially for embedded systems, are based on 

statecharts. It is true that the given algorithm solves only “the bare skeleton” 

transformation, but it could be extended by including appropriate data-related elements 

both for Petri nets (in fact, activity diagrams) and statecharts. 

Now the formal description of the algorithm and the solution in LINQ is given. First, 

an example of such transformation in a diagram form is given in Fig. 6.  

The mapping of net elements to basic states and hyperedges (visualized as forks or 

joins) is shown by reusing place and transition element names for statechart element 

names. It can be seen that two nested AND states four OR states must be used in the 

solution. 

 

Fig. 7. Source (top) and target (bottom) metamodels of the transformation 

 

The source and target metamodels are shown in Fig. 7. The metamodels in our approach 
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are merged into one common metamodel. In addition, three traceability associations 

linking elements of both models are added: 

 (Place): (0..1)ba2p <-> (o..1)p2bas :(Basic) - Place to Basic 

 (Place): (0..1)or2p <-> (o..1)p2or :(OR) - Place to OR 

 (Transition): (0..1)he2tr <-> (o..1)tr2he :(HyperEdge) - Transition to 

Hyperedge 

Note that in the proposed target metamodel HyperEdge is made a subclass of State 

(to optimize the used associations). 

The algorithm contains the following steps (according to (van Gorp and Rose, 2013)) 

 Create the initial version of the statechart, to be optimized after: 

o For every Place p in source model create an instance b of Basic with  

b.name = p:name and an instance o of OR with o.contains = {b} 

o For every Transition t create an instance of HyperEdge e (with e.name = 

t.name) 

o All pret/postp and postt/prep arcs should be mapped to next/rnext links 

between the States equivalent with the input NamedElements that are 

connected by these arcs 

o Add links between the source and target model instances according to the 

introduced traceability associations 

 Apply the AND/OR state reduction rules as long as possible: 

o Try to apply the pre-AND rule – to construct an AND state for a set of 

Places that are connected to the same incoming and outgoing Transitions. 

The pre-AND rule can be applied to a Transition t, iff |t.prep| > 1 and every 

Place in t.prep is connected to the same set of outgoing transitions and the 

same set of incoming transitions. In our implementation the rule is split into 

two rules – tryPreAnd which tries to find a Transition t satisfying the 

precondition and in case of success invokes the second rule applyPreAnd, 

which performs the AND reduction for this t. More precisely, a new AND 

state a is created which contains the OR states t.prep.p2or; and a new OR 

state p containing a is created. In addition, in the source model all but one of 

the Places in the set t.prep are removed, the remaining Place is linked to p . 

o Try to apply the similar post-AND rule – to construct a similar AND state, 

but with a different precondition - |t.postp| > 1 and every Place in t.postp is 

connected to the same set of outgoing transitions and the same set of 

incoming transitions. Similarly, the implementation uses two subrules – 

tryPostAnd and applyPostAnd (similar to the pre-case, with only the prep 

link replaced by postp). 

o Try to apply the OR rule – to construct an OR state for a Transition t that 

has a single preceding Place and single succeeding Place. The rule 

precondition requires also that there is no Transition t1, such that (q ∈  

t1.prep) ^ (r ∈ t1.prep) or (q ∈ t1.postp) ^ (r ∈ t1.post p) where q is the 

single place contained in t.prep and r is the single place contained in t.postp. 

However, it is also permitted to be q = r. If such t is found, then applying 

the OR rule to it means the creation of a new OR state p such that p.contains 

is the set of OR states q.p2or.contains ∪ r.p2or.contains. In addition, in the 

source net model the Transition t and Places q and r are removed and a new 

Place p is added such that p.pret = (q.pret ∪ r.pret) and p.postt = (q.postt ∪ 

r.postt). The Place q can also be used in the role of the new p. 
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The reduction rules are applied (in any order) as long as possible. For the subclass of 

Petri nets where this algorithm really produces a result, there should be exactly one 

Place left in the source net. Then the resulting statechart is the transformation result, 

otherwise, only some partial result is obtained.  
 

