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Abstract. The computational intelligence approach using Neural Network (NN) has been known
to be very useful in predicting software reliability. Software reliability plays a key role in soft-
ware quality. In order to improve accuracy and consistency of software reliability prediction, we
propose the applicability of Feed Forward Back-Propagation Network (FFBPN) as a model to
predict software reliability. The model has been applied on data sets collected across several stan-
dard software projects during system testing phase with fault removal. Unlike most connectionist
models, our model attempt to compute average error (AE), the root mean square error (RMSE),
normalized root mean square error (NRMSE), mean absolute error (MAE) simultaneously. A
comparative study among the proposed feed-forward neural network with some traditional para-
metric software reliability growth model’s performance is carried out. The results indicated in
this work suggest that FFBPN model exhibit an accurate and consistent behavior in reliability
prediction.
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1 Introduction

According to demand of the modern digital age, it is a big challenge for software devel-
opers to quickly design, implement, test, and maintain complex software systems. Also
it is a difficult task for software companies to deliver good quality software in appropri-
ate time (Bhuyan et al., 2014). The last two decades have witnessed a paradigm shift in
the field of software engineering (Benala, 2012).

A typical definition of software reliability is “the probability of the failure free op-
eration of a computer program for a specified exposure period of time in a specified
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use environment” (IEEE, 1991; Boland, 2002; Khatatneh and Mustafa, 2009; Musa et
al., 1984; Goel et al., 1985). Another definition of software reliability is “the proba-
bility of the product working correctly over a given period of time” (Mall, 2005). Over
the years, many numbers of parametric models and non-parametric growth models have
been proposed; there is no such model that can predict reliability across all types of data
sets in any environment and in any phase of software development. In present scenario,
connectionist approach is showing future success approaches to software reliability pre-
diction and modeling.

The major benefits of software reliability measurement are planning and controlling
the resources during software development process for developing high quality soft-
ware. It gives confidence about software correctness. Also it minimizes the additional
cost of testing and improves software reliability (Goel, 1985). At the time of devel-
opment of any product or system like commercial, military, or any other application,
we need to ensure its reliability and consistency in its performance, because a system’s
reliability has a major impact on maintenance, repair costs, continuity of service, and
customer satisfaction (Bhuyan et al., 2015). At the end, the project manager needs to
ensure that the software is reliable enough to be released into the market. Keeping the
above motivation in mind, in the next paragraph we define our contribution.

The main contribution of this paper is to investigate feed forward back-propagation
network (FFBPN) model architecture to predict software reliability using failure data.
Unlike the traditional neural network modeling approach, we first explain some useful
mathematical expressions to our proposed network model. Our propose model’s predic-
tion is based on failure data collected in the process of software system testing or op-
eration. The input to this network is designed as the order pair of cumulative execution
time (CPU time) and the desired output value (i.e. number of failures). The network
is trained to minimize the error between desired and predicted output. An algorithm
named FFBPRP is described in Section 3.1.2 to calculate the predictive measures. The
model predicts the reliability using various prediction criteria that are described in Sec-
tion 4. The model compute the predictive performance using common predictability
measure such as: the Average Error (AE), the Root Mean Square Error (RMSE), Nor-
malized Root Mean Square Error (NRMSE), and common data set. The model perfor-
mance is further improved by measuring the Mean Absolute Error (MAE) along with
the above predictability measure. We forecasted short-term prediction and long-term
prediction for two numbers of data sets sample. The comparison is performed with the
criteria Short-Term Prediction (STP) and Long-Term Prediction (LTP) with different
research work proposed before. The whole idea is to support the project manager to
monitor testing, estimating the project schedule, and helping the researchers to evaluate
the reliability of the model.

The rest of the paper is organized as follows: Section 2 describes some related work
proposed so far in the area of reliability prediction. Section 3 presents the concept feed
forward networks model. We describe the proposed model framework, the basic termi-
nologies, application, training of the network, and step-by-step procedure for reliability
prediction in this section. In this section, an algorithm is used to compute various pre-
dictive criteria. An analysis on software failure data from a medium-sized command
and control system, and experimental observation are presented in Section 4. Finally,
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in Section 4.2, some comparative studies of various analytical and connectionist mod-
els on software failures is carried out. In Section 5, the conclusion and future work are
given.

