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Abstract. It is well known that the emptiness problem for binary probabilistic automata and so
for quantum automata is undecidable. We present the current status of the emptiness problems
for unary probabilistic and quantum automata with connections with Skolem’s and positivity
problems. We also introduce the concept of linear recurrence automata in order to show the
connection naturally. Then, we also give possible generalizations of linear recurrence relations
and automata on vectors.
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1 Introduction

Finite automata are theoretical models for real-time computing with a finite mem-
ory. They form a cornerstone of theoretical computer science, introduced in 1940’s
and 1950’s via a series of papers such as (McCulloch and Pitts, 1943), (Kleene, 1956),
(Mealy, 1955), (Moore, 1956), and (Rabin and Scott, 1959). Stochastic versions (prob-
abilistic finite automata (PFAs)) were introduced in (Rabin, 1963), and their proper-
ties were extensively studied in (Paz, 1971). In 1997, their quantum versions (quan-
tum finite automata (QFAs)) were introduced in (Moore and Crutchfield, 2000) and
(Kondacs and Watrous, 1997) (see (Ambainis and Yakaryilmaz, 2015) for a recent com-
prehensive survey).
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*** Partially supported by CAPES with grant 88881.030338/2013-01 and ERC Advanced Grant
MQC.



966 Hirvensalo and Yakaryilmaz

It is known that the emptiness (and related) problems are undecidable for PFAs on
binary alphabets and since they are generalizations of PFAs, they are also undecidable
for QFAs on binary alphabets (Ambainis and Yakaryilmaz, 2015). On unary alphabets,
on the other hand, these problems are still open and they are known to be decidable only
for some small automata.

In this paper, we present the equivalence of the emptiness problems for unary au-
tomata to Skolem’s problems and positivity problems for linear recurrence relations
(LRR). For this purpose, we also introduce automata versions of LRRs and some of
their generalizations defined over vectors.

In the next section, we provide the necessary background. Then, we introduce the
concept of linear recurrence automata and their possible generalizations in Section 3.
The basic relations on LRRs and generalized finite automata are given in Section 4. The
conversions between automata models are listed in Section 5. Finally, we present the
status of emptiness problems for the models in Section 6.

2 Backgrounds

In this section, we present merely the necessary definitions. For a broader introduc-
tion, we refer the reader to (Eilenberg, 1974), (Yu, 1997), and (Paz, 1971) for classical
automata, and to (Ambainis and Yakaryilmaz, 2015) for quantum automata.

Throughout the paper, > denotes the input alphabet not including the right end-
marker $, and the extension X U {$} is denoted by X. Correspondingly, w represents
the string w$ for any w € ¥*. Unary alphabet is chosen as ¥ = {a} and the empty
string is denoted by ¢. For a given machine M and string w € ¥*, fy;(w) represents
the accepting value/probability of M on w. We may also use symbol ¢ to present any
of relations in set & = {>, >, <, <, =, #}.

2.1 Automata models

A generalized finite automaton (GFA) G is a 5-tuple

G=(Q,%,{A, |0 € X}, v, f),
where

- Q={q,-..,qn} is the set of states.

- A, € R™*" is the transition matrix for symbol o, i.e. A[j, ] represents the transi-
tion value from the i-th state to j-th state,

— vp is a |Q|-dimensional real column vector called initial state, and,

- fis a|Q|-dimensional real row vector called final vector.

For a given input w € ¥*, G starts its computation in vg, reads w symbol by symbol
from left to the right, and, for each symbol, the state vector is updated by multiplying
the corresponding transition matrix. That is,

vj = Aw,vj-1,



Decision Problems on Unary Probabilistic and Quantum Automata 967

where 1 < j < |w|. We denote the final state as vy = vj,,|. The accepting value of w is
calculated as

fG(w) = fvf = wa‘w‘ "'Awlvo,

which is to say that the automaton G computes a function ¥* — R. Thus, by picking
a real number A called cutpoint, we can split the strings into three different sets: those
having accepting value (i) less than A, (ii) equal to A, and (iii) greater than \. Each
set or two of them form a language defined by (G, A), i.e L(G,o\) for o € <. More
specifically, in the case that ¢ equals to >, we have L(G, > \) = {w € £* | fo(w) >
A}, ete.

Moreover, notation L(G, \) refers to the triple (L(G, < A), L(G,= \), L(G,> \))
and LT (G, \) refers to the same triple as except that € is removed. Remark that for any
given pair (G, A) and another cutpoint \’, there is always another GFA G’ (that can be
designed based on G by adding an additional state) such that

L(G,)\) = L(G", ).