 

public class PN2STtransf 

{ 

  static Model1Container context = new Model1Container(); 

  bool rulePerformed; 

 

  public void transform() 

  { 

    initialize(); 

    do 

   { 

      rulePerformed = false; 

      rulePerformed = tryPreAnd(); 

      if (rulePerformed) continue; 

      rulePerformed = tryPostAnd(); 

      if (rulePerformed) continue; 

      rulePerformed = tryOr(); 

    } 

    while (rulePerformed); 

  } 

 

  public void initialize() 

  { 

    var topStat = new AND {name = "TOP"}; 

    context.Statecharts.Add(new Statechart() {topState = topStat}); 

    foreach (var plac in context.NamedElements.OfType<Places>()) 

    { 

      var basicStat = new Basic {name = plac.name}; 

      context.States.Add(basicStat); 

      plac.p2bas = basicStat; 

      var orStat = new OR() {name = "o_" + plac.name}; 

      orStat.contains.Add(basicStat); 

      context.States.Add(orStat); 

      topStat.contains.Add(orStat); 

      plac.p2or = orStat; 

    } 

    foreach (var trans in context.NamedElements.OfType<Transition>()) 

    { 

      var hyperE = new HyperEdge() { name = trans.name }; 

      foreach (var pl in trans.prep) {hyperE.rnext.Add(pl.p2bas);} 

      foreach (var pl in trans.postp) {hyperE.next.Add(pl.p2bas);} 

      context.States.Add(hyperE); 

      trans.tr2he = hyperE; 

    } 

    context.States.Add(topStat); 

    context.SaveChanges(); 

  } 

  public bool tryPreAnd() 

  { 

    var transList = context.NamedElements.OfType<Transition>().Where(t => 

t.prep.Count() > 1).ToList().Where(t=>t.prep.All(p => p.pret.OrderBy(t1 

=> t1.name).SequenceEqual(t.prep.FirstOrDefault().pret.OrderBy(t2 => 

t2.name))) && t.prep.All(p => p.postt.OrderBy(t3 => t3.name) 

.SequenceEqual(t.prep.FirstOrDefault().postt.OrderBy(t4 => t4.name)))) 

.ToList(); 
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    //pattern-based selection - only these transitions t where pre-places 

p of t are more than 1 and for all such p the set (list) of pre-

transitions is the same as this set for the first //such pre-place, and 

also for all such p the same is true for the set of post-transitions   

    if (transList.Count() >= 1) 

    { 

      var trans = transList.FirstOrDefault(); 

      applyPreAnd(trans); 

      return true; 

    } 

    else return false; 

  } 

 

  public bool tryPostAnd() //symmetric to tryPreAnd with post instead pre 

  { 

    var transList = context.NamedElements.OfType<Transition>().Where(t => 

t.postp.Count() > 1).ToList().Where(t => t.postp.All(p => p.pret 

.OrderBy(t1 => t1.name).SequenceEqual(t.postp.FirstOrDefault().pret 

.OrderBy(t2 => t2.name))) && t.postp.All(p => p.postt.OrderBy(t3 => 

t3.name).SequenceEqual(t.postp.FirstOrDefault().postt.OrderBy(t4 => 

t4.name)))).ToList(); 

    if (transList.Count() >= 1) 

    { 

      var trans = transList.FirstOrDefault(); 

      applyPostAnd(trans); 

      return true; 

    } 

    else return false; 

  } 

 

  public void applyPreAnd(Transition trans) 

  { 

    var newAnd = new AND(){ name = "and" }; 

    var newOr = new OR(){ name = "or" }; 

    newOr.contains.Add(newAnd); 

    foreach (var orStat in trans.prep.Select(pl => pl.p2or)) 

      { newAnd.contains.Add(orStat); } 

    int n = 0; 

    foreach (var plac in trans.prep.ToList()) 