2 Related Work

Artificial Neural Network (ANN) is a powerful technique for Software Reliability Pre-
diction (SRP). Werbose (1988) proposed back-propagation learning and regression tech-
nique to identify sources of forecast in uncertainty in a recent gas market model. Though,
the author discussed about various methods and techniques, not implemented using his
proposed technique on software failure data. Shadmehr et al. (1990) estimated model
parameters of pharmacokinetics system using feed-forward multilayered network and
predicted the noise residing in the measured data sample. The authors not considered
the back-propagation learning for training the network. The authors compared their re-
sults with that of the optimal Bayesian estimator and found that their performance was
better than the maximum likelihood estimator. The feed- forward network with back
propagation learning of artificial neural networks models are applied for software re-
liability and quality prediction (Khoshgoftaar, 1992; Singh and Kumar, 2010b; Thwin
and Quah, 2002). The data sets construction procedure is not explicitly defined. Khosh-
goftaar et al. (1992), Singh et al. (2010b), and Thwin et al. (2002), have developed a
connectionist model and taken failure data set as input to predict the software reliabil-
ity, where as the predictive parameter taken is not sufficient for prediction. These work
discussed network architecture, method of data representation and some unrealistic as-
sumptions associated with software reliability models.

Pan et al. (2014) made reliability analysis on high Light-Emitting Diode (LED).
The authors used simulation method to carried out stress accelerated testing and life
prediction. Vijay Kumar et al. (2016) proposed an approach to classify the stone tex-
tures based on the patterns occurrence on each sub window. The proposed method is
tested on Mayang texture images, Brodatz textures, Paul Bourke color images, VisTex
database, Google color stone texture images and also original photo images taken by
digital camera. Qiuying et al. (2013) computed the number of test cases in the dis-
crete software reliability demonstration testing. Sun (2012) constructed software relia-
bility Gene Expression Programming (GEP) model based on usage profile. Maizir et al.
(2013) used ANN to predict the axial bearing capacity from high strain dynamic testing
(i.e. Pile Driving Analyzer (PDA)) data. The authors used regression mean and Mean
Square Error (MSE) as predictable measures for predicting the axial bearing capacity.
The authors excluded the strong predictable measures such as AE, RMSE, MAE etc. in
their work.

Mark et al. (2015) used directional coding and back-propagation neural network to
recognize palm vein. The Mean Absolute Deviation (MAD) is implemented as feature
vector that were used in the form of input to the beck-propagation network.

Karunanithi et al. (1992) predicted software reliability using feed forward network
and recurrent network. The authors compared their result with 14 different data sets
and shown that NN produced better predictive accuracy compared to analytical mod-
els in end-point predictions. The authors considered only average error (AE), average
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bias (AB), normalized average error (NAE) for predictability measure, but not con-
sidered root mean square error (RMSE), normalized root mean square error(NRMSE).
Sitte (1999), analyzed two models for software reliability prediction: 1) neural network
models and 2) parametric recalibration models. The author used Kolmogorov distance
as the common prediction measure in the comparison experiment. The comparison was
performed for next-step4 prediction and end-point predictions. These approaches dif-
ferentiate the neural networks and parametric recalibration models in the context of
software reliability prediction and conclude that neural networks are much simpler and
better predictors. Tian et al. (2005) proposed an useful model for online adaptive soft-
ware reliability prediction using evolutionary neural network. The prediction is based
on software cumulative failure time prediction on multiple-delayed-input single-output
architecture. The challenge for this approach is to predetermine the network architecture
such as the numbers of the layers and the numbers of neurons in each layer.