Therefore, the choice of the cutpoint is not essential unless the number of states is
significant.

Let G be a given GFA, X be a cutpoint, and ¢ € <, then determining whether
L(G, o)) = () is an emptiness problem. Remark that the description of G and A should
be finite in order to be a “reasonable” computational problem. So, we can formulate the
emptiness problem for computable numbers in general and for rational (or integer) num-
bers in a restricted case. The emptiness problems can be formulated for all the automata
models in this paper in a straightforward way, but the special cases are emphasized.

Probabilistic finite automaton (PFA) is a special case of GFA such that only stochas-
tic transition matrices and vectors are allowed. Moreover, a PFA gives its decision based
on a subset of states called accepting states. Formally, a PFA P is 5-tuple

P = (Q?iv {AU ‘ (S i}7U07Qa))
where, different from a GFA,

— A, is a (left) stochastic transition matrix for symbol o, i.e. A[j.i] represents the
probability of P going from i-th state to j-th state after reading symbol o,

— v is a stochastic vector called initial probabilistic state, and,

- Q. C Q is called the set of accepting states.

For a given input w € ¥*, P starts the computation in vy and reads w$ symbol by
symbol in the same way of a GFA:

vj = Ag,; ,vj-1,

where 1 < j < |w|. The final state is vy = v|g|. The accepting probability of w is

calculated as
fe(w) =" wlil.
i €Qa

The languages recognized by P are defined in a similar way but now A € [0, 1]. Any
language defined as L(P, > ) (resp. L(P,# \)) is called stochastic (resp. exclusive
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stochastic) (Rabin, 1963) and (Paz, 1971). Moreover, a nondeterministic finite automa-
ton (NFA) can be defined as a PFA P of form L(P, > 0). Similarly, a universal finite
automaton (UFA) can be defined as a PFA P of form L(P, = 1). So, for any PFA P, the
language L(P, > 0) or L(P,= 1) (or L(P, < 1) or L(P, = 0)) must be regular. On the
other hand, any L(P, o)) for some A € (0,1) and ¢ € < does not need to be regular.

If each transition matrix of a PFA is double stochastic (both column and row sum-
mations are 1), it is called bistochastic PFA (BPFA) (see (Turakainen, 1975)).

A quantum finite automaton (QFA) is a non-trivial generalization of PFA that can
be in mixture of quantum states (mixed states) and use superoperators for transitions
(Hirvensalo, 2011, Yakaryilmaz and Say, 2011). Formally, a QFA M is a 5-tuple

M = (Q,Z,{Ea | oc S3}7f70762(l)7

where, different from PFA, &, = {E,; | 1 < j < I,} is a superoperator with [,
operation elements that is applied when reading symbol o and pg is the initial mixed
state. For a given input w € X*, M starts the computation in pg, reads w$ symbol by
symbol in the same way of a PFA:

l

pi = Eiy(pj1) = > Eorpj1 Bl
k=1

where 1 < j < |w|. The final state is py = p|g|. The accepting probability of w is
calculated as

Pu(w) =3 Tripli.).

4Gi€EQq

Similar to PFAs, a nondeterministic quantum finite automaton (NQFA) is a QFA
M that can define the single language L(M,> 0) and a universal quantum finite au-
tomaton (UQFA) is a QFA M that can define the single language L(M,= 1). On
contrary to NFAs and UFAs, NQFAs and UQFAs can define nonregular languages
(Yakaryilmaz and Say, 2010).

2.2 Linear recurrence relations

A linear recurrence relation (LRR) u» with depth & > 0 (defined over real/complex
numbers) is a pair (initial values and coefficients)

u = ((u07u17 e ,Uk71)7 (a17a/27 cee 7ak))
that defines an infinite sequence
Uy ULy e e sy Upy .-y

where u,, = a1Up—1 + - + apU,_k forn > k.
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2.3 Skolem’s problem

The Skolem’s problem (known also as the Pisot problem, (see (Halava et al., 2005) for
a general introduction) is to determine whether a given linear recurrence relation

Up = A1Up—1 + A2Up—2 + -+ + ApUp—k

over integers with initial values wug, u1, uo, ..., ug—1, has a member in the sequence
with value of 0 (u,, = 0). Number k in the definition is referred as to the depth of the
recursion.

Currently it is not known if the Skolem’s problem is decidable. The decidabil-
ity is known for recurrence depths less than 5, and allegedly for recursion depth 5
(Halava et al., 2005).

The positivity problem is to decide, for a linear recurrent sequence u,, over integers,
whether u,, > 0 for each n > 1. The strict positivity problem is to decide whether
un, > 0 foreachn > 1.