    { 

      n++; 

      if (n == 1) {plac.p2or = newOr;} 

      else 

      { 

        context.NamedElements.Remove(plac); 

      } 

    } 

    context.States.Add(newAnd); 

    context.States.Add(newOr); 

    context.SaveChanges(); 

  } 

 

  public void applyPostAnd(Transition trans) 

  { //not shown - symmetric to applyPreAnd 

  } 

 

  bool sharesTrans(Places prepl, Places postpl) 

  { 

    if (prepl.pret.Any(t1 => t1.postp.Contains(postpl))) return true; 

    if (prepl.postt.Any(t2 => t2.prep.Contains(postpl))) return true; 

    return false; 

  } 
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// the semi-procedural version for tryOr and applyOr combined  

  public bool tryOr() 

  { 

    Transition transToUse = null; 

    Places prepl = null, postpl = null; 

    foreach (var trans in 

context.NamedElements.OfType<Transition>().ToList()) 

    { 

      if (trans.prep.Count() != 1 || trans.postp.Count() != 1) continue; 

      prepl = trans.prep.Single(); 

      postpl = trans.postp.Single(); 

      if (prepl == postpl) 

      { 

        transToUse = trans; 

        break; 

      } 

      if (sharesTrans(prepl, postpl)) continue; 

      else 

      { 

        transToUse = trans; 

        break; 

      } 

    } 

// apply OR rule - reset the relevant links to pre-place , remove the 

used transition and post-place  

    if (transToUse == null) return false; 

    OR preor = prepl.p2or; 

    OR postor = postpl.p2or; 

    preor.contains.Add(transToUse.tr2he); 

    if (prepl != postpl)  

    { 

      foreach (State st in postor.contains) {preor.contains.Add(st);} 

      foreach (Transition tr in postpl.pret) {prepl.pret.Add(tr);} 

      foreach (Transition tr in postpl.postt) {prepl.postt.Add(tr);} 

      context.States.Remove(postor); 

      context.NamedElements.Remove(postpl); 

    } 

    context.NamedElements.Remove(transToUse); 

    context.SaveChanges(); 

    return true; 

  } 

} 

Listing 2. Petri nets to statecharts transformation in LINQ 

The provided C# + LINQ code for the Petri nets to Statecharts case is sufficiently 

readable. The code length is also similar to other available solutions in textual 

transformation languages from TTC 2013 (van Gorp et al., 2013), including the solution 

in Epsilon Object  Language (EOL) (van Gorp and Rose., 2013) provided by the case 

submitters. Especially, the possibility to describe in a declarative way complicated 

search patterns in the source model should be emphasized. An example is the pattern for 

finding the list of Transitions to which the pre-AND reduction can be applied (in the 

method tryPreAnd). There all the applicability preconditions are specified as one LINQ 

expression. Certainly, the expression would become more readable if set equality 

function would be available in LINQ – currently only the sequence equality is available. 

However, set equality function is absent in some other transformation languages as well, 

including EOL (Kolovos et al., 2006). In a contrast, the precondition for OR reduction 

could be specified in LINQ in a declarative way as well, however here this style occurs 
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to be less readable than the semi–procedural style used in the code. The features of C# 

permit also to describe the general recursive structure of the statechart reduction 

algorithm in a natural way. See more on LINQ comparison with other languages on the 

basis of this case in Section 4.  
 

4. LINQ versus Model Transformation Languages 

In this section we will discuss expressiveness of LINQ compared to other transformation 

languages. Though transformation languages is not a very popular domain there are 

dozens of transformation languages. Even in different editions of Transformation Tool 

Contest (TTC) more than 20 languages have appeared, but there are many that have not 

participated in TTC. Therefore we will discuss only some languages most relevant for 

this paper.  

Languages GrGen.NET and NMF are sharing .NET and C# technical space. 

Language built as internal DSLs in other language is lQuerry. Widely used languages are 

Epsilon and ATL. In addition, MOLA language is discussed. It is a language of 

completely different type – a graphical language. 