RajKiran et al. (2007) predicted software reliability by using wavelet neural net-
works (WNN). In this paper, the authors employed two kinds of wavelets i.e. Morlet
wavelet and Gaussian wavelet as transfer functions. They made a comparison on test
data with various neural network and found that their proposed network performs better
than others. In (2008), the authors introduced three linear ensembles and one nonlinear
ensemble to compute software reliability. Various statistical and intelligent techniques
were used such as multiple linear regressions (MLR), multivariate adaptive regression
splines (MARS), and back-propagation trained neural network (BPNN) for software
reliability prediction.

Lo (2009) designed a model for software reliability prediction using ANN. Fuzzy
Wavelet Neural Network (FWNN) was used for phase space reconstruction technology
and for SRP (Zhao, 2010). The authors noticed that the failure history is a vital factor
for SRP. Ho et al. (2003) proposed connectionist models and used modified Elman
recurrent neural network for modelling and predicting software failure. A comparative
study was carried out on their proposed model, with the feed-forward neural network,
the Jordan recurrent model, and some traditional software reliability growth models.
Their experimented results show that the proposed model performed better than the
other model.

Pai et al. (2006) used support vector machines and simulated annealing algorithms
for reliability forecasting. They used lagged data in their analysis by dividing the 101
observations such as: 33 observations for training, 8 observations for validation and
60 observations for test. Since, it is not a standard method of splitting the data set for
experimentation.

4 short-term prediction and next-step prediction are used interchangeably



1020 Bhuyan et al.

3 FFBPN Model Architecture and Reliability Prediction

In this section, we attempt to describe the FFBPN model’s architecture. In order to
frame the network, we first discuss the basic concepts of our proposed model FFBPN
and its application to software reliability prediction.

Here feed-forward neural network is a static network as it is a network with no
output feed-back (Chiang et al., 2004). The single-layer feed-forward neural network
connected with several distinct layers to form a multilayered feed-forward network is
shown in Figure 1. The learning rule applied in this model is parameter learning (Lin
and Lee, 1996). The layer that receives input is called the input layer and typically
performs no function other than buffering the input signal (Bhuyan et al., 2014). The
input layer is not used for computation, so each node of input layer transmits input
values to the hidden layer directly. Any layer between the input and output layers are
called a hidden layer, because it is internal to the network and has no direct contact with
the external environment.

The network reliability prediction process consisted of two steps: a) the training
phase b) prediction phase. In the training phase, connecting weights are adjusted to re-
duce the errors of the network outputs as compared to the actual outputs. At the end of
the training phase, the connecting weights between layers are fixed, so that state of any
neuron is solely determined by the input-output pattern and not on the initial and past
states of the neuron, that is, there is no dynamics involved (Chiang et al., 2004). Nor-
mally static-feed forward network is trained using two methods: a) back-propagation
algorithm b) conjugate gradient algorithm. In this paper, the back-propagation train-
ing algorithm is applied to get back-propagated error using supervised learning. Initially
an arbitrary pattern is applied in feed-forward back-propagation network between the
units5. The error in back-propagation process is propagated towards the hidden layer to
minimize the error.

In this paper, we have implemented an algorithm to train the proposed FFBPN
model and compute the output (i.e. number of failures). This FFBPN is work in two
phases: 1) forward propagation and 2) back propagation.

A simple feed forward network assimilates the current activation in memory and
generates the output. For each iteration, the errors are back propagated with a set of
connection weights. The iteration process may not continue for large epochs6, because
for each layer’s error, the error is back propagated, gets smaller and smaller until it
converges to zero (i.e. desired output). In this section, an algorithm FFBPRP is ap-
plied to compute all predictability measures. The input data structure and its pattern for
reliability prediction are also described in this section.

3.1 FFBPN architecture construction and training

The proposed model FFBPN consists of three-layer network. The network comprises
of two step mappings as some compound function, which can be rewritten as nested
function that is given in Equation 2 , where x is the input vector to the input layer.