Remark that all there problems defined here are defined over integers but they can
be trivially extended for real or some specific subsets real numbers.

3 Linear recurrence automata

In this section, we introduce automata versions of LRRs and also some of their possible
generalizations.

3.1 Unary versions

A linear recurrence automaton (LRA) U = (u, X) with depth k& > 0 is a unary automa-
ton composed by two elements: the LRR v and the unary alphabet . For each string
a’, U assigns u; as the accepting value:

fola®) =u;, j>0.
Consider the following LRA with depth k& > 0:
U= ({a},u=(1,0,...,0),(0,...,0,1)).
It is clear that u,, = u,—j and the sequence contains only zeros except
Uy = Up = Uk = -+ = 1.

Therefore, all the following languages are the same and identical to MOD; = {a’ | j
mod k = 0}:
L(Uv - 1)3 L(Ua > 1); L(U7 > 0)7 L(U7 # O)

A LRR can also be defined over mathematical objects other than numbers. A LRR
can be generalized by defining over R™ (or C'™) (m > 0), called m-dimensional LRR
over vectors (LRR-V) with depth £ > 0. Formally LRR-V V is a pair

v = ((UQ,’U17~-~7’U]€71)7(A17'"7Ak)})
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that defines an infinite sequence of vectors
Vo, Vlye--yUmy---y

where v, = Ajvp—1 + -+ + Apv,_i forn > k.

The automaton version of an m-dimensional LRR-V with depth k (LRVA) is a triple
V = (v,%, f), where v is a LRR-V and f € R™ is a row vector. For a given string a’
over unary alphabet ¥ = {a}, its accepting value is calculated as

fv(a®) = f-v;.

The reader can notice that any m-dimensional LRVA with depth 1 is an m-state unary
GFA. Thus LRVAs can be seen as generalizations of unary GFAs.
The probabilistic version of a LRVA (PLRVA) is a restricted LRVA such that

1. All elements in the sequence including the initial ones are stochastic vectors.

2. Each matrix in { Ay, ..., A} is a non-negative multiple of a stochastic matrix pro-
viding that the summation A; + - - - + Ay, gives a stochastic matrix, i.e. A; = d; B;
(d; > 0) for some stochastic matrix B; and dy + - - - + d,,, = 1.

3. Eachentry of f isin [0, 1].

Thus, the accepting value of each string is in [0, 1], which can also be called accepting
probability. It is clear that any PLRVA with depth 1 is a unary PFA.

We leave as a future work the definitions of complex and possible quantum versions
of LRVAs.

3.2 Binary versions

Since LRRs can be seen as unary automata, it is natural to think the binary (or n-ary)
versions of LRRs and their automata versions.

An LRR defines an infinite sequence. In the binary case, we define an infinite binary
tree where each node represents a number (or an object) and so each top to bottom path
is an infinite sequence. In order to specify such a sequence, we label each node as
a string defined over ¥ = {a,b}. The root is empty string. The first level nodes are
labeled from left to right as a and b. The second level nodes are labeled from left to
right as aa, ab, ba, and bb. In general, if a node is labeled with string w, its left child is
labeled with wa and its right child is labeled with wb.

A tree linear recurrence relation (T-LRR) ¢ with depth & is a triple:

t= (3, (ty |we 21 (a1,..., a5, by, ..., b)),

where ¥ is a finite alphabet, X<F~1 is set of all strings with lengths less than k, t,, is
the initial value for the node/string w for w € X<F=1 and (ay,...,ag,b1,...,by) are
coefficients. For any given w = wjws - - - Wy—g - - - Wp_1wy, € X* with length n > k,
t., can be calculated as

by = c1tw, _, + Colw, _, + -+ + Cklw, _,,
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where ¢; is a; if w,, ;1 is symbol a and ¢; is b; if w,, ;41 is symbol b.

Any T-LRR can also be seen as an automaton (T-LRA) since its definition includes
the alphabet. With depth 1, we obtain a 1-state GFA, for example. If |X| = 1, then we
obtain a LRR. The definitions of T-LRR and T-LRA can be extended with some other
mathematical objects like vectors, i.e. T-LRR-V and T-LRVA, respectively. Then, we
can obtain generalizations of GFAs. In case of probabilistic T-LRA over vectors (T-
PLRVA), we can assume that each matrix is some non-negative multiple of a stochastic
matrix and each vector in the tree is normalized to be stochastic. We can also assume
to fix each multiplicative coefficient to % for the simplicity, where k is the depth of
recursion.

4 Basic Facts

Linearly recurrent sequences can be characterized in multiple ways. We give their direct
relations with GFAs, and so with PFAs and QFAs.