4.1. lQuery 

The lQuery language (library) (Liepiņš, 2012, 2015) is a set of functions for querying 

and modifying models stored in a model repository. To achieve the expressivity of the 

existing model transformation languages in a general-purpose scripting language authors 

of lQuery use the ideas from the functional programming, specifically from combinator 

parsing (Hutton, 1992). Functions are built in progressive layers, where every next layer 

is based on the previous one. The first layer is built directly on the repository API. 

Selector functions and function combinators are defined so that reference objects and 

object collections can be referenced easily by passing them as arguments to those 

functions. For common cases, where string expressions would suffice, an XPath (WEB, 

l)-like selector is defined. It is a shorthand notation that can be easily mixed with selector 

functions and combinators. 

lQuery is implemented in the Lua (Ierusalimschy et al., 2007) scripting language and 

is used for the development of domain specific graphical modelling tools in GRAF 

platform (Sproģis et al., 2010). lQuery is a domain specific transformation language 

designed for the task of development of in-place transformations (in contrast to many 

transformation languages which are mainly tailored for batch model conversions from 

one metamodel to another). It provides options for integration with other parts of the 

system (databases, compilers, simulators, etc) in which the DSL tool is only a 

component. The majority of lQuery transformations are context based. Namely, the 

transformation starts with a single instance element, afterwards it must find the context 

of the instance, and, finally, it must make some adjustments in the instance graph (create 

or delete an instance; add or remove a property link; modify an instance attribute). Thus, 

the necessary steps are navigation, filtration and modification of the instance graph.  

For typical tasks appearing in building of diagram editor, the model instance 

navigation could be specified in LINQ nearly as easy as it is in lQuery. However, lQuery 

permits to build more easily a combination of several model modification tasks. 



 LINQ as Model Transformation Language for MDD 955 

 

Obviously, LINQ could be used also for similar purposes in tool building as lQuery, if 

tool definition platforms had to be implemented in .NET.  

4.2. Epsilon Languages: EOL, ETL 

As already mentioned in Section 1.3, the Epsilon transformation language family 

consists of 9 sublanguages some of which are very domain specific. The most interesting 

for our comparison is the low-level Epsilon Object Language (EOL) (Kolovos et al., 

2006) whose functionality is closest to that of LINQ. In addition, as stated in 3.2, the 

Petri nets to Statecharts case was solved in EOL by the case submitters (van Gorp and 

Rose, 2013). EOL is a procedural language containing assignment, if, for and while 

statements (and some auxiliary ones). However, its main value is the rich set of types 

and operations. Types include primitive types and collections similar to those in OCL 

(bag, sequence, set, ordered set, map). In addition, classes of source and target 

metamodels are also used as types. If EOL is implemented over Java (the standard 

situation) Java classes can also be interpreted as types. A rich set of operations is already 

defined for collections – comparable to such a set in OCL, but still less, e.g., there is no 

set equality operation, but there is a subset checking (includesAll), union (addAll), sub-

collection select and quantifiers (exists and forAll). For each of the types new operations 

can be defined. Especially this feature is used to define operations for model element 

types (metamodel classes) – typically the main transformation functionality is based on 

such operations. Expressions are built from operations using the standard dot notation, 

the same notation is used to navigate a model (as in OCL, but dot notation can be used 

instead of ‘->’). There is no explicit lambda notation for function definition, but OCL-

like constructs such as places.forAll(p | p.hasSameTransitionsAs(places.first) ) in fact 

play the same role. Thus the functional style in fact is sufficiently supported in EOL. 