5 In this paper the terms unit, neuron, and node are used interchangeably.
6 One pass through all of the training observations (Training Phase) is called an epoch.
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The hidden layer nodes are fully connected with input and output layer nodes. The
feed-forward network does not consider feedback from output nodes. The basic feed
forward neural network architecture comprises of two phases: 1) feed forward NN,
2) back propagation with error from output layer. Here the input vector is propagated
from input layer to hidden layer as shown in Figure 1. The FFBPN model is a simple
supervised learning model. The error is calculated for each pair of input pattern and
then it is back propagated for training. The error is calculated and weights are folded
back to compute the new updated weights for every iteration.

3.1.1 FFBPN Architecture Construction: This section gives a brief discussion
about FFBPN training using back-propagation learning. The operation in this paper
is restricted to “hidden” and “output” layers. The input vector ‘x′ (n-continuous-valued
input nodes) is propagated from input layer with weight matrix V. Here, the input nodes
xi receive external inputs (i.e. cumulative execution time) after (i−1)th failure interval.
Let us consider xi = 0 for non-input nodes and di is the desired output for the desired
state of ith unit. Then by taking net input, the output from hidden layer is computed
using Equation 1.
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Fig. 1. A simple architecture of feed-forward neural network.

zl = a(gl), where, gl =

n∑
j=1

vljxj + θj (1)

Here, n is the number of input nodes, θj is a threshold value, xj is the input node(i.e.
cumulative execution time), vlj is the weight link from jth node of input layer to lth
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node of hidden layer, and a is an activation function between the layers that need to be
continuous, differentiable, and non-decreasing.

The output yi represents the numbers of cumulative failures and is calculated using
Equation 2. The updated weight wil is computed for each network copy that is summed
up with inputs before individual weights are refined. Output yi can be computed as

yi = a(fi),where, fi =

m∑
l=1

wilzl + θl. (2)

Here, m is the number of ‘hidden’ nodes. The weight matrix wil (connected from
lth node to ith node) and θl is the bias.

3.1.2 Tailoring Neural Network for FFBPN Model Prediction Performance: The
FFBPN is trained by using computed output data and desired output data as it belongs
to supervised learning. Assume that there are i numbers of data points are available to
train the networks. The first set of analysis is carried out starting with the observations
in time to predict the (i+1)th data (Tian and Noore, 2005). This is the order that is used
to generate the software failure time data for training purposes. The (i.e. Mean Square
Error (MSE)) L is calculated by using the cost function using Equation 3.

L =
1

m

m∑
k=1

(dk − yk)2 =
1

2

m∑
k=1

L2
k (3)

Here,

Lk =

{
dk − yk, for kth output node
0, otherwise

.
Lk is the summation ranges over all the output units,m is the total number of output

nodes and it is an index over training sequence matrix. dk is the actual desired cumula-
tive failures, yk is the predicted cumulative failures.

Using Steepest-descent method, FFBPN network gives a weight update rule that re-
quires a matrix inversion at each step. The network is trained by minimizing the total
error which is given in Equation 3.
We accumulate the values of the gradient of the weights changes ∆wil and ∆vlj which
are represented by Equations 4 and 5 respectively.

∆wil = η(di − yi)a′(fi)zl (4)

∆vlj = η

m∑
i=1

[(di − yi)a′(fi)wil] a′(gl)xj (5)

where η is a scalar parameter that is used to set the rate of adjustment, referred as
learning rate and a′ is the derivative of a. We have proposed an algorithm for software
reliability prediction. We have named our algorithm Feed-Forward Back-Propagation
Reliability Prediction (FFBPRP) algorithm. Our model FFBPN is trained and the fi-
nal output is predicted using FFBPRP algorithm. Below, we explain the steps of our
FFBPRP algorithm.
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Algorithm FFBPRP

Step-1 Initialization
Initialize the weight matrices W, V and the thresholds of the neurons with values
in range (0 . . . 0.5). set k = 1, L = 0, where k is the number of pattern, L is the
error.

Step-2 Set Tolerable Error
Set the maximum tolerable errorEmax. Consider the error precision asEmax=0.005.