Proposition 1. For an integer sequence g, u1, Us, .. ., the following are equivalent:

1. The sequence wu,, is a linear recurrent sequence.

2. Forn > 1, u, = M"[k, 1], where M € ZF** for some k.

3. Forn > 1, u, = xM"y, where x € ZF is a row vector, Yy € ZF is a column vector,
and M € ZF*¥ for some k.

Proof. Tmplication (1) = (2): Assume that a sequence u,, is given by first fixing ug,
..., ug—1, and for n > k defined by recurrence

Up = Q—1Un—1 + *** + A1Up—k+1 + AOUn—k-

We define
Ap—1 Q2 a1)|Ag
0
M, = ) ey

1 :
0

It is easy to see that for each n > 0,

Up = mM{lya

where = (uj_1 -+ uj ug) andy = (0 --- 01)T. We denote 0 = (0 0 --- 0) and
define a (k + 1) x (k + 1)-matrix M by

0 0

U

T Uk—1
M:<1\4011ﬂ(‘)41): : M
. 1

U2

3%
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Inductively we see that
n_ 0 O
= (st ary )

and, furthermore, that
n _ 0 0 I n

whenever n > 1.
Implication (2) = (3) follows directly from equation

Mk +1,1] = (0 y)M" (é) — u,.

k k—1

Implication (3) = (1): Let p(z) = 2" — ap_1x -+- —a1x — ag be the
characteristic polynomial of matrix M. According to the Cayley-Hamilton theorem
(Cohn, 1977)

MF=a,_ M1+ . .+ a1 M +apl,

and consequently
M" =ap_ M" o fa MR g MR
for any n > k. It follows that
eM™y = ap_12M" 'y + -+ arx My 4+ qgr MRy,
which is to say that
Up = Gk—1Un—1 + **+ + A1Un—k41 + QOUn—k, (2
so (2) is the desired recurrence. a

Corollary 1. Let u,, be a linear integer recurrent sequence with depth k > 0. Then,
there exists a (k + 1)-state unary integer GFA G such that

Up = fG(an)
forn > 1.

Corollary 2. Let G be a k-state unary integer GFA. Then, there exists a linear (possibly
not integer) recurrent sequence u.,, with depth k such that

Up = fG(an)
forn > 0, where k > 0.

Proposition 2. Any constant sequence is a linear recurrent sequence. Moreover, if u,
and vy, are linear recurrent sequences, so are vy, and ,, + vy,.
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Proof. The claim for constant sequences is trivial. Using Proposition 1, we can write
U = 1 M{y1, and v, = 22 M3'ys. Now upv, = (21 @ 22)(M1 @ M2)™(y1 @ ya2)
(tensor product construction) and u,, + v, = (x1 B z2) (M1 & M2)™(y1 @ y2) (direct
sum construction), and Proposition 1 implies that these sequences are linear recurrent.

O

Proposition 3. Skolem’s problem is reducible to the positivity problem and the strict
positivity problem. The strict positivity problem is reducible to the positivity problem.

Proof. Given a linear recurrent sequence u,, over integers, deciding whether u,, = 0
for some n is equivalent to deciding whether u,, # 0 for all n, which is equivalent to
(i) deciding whether u2 > 0 for all n and (ii) deciding whether u2 — 1 > 0. Thus,
Skolem’s problem is reducible to (strict) positivity problem.

Given a linear recurrent sequence u,, over integers, deciding whether u,, > 0 (resp.,
uy > 0) for all n is equivalent to deciding u,, + 1 > 0 (resp., u, — 1 > 0) for all n.

Thus strict positivity problem and positivity problem are reducible to each other. a

The reductions between the positivity problem and the strict positivity problem can
also be followed over rational numbers but we do not know whether they are reducible
to each other over real numbers.

Remark 1. Positivity problem is known to be decidable for linear recurrences with
depth at most 5 (Ouaknine and Worrell, 2014b). In addition, the positivity problem for
simple recurrences (those having no multiple roots) is known to be decidable for recur-
sion depth at most 9 (Ouaknine and Worrell, 2014a). The ultimate positivity problem is
decidable for simple linear recurrences of any order (Ouaknine and Worrell, 2014c).

5 Conversions between unary automata models

Conversions between unary automata models are given below (see (Turakainen, 1975),
(Hirvensalo, 2011), (Yakaryilmaz and Say, 2010), (Yakaryilmaz and Say, 2011), and
(Say and Yakaryilmaz, 2014)):

— For any given integer LRA U = (u, ) with depth k, there exists a (k + 1)-state
integer GFA G such that
LT (U,0) = LT(G,0).