When compared to the LINQ approach presented here, the expressiveness of both 

languages is quite close, the main difference is in the sets of built-in operations. This fact 

shows up also when solutions of the Petri nets to Statecharts case are compared – the 

code length is similar, though not always the most concise expressions are used in the 

EOL solution. The other Epsilon sublanguages, e.g. Epsilon Transformation language 

(based on a QVT-R like rule design pattern), are not very relevant for such cases. The 

exception is the very domain specific Epsilon Flock language (Rose et al., 2010) for 

model migration to a new metamodel. The specific constructs such as retype, migrate, 

original, migrated etc. enable to describe simple model mapping tasks to a new 

metamodel in a very concise way. In the case solution by submitters Epsilon Flock was 

used for the statechart initialization step – in this step a simple mapping from Petri nets 

model to statechachart model in fact is done, with Net retyped to Statechart, Place 

retyped to Basic and Transition to HyperEdge. The migrate construct then permits to 

define the relevant attribute and link transformations in a very declarative way. Thus the 

most concise version of this step has been obtained – only 17 lines of code. 

4.3. NMF  

The .NET Modeling Framework (NMF) is the latest of approaches for support of MDE 

on the .NET platform. It contains its own model repository based on the metametamodel 

NMeta. This metametamodel is quite similar to the EMOF standard. The model 

serialization in XMI format is compatible to the serialization of Ecore models in Eclipse 

(if some advanced Ecore features are not used), therefore direct model interchange 
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between these two environments is possible in most cases. NMF now is being developed 

as an open source project (WEB, j.), started by G. Hinkel on the basis of his Master 

thesis (2013). NMF is based strictly on .NET standards, but especially adapted to C# 

language. 

The most interesting component is the NMF Transformations Language (NTL). The 

language constructs are deeply rooted in various C# features. However, the general 

structure of NTL tries to be similar to the standard OMG language QVT-R, it consists of 

rules and patterns. The basic control structure is rule dependency, according to which 

one rule invokes other dependent rules. However, the desire to comply completely to C# 

features and usage patterns makes transformations not so easy readable. The TTC 2013 

PN2SC case has been solved also in NTL (Hinkel et al., 2013). The transformation 

initialization part (using strict NTL rule style) requires 58 lines in NTL, as opposed to 25 

lines in LINQ here. The code readability also seems to be worse. In the provided NTL 

solution the statechart reduction rules are coded in plain C#, without explicit use of 

patterns, but relying strongly on advanced C# facilities for collections. Only the 

reduction frame is specified as a true NTL transformation rule. Since all C# features 

relevant for model transformations can be freely used in the LINQ approach proposed in 

this paper, no clear advantages of NTL can be seen.  

4.4. GrGen 

This transformation language is interesting for comparison since it also operates in the 

technical space of C# and .NET. The support for the most popular model repository 

EMF (Steinberg et al., 2008) is only partial. GrGen (Jakumeit et al., 2010) uses its own 

repository, therefore models have to be migrated from EMF to GrGen repository. For 

data import a partially standardised solution is available, but data export has to be 

created for each case from scratch. 

Unfortunately, the authors of this paper have no access to a solution in GrGen for any 

of the analysed cases. GrGen is a very typical transformation language from a structure 

point of view, though its terminology is based more on graphs than models. A 

transformation is defined by specifying a pattern to be matched in the source model 

(graph). The pattern part is followed by rewrite part, in the form of a replace or modify 

block. The replace block is used to replace the matched subgraph with the pattern 

defined in the block. The modify block specifies which modifications have to be 

performed in the matched subgraph. One more important block is eval which is used to 

modify the attribute values.  

GrGen is a completely different kind of language than LINQ, since the matching 

(query) part is strictly separated from the modification part. In LINQ there is no such 

strict separation. The rule execution control structure in GrGen again is a completely 

separate part. The expressiveness of the languages is similar, though typical the code 

size in GrGen could be larger due to the separate rule control part. However, for specific 

tasks having a built-in support constructs GrGen could be superior, e.g., when a retype 

operation having a specific notation in GrGen is to be applied, or when all matched 

elements in a pattern must be deleted. 
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4.5. ATL  

ATL (Jouault and Kurtev, 2005) is the most popular model transformation language so 

far, also the one most used in real industry projects. It is a textual language based on the 

standard rule – pattern schema. Each rule contains a source pattern (using the keyword 

from) and a target pattern (keyword to), both patterns are based on a metamodel class. 