Step-3 Supply Input
Feed the input to the network, the inputs are taken in pairs {x(1), d(1)}, {x(2), d(2)}, ...
{x(p), d(p)} . Input x(i) represents cumulative execution time, d(i) represents the
desired failure number.

Step-4 Training Loop
Apply kth input pattern to the input layer x(k).

Step-5 Forward Propagation
Compute the estimated output y1, y2, ..., ym (i.e. next failure number) using Equa-
tion. (2).

Step-6 Compute Error
Calculate the errors Li for each output node yi, using Equation. (3)

Step-7 Backward-Error Propagation and
Weight Updation

Update the weights W,V using Equation. (4) and (5).
Step-8 Handle Training Conditions

If k > p, go to Step-9
else update k = k + 1, go to Step-4.

Step-9 Error Comparison
If L 6 Emax go to Step-10
else set L = 0, k = 1, go to Step-4.

Step-10 Print Final Weights
Print the values of W and V

Step-11 Compute the Output
Compute the next failures using Equation. (2).

Step-12 Predictive Measures Computation
Calculate the various prediction criterions mentioned in Section 4.

Now, we briefly explain our FFBPRP algorithm. First, our algorithm initializes the
network parameters along with the weights associated with the layers in Step-1. The
maximum tolerable MSE value is fixed in Step-2. The input to this network is structured
in Step-3. In Step-4, the network is trained and in Step-5, the output of the network is
computed. The errors between the predicted and actual values are calculated and com-
pared with the MSE which is predefined in Step-6. The computation process and weight
adjustment are continued until the MSE found falls below a minimum threshold value.
Based on this stopping criterion, the network is back propagated towards hidden layer.
Then the network is trained using back-propagation learning and weights are adjusted
accordingly in Step-7. This process is continued and the maximum tolerable error is
compared with MSE after each epoch in Step-8 and 9. The final weights are calculated
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in Step-10. At the end, the final weights are fixed and the output is recorded for the next
cumulative failure in Step-11. In Step-12, the algorithm computes all prediction criteria
using formulas that are mentioned in Section 4.

We assume that there are multiple neurons present in the hidden layer. We have
taken one hidden layer in our implementation. Although as many as hidden layers can
be taken, but the result shows that there is no significant improvement in performance
in considering more number of hidden layers. Rather the training performance becomes
low. The input layer neurons are exempted from error computation. In the first epoch,
the weights are typically initialized, next the set of weights are chosen at random and
weights are adjusted in proportion to their contribution to error (Karunanithi et al.,
1991). The error is computed in output layer and the difference between the actual
output and target output values are calculated using Equation 3.

The cross-validation is carried out by the entire representative data set into two
sets: a) a training data set, used to train the network, b) a test data set used to pre-
dict the reliability of the system. We split the data set as follows: 80% for training and
20% for testing. The data sets are pre-processed by normalizing with respect to their
maximum values. The model work better in the close interval [0,1] for all data sets.
The training pair consists of training inputs to network and target output. The train-
ing data is in ordered pair of two dimensional arrays (input-output): (I1, O1), (I2, O2)
... (Ii, Oi) ..., (In, On), where Ii and Oi represent the input values (i.e. cumula-
tive execution time) (CPU time) and desired output value (i.e. number of failure) re-
spectively. We can interpret number of failures as a function of cumulative execution
time. The weights are structured in two dimensional data arrays (i.e. input-to-hidden
layer and hidden-to-output layer). In this work, the logistic function, binary sigmoidal
f(x) = 1/(1 + e−λx) is used, where x is the cumulative execution time. The binary
sigmoidal function is used to reduce the computational burden during training (Sivanan-
dam and Deepa, 2007). The function f(x) is continuous, differentiable, and monotoni-
cally increasing. Here λ is the steepness parameter at each step of learning. The range
of this logistic function varies from 0.0 to 1.0.