— For any given rational n-state GFA G and cutpoint A # 0, there exist a rational
(n + 1)-state rational G’ such that

L(G,\) = L(G",0)
Moreover, there exists an integer (n + 1)-state GFA G’ such that
L(G,\) = L(G',0) = L(G",0).

— For any given n-state rational GFA G, there exist (n + 2)-state rational PFA P and
(n + 2)-state algebraic number QFA M such that

1 1

L =L(P,——)=L(M, ——
(G.0) = L(P, ——) = L(M, ——

).
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— For any given n-state rational QFA M, there exists an n2-state rational GFA G such
that
L(M,)) = L(G, \) for any X € [0, 1].
— For any given QFA M, there exists a QFA M’ such that
L(M,# X\) = L(M',# X) forany \,\" € [0,1].

— For any given n-state integer GFA G, there exists an integer LRA U with depth n
such that
LT(G,\) = LT (U, \) for any A € R.

6 The status of emptiness problems

In this section, we list the decidable problems and the problems which are still open
with their restricted but decidable cases.

6.1 Problems

The decision problems for LRRs can be formulated by LRAs as given below. Here we
also reformulate positivity problems as threshold problems in order to define them as
emptiness problems.

— Skolem’s problem:
e For a given integer LRA U, is L(U, = 0) empty?
e More generally, is L(U, = \) empty for a given A € R?
— The positivity problem:
e For a given integer LRA U, is L(U, > 0) = a™ or equivalently the complement
of L(U, > 0) empty or equivalently is L(U, < 0) empty?
e Since deciding whether u,, < 0 for some n is equivalent to deciding whether
—u,, > 0 for some n, we can also equivalently ask whether L(U, > 0) is empty.
e More generally, is L(U, > \) empty for a given A € R?
— The strict positivity problem:
e For a given integer LRA U, is L(U, > 0) = a™* or equivalently the complement
of L(U, > 0) empty or equivalently is L(U, < 0) empty?
e Since deciding whether u,, < 0 for some n is equivalent to deciding whether
—u,, > 0 for some n, we can also equivalently ask whether L(U, > 0) is empty.
e More generally, is L(U, > \) empty for a given A € R?
— The exclusivity® problem:
e For a given integer LRA U, is L(U, # 0) empty?
e More generally, is L(U, # \) empty for a given A € R?

Due to the conversions given in the previous section, each decision problem given
for LRRs and so LRAs has an equivalent emptiness problem for GFAs, PFAs, and
QFAs. In the above list, it is sufficient to change LRA U with unary GFA, PFA, or QFA
model in order to obtain the corresponding emptiness problem.

However, remark that the value of A can be only in [0, 1] for PFAs and QFAs (the
cases for the other \ values are trivial) and we should also note that their behaviors are
different on the borders.

3 We propose this term inspired by the definition of exclusive stochastic languages.
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6.2 Decidable problems

PFAs define only regular languages when A is O or 1. So, any emptiness problem in
such case is decidable.

The emptiness problem for NQFAs defined with algebraic numbers is known to
be decidable (Demirci et al., 2014). Therefore, the problem of whether L(M, > 0) or
L(M,< 1) is empty set for a given QFA M (defined with algebraic numbers) is de-
cidable. Remark that the problem of whether L(M, > 0) or L(M, < 1) is empty for a
given QFA M is trivial.

The remaining cases to determine whether L(M, = 0) or L(M, = 1) is empty for a
given QFA M (the emptiness problem for UQFAs) are still open.

For a given QFA M, L(M,> 0) is the same as L(M,# 0), and so we can also
conclude that the problem of determining whether L(M,# )) is empty set is also
decidable for any A € [0, 1]. Thus, the exclusivity problem is decidable for LRAs,
GFAs, PFAs, and QFAs.

6.3 Open problems
Now, we can list the open cases:

— Skolem’s problem: LRAs, GFAs, PFAs when A € (0, 1), and QFAs when A € [0, 1].

— The positivity problem: LRAs, GFAs, PFAs when A € (0,1), and QFAs when
A€ (0,1).

— The strict positivity problem: LRAs, GFA, PFAs when X € (0, 1), and QFAs when
A€ (0,1).

We do not know the answer of any question for any models defined with computable
number or any subsets of computable numbers. We know only some decidable results
for small automata given in the next subsection.

6.4 Special cases

From Remark 1, we know that the positivity problem is decidable for depth 5. Thus the
same problems are decidable also for the following models by using the conversions
above:

— 5-state integer GFAs,
— 4-state rational GFAs and also rational PFAs, and,
— 2-state rational QFAs.
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