The source pattern contains matching constraints possibly involving other classes as 

well, but the target pattern contains expressions for setting the attribute and link values 

for the instance to be created. Both the constraints and value expressions are based on 

OCL (in the target pattern these in fact are OCL based assignments). The preferred style 

in ATL is to apply the rules in a declarative way to the source model, without any 

control structure, while a source pattern match can be found. However, the imperative 

style is also supported – each rule can have a do-section, where other rules can be 

explicitly invoked, for and if statements can be used in this section. The main component 

contributing to the expressivity in ATL is the large set of collection types and operations 

on them taken from OCL (the original OCL syntax – ‘->’ for applying an operation to a 

collection is retained). However, direct collection comparison is not included. Iterators 

for collections are supported as well, thus in fact lambda expressions in OCL syntax are 

supported, and so is the functional style in general. Helper functions over the source 

model can also be defined, e.g. to support a reuse of subexpressions. A special syntax is 

provided to reference the targets of source model elements in the target model, but 

explicit traceability links between the source and target metamodels cannot be used. 

Thus ATL seems to be more expressive than LINQ in general.  

However, there is an issue with ATL when transformation tasks similar to our cases 

are considered. The standard syntax and semantics of ATL is oriented to a situation 

when source and target models are completely different, but both considered cases are 

typical in-place transformations – the source model is being gradually modified. Only 

relatively recently (Tisi et al., 2011) the in-place transformation option, with source and 

target metamodel also being the same, has been added to ATL. There is no ATL solution 

for the Petri net to statechart case, therefore it is not so easy to evaluate how readable 

would be the statechart reduction part of the case in ATL, but at least it could be 

specified in the style close to the LINQ solution. 

4.6. MOLA 

We conclude this language comparison with a transformation language of a different 

kind – the graphical language MOLA (Kalnins et al., 2005). Both cases considered in 

Section 3 have been implemented in MOLA as well (but unfortunately, not published). 

Transformations in MOLA consist of procedures, which in turn consist mainly of rules 

and loops, but can contain also text statements (assignments/decisions) and procedure 

calls. Each procedure is a diagram similar to UML activity diagram. Rules and loops are 

“large” nodes of the diagram containing fragments of the metamodel – classes and 

associations renamed to class elements and links. These fragments define the source 

patterns, where class elements can contain also textual constraints on attributes (in a 

subset on OCL). Patterns are matched to the source model – a model fragment 

containing class instances for all class elements of the pattern, linked accordingly and 

satisfying all constraints must be found. Pattern in a rule is matched once – if a match is 

found, the normal exit is used, otherwise the else exit is used. A loop node is a container 

containing one or more rules linked by flows, the first rule is a special one – the loop 
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head. The loop head contains one specially marked class element – the loop variable. A 

loop execution means that all possible instances of the loop variable are checked whether 

there exists a relevant match for other pattern elements as well, and, if so, the loop body 

(other rules of the loop) is executed for this instance. A pattern can contain also a 

reference to a class element of other rule already matched, then namely the matched 

instance is used, thus a dependency between the rules can be specified. Rules can contain 

also specially marked creation elements – then an instance is created and attributes are 

set as specified in the assignments. Assignments can be used also in other class elements 

– to modify an attribute of the matched instance. Similarly links can be created. Another 

marking is used to specify elements and links to be deleted. The main strength of such 

graphical pattern notation is in the fact that it very clearly shows what a set of instances 

and links must be found in the model being transformed. At the same time the expression 

language used in constraints is limited to a degree – all typical operations are supported 

for primitive types, but sets can be defined only via model navigation (in OCL style) and 

checked for being non-empty.  In the result, for example, the constraint for application of 

the pre-And rule to a Transition in Petri net case requires nested loops at depth 3 (it was 

a single expression in LINQ). At the same time finding the relevant node instances to be 

modified in the visualization case can be specified using a single pattern in a loop head. 