4 Experimental Results and Comparison with Related Work

We have implemented our proposed approach using MATLAB Version 7.10. We initial-
ize V &W weight matrices with small random values before first epoch is started. After
the first epoch, weights are adjusted randomly. The FFBPRP algorithm then calculates
a sum squared error between the desired output and actual output with help of error
function. The target values are not present for hidden units. Here the error precision
(i.e. the maximum tolerable (MSE) is fixed and is taken as Emax=0.005. The network
model FFBPN is trained with initial weights and continues until the stopping criterion
is satisfied and best weights are recorded. Here, we carried out two types of experimen-
tation; (a) next-step prediction or short-term7 prediction of the reliability and (b) the
end-point prediction8 is performed at the end of a future testing and debugging session
(Karunanithi et al., 1992a).

7 STP and next-step prediction are used interchangeably
8 LTP and end-point predictions are used interchangeably
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Normally, the data set used for reliability growth model are having defect severities9

2 and 3 as per TANDEM report (Wood, 1996). In our experiment, we considered the
failure data during system testing phase of various projects collected at Bell Telephone
Laboratories, Cyber Security and Information Systems Information Analysis Center by
John D. Musa (Musa, 1980) and from research work (Mohanty et al., 2013). For our
experimentation, we collected two numbers of software failure data sets from various
literature and that are shown in Table 1. The actual data set10 shown in Table 1 consists
of a) Failure Number, b) Time Between Failures (TBF), c) Day of Failure of different
medium-sized applications, such as Real-Time Command & Control Software System,
Commercial System, Military Application, Operating System, Time Sharing system, and
Word Processing System.

We predicted the software reliability in Short Term Prediction (STP) that is used
to measure the current reliability of a system and Long Term Prediction (LTP) used
for decision making about long-term test plans. In STP, we considered xi as the time
between the (i − 1)th and ith software failure and di is the number of failures. We
can interpret number of failures as a function of cumulative execution time. So, it
can be written as f(xi) = di. The normalized values of the input to the network
such as f(x1), f(x2)...f(xi) are used to predict the d̂i+1, where d̂i+1 is the com-
puted value (i.e. next number of failures) . In other way, we can forecast d̂i+1 by using
{x1, d1}, {x2, d2}, ...{xi, di}, where di+1 is the corresponding target value is known
as short term prediction or 1-step ahead prediction or next-step prediction. Similarly,
suppose f(x1), f(x2)...f(xi) are used to predict the d̂i+1, where di+1 is the corre-
sponding target value and f(x2), f(x3)...f(xi+1) are used to predict the d̂i+2, where
di+2 is corresponding target value, where d̂i+2 is the computed value (i.e. next number
of failures). Continuing in this way up to nth pattern is known as long term prediction
or n-step step prediction or end-point prediction.

Some prediction criteria are listed below:

– The Average Error (AE), computes how adequately a model predicts all over the
system testing phase (Karunanithi et al., 1992b). AE, measures how well a model
predicts throughout the testing phase (Karunanithi et al., 1992). AE is used to com-
pare our model with other models to test the predictive accuracy.
Relative Error(%) REi = (|(Fi −Di)/Di|) ∗ 100
Average Error(%) AE = 1/n

∑n
1 REi

– The Root Mean Square Error (RMSE): RMSE is used to compute how far on
average the error (i.e. between actual and target value) is from 0. The lower is
RMSE, the higher is prediction accuracy.
RMSE =

[√∑n
1 (Fi −Di)

2
]
/n

9 The severity levels defined as per the urgency of the customer needs. Severity 0 is No Impact:
Can tolerate the situation indefinitely. 1 is Minor: Can tolerate the situation, but expect solution
eventually. 2 is Major: Can tolerate the situation, but not for long, Solution needed. 3 is Critical:
Intolerable situation. Solution urgently needed.

10 Collection of data set from large projects is a difficult task because software industry consid-
ered their failure history as classified record (Karunanithi et al., 1992b).
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Normalized Root Mean Square Error (NRMSE)
NRMSE =

[√∑n
1 (Fi −Di)

2
]
/
∑n

1 Fi
2

– Mean Absolute Error (MAE) is an average of an absolute error that computes
how close predictions are to the final result. The MAE and RMSE are used together
to analyze the variation in the errors on data set.
MAE = [

∑n
1 |(Fi −Di)|] /n

Where, Fi is the computed output andDi is the target output. The lesser computed value
of AE, RMSE, NRMSE, and MAE indicates the higher is the accuracy in prediction.