Thus, there is no clear evidence which of the styles – graphical or textual – is better in 

transformation definition.  

4.7. Summary 

From the direct comparisons in this section and case analysis in the previous section it 

can be concluded that LINQ can be successfully used as a transformation language. As 

already mentioned in Section 1.3, the recent research shows that model transformations 

are domain specific as well. For different kinds of transformation tasks different 

transformation languages must be used. Taking this into account we can say that LINQ 

is not and never will be the best transformation language for all tasks. However the case 

studies in Section 3 show convincingly that LINQ can be successfully used in typical 

transformation tasks. The code length in LINQ solutions is comparable to code length in 

other languages, and the code readability is sufficiently high. In addition, the 

expressiveness is high enough to enable the building of various solutions for the same 

task in completely different styles. It is possible either to apply a completely functional 

style by using chained sequences of operations (which typically yields a shorter code), or 

use explicit nested loops, which result in a longer code, but may help in understanding 

which data element currently is being processed. 

5. Functional Language Constructs in Java 8 for Model 

Transformations 

As already mentioned before, in the TIOBE programming language popularity index 

(WEB, d) C# has the fourth place, but Java has the first place. Java 8 now fully supports 

functional style and lambda expressions. Therefore it is quite natural and interesting to 

compare Java 8 capabilities with LINQ. Especially it is so because, as mentioned in 

Section 1, Java based Eclipse EMF is the most popular platform for implementing model 

transformation languages.  Though Eclipse now fully supports Java 8 as a development 
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environment, it seems that no serious attempts have been made to integrate Java 8 

functional style with EMF as a base for transformation languages.  

On the other hand, since the functional style support in Java 8 is equivalent to that in 

C#, there would be no serious problems to provide an analogue of LINQ in Java 8.  

Java's Streams API in Java 8 is the closest concept to .NET's LINQ, in the sense that 

it allows you to query/filter/manipulate collections in a functional style. In a sense, Java 

8 Streams API can be considered to be “functional transformations of in-memory 

collections”. Streams API is a view on Java collections which offers these new filtering 

and other. operations to be applied to a collection. In order to use these operations, a 

collection typically is interpreted as a stream using the stream() function, thus stream can 

be treated as a new collection type in Java 8. However, this type is virtual in the sense 

that it does not really store its elements, they have to be stored in a collection. The 

Streams interface offers several operations: filter, map, flatMap, sorted, limit, skip, 

distinct, concat etc., which create a new stream (so called intermediate operations). 

These operations can be applied one after another to the source stream (“pipelined”) 

until the desired result is obtained. The filter operation contains as argument a lambda 

expression defining the predicate according to which the elements are retained in the 

result – a direct equivalent of where operator in LINQ. Similarly, the map operation 

contains a lambda expression defining how the current element of the stream must be 

transformed (an equivalent of select in LINQ). The flatMap (also containing a 

transformation definition) is an equivalent of selectMany. Finally, the “terminal 

operation” collect should be applied, which stores the result as the chosen collection 

kind, e.g. List. Alternatively, the quantifier operations anyMatch and allMatch, both 

containing a predicate defined via lambda expression (equivalents of All and Any in 

LINQ), can be applied. Thus the main constructs of LINQ relevant for model 

transformations are present also in the Streams API.   

A comparison of LINQ to Streams API on some most typical elementary use cases is 

given in (Web, m), here are some examples from this comparison: 

 
//------------------------------------------------------------- 

//Any – exists quantifier over a stream: 

//LINQ 

string[] persons =  

            {"Sam", "Danny", "Jeff", "Erik", "Anders", "Derik"}; 

bool x = persons.Any(c => c.Length == 5); 

 

//Java Streams 

String[] persons =  

            {"Sam", "Danny", "Jeff", "Erik", "Anders", "Derik"}; 

boolean x = Arrays.stream(persons).anyMatch(c -> c.length()==5); 

//------------------------------------------------------------- 

//------------------------------------------------------------- 

//Filtering streams: 

//LINQ 

string[] names = { "Sam", "Pamela", "Dave", "Pascal", "Erik" }; 

List<string> filteredNames = names.Where(c => c.Contains("am")).ToList(); 

 

//Java Streams 

String[] names = {"Sam","Pamela", "Dave", "Pascal", "Erik"}; 

List<String> filteredNames = Arrays.stream(names). 

      filter(c -> c.contains("am")).collect(Collectors.toList()); 

//------------------------------------------------------------- 

Listing 3. Java 8 Stream API versus LINQ 
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These examples (and other ones from (WEB, n)) show that the solution quality in 

LINQ and Java 8 is comparable, though in some cases the LINQ solutions are more 

concise. Thus the Java 8 new features could be used for defining model transformations 

in a way similar to how we propose to use LINQ in C#. The only serious obstacle here is 

the fact that in Java world models typically are stored in Ecore format, which cannot so 

easily be accessed via collection interface without appropriate support from Ecore 

implementation. 

However, in practice LINQ is mainly used to access relational databases in a 

functional style (e.g. via LINQ to Entities). There have been also several attempts to 

support this task using functional style in Java 8, e.g. Lambdaj (WEB, o) jLinqer (WEB, 

p). But the latest and most complete solution for this task is the Jinq framework (WEB, 

q). Jinq is based completely on standard Java 8 elements and JPA, but its set of provided 

query operations is close in syntax to the original LINQ. Certainly, it would be natural to 

include LINQ-style database access in the next versions of standard Java Enterprise 

Edition (Java EE) (WEB, r), but most probably it will not be present in Java EE 8 – 

evidently due to some implementation difficulties. However, research in this direction 

will have little impact on the use of Java 8 for model transformations.  

Conclusions and Future Work 

Though model driven software development has recently survived a serious crisis, some 

more specific cases of it have regained their value and are really used in practice. 

Therefore a need for MDD support technologies, including model transformation 

languages, is still present. Many different transformation languages have been 

developed. A recent trend is to find domain specific transformation task subclasses and 

to create domain specific transformation languages for these subclasses. This approach is 

most profoundly supported by the Epsilon project, where the Epsilon language family 

consists of 9 sublanguages. Certainly, in an appropriate domain specific language for a 

subclass the transformation can be defined in a more concise and readable way. 

However, it is not reasonable to create a new language for each task, therefore general 

purpose transformation languages for a wide variety of tasks still have a value. 

On the other hand, software practitioners frequently are reluctant to learn new 

languages. Therefore the main topic of this paper is how familiar programming 

languages could be used also for transformation development.  Mainly the C# language 

has been analysed, which is in the 4-th place according to the Tiobe popularity index. C# 

now includes the LINQ extension for data selection and modification in a functional 

style.  The paper proposes a solution how LINQ could be used as a transformation 

language. A LINQ adapter has been developed which enables full LINQ-based access to 

model repositories, including Eclipse EMF. Transformations in LINQ have been 

developed for very different transformation tasks. The provided solutions and 

comparison to other popular transformation languages permit to conclude that LINQ is 

really usable as a transformation language. The expressiveness of LINQ is high enough 

to support various development styles for a task according to the developer preferences. 

The classical declarative rule-pattern style is supported on the basis of full functional 

programming support in LINQ. At the same time the procedural style by nested loops is 

supported as well, and both styles can be freely mixed, as required by the task.  
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The most popular programming language Java has been briefly analysed as well. 

Java 8 now contains the Streams API whose expressiveness is similar to LINQ. 

However, in order to use Streams API for model transformations it is necessary to enable 

Streams API access to model repositories – not only to standard Java collections as it is 

now. It could be one of future research tasks to develop an API for Java model 

repositories supporting the access via Java 8 Streams.  
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