Table 1. Data set with number of failures used in the experiments from Musa (1980) & Iyer and
Lee (1996).

Project Code Project Name Number of Failures Development Phases
DBS-1 Real-Time Command &

Control System
136 System Test Operations

DBS-2 (Iyer et al., 1996) 191 System Test

Table 2. Data set by Musa (Musa, 1980) for DBS-1.

Failure No Cumulative
Execution
Time

Failure No Cumulative
Execution
Time

Failure No Cumulative
Execution
Time

Failure No Cumulative
Execution
Time

1 3 36 5389 71 16229 106 46653
2 33 37 5565 72 16358 107 47596
3 146 38 5623 73 17168 108 48296
4 227 39 6080 74 17458 109 49171
5 342 40 6380 75 17758 110 49416
6 351 41 6477 76 18287 111 50145
7 353 42 6740 77 18568 112 52042
8 444 43 7192 78 18728 113 52489
9 556 44 7447 79 19556 114 52875
10 571 45 7644 80 20567 115 53321
11 709 46 7837 81 21012 116 53443
12 759 47 7843 82 21308 117 54433
13 836 48 7922 83 23063 118 55381
14 860 49 8738 84 24127 119 56463
15 968 50 10089 85 25910 120 56485
16 1056 51 10237 86 26770 121 56560
17 1726 52 10258 87 27753 122 57042
18 1846 53 10491 88 28460 123 62551
19 1872 54 10625 89 28493 124 62651
20 1986 55 10982 90 29361 125 62661
21 2311 56 11175 91 30085 126 63732
22 2366 57 11411 92 32408 127 64103
23 2608 58 11442 93 35338 128 64893
24 2676 59 11811 94 36799 129 71043
25 3098 60 12559 95 37642 130 74364
26 3278 61 12559 96 37654 131 75409
27 3288 62 12791 97 37915 132 76057
28 4434 63 13121 98 39715 133 81542
29 5034 64 13486 99 40580 134 82702
30 5049 65 14708 100 42015 135 84566
31 5085 66 15251 101 42045 136 88682
32 5089 67 15261 102 42188
33 5089 68 15277 103 42296
34 5097 69 15806 104 42296
35 5324 70 16185 105 45406
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The data sets DBS-1 and DBS-2 are considered for analysis and observation in
next-step predictions and end-point predictions using FFBPN model. We summarize
these computed values in Table 3 for next-step prediction and Table 4 for long-term
prediction.

Table 3. Predictive results in STP using two data sets.

Data set AE RMSE NRMSE MAE Mean Error
DBS-1 3.0018 0.0042 0.0334 0.0243 -0.0019
DBS-2 3.3540 0.0061 0.0721 0.0353 -0.0092

Table 4. Predictive results in LTP using two data sets.

Data set AE RMSE NRMSE MAE Mean Error
DBS-1 3.3268 0.0062 0.0843 0.0233 0.0044
DBS-2 4.2441 0.0358 0.0984 0.0548 -0.0078

4.1 Analysis and Verification for DBS-1 and DBS-2

Using data set DBS-1, we carried out two analyses; 1) Results in next-step predic-
tion, 2) Results in end-point prediction. Let us consider data set DBS-1 of Table 2 that
contains 136 failures for analysis and verification purpose. After the network model
is successfully trained, the weights are fixed and computations for measurement unit
are performed. The predicted result for next-step prediction of various measurement
units are shown in Table 3. Figure 2(a) shows the desired output and computed out-
put against cumulative execution times. The Figure 2(a) shows the performance of the
proposed model in terms of the number of cumulative failures w.r.t. the cumulative ex-
ecution times, for the actual and predicted data points in short-term predictions. Figure
2(b) shows the deviation between the predicted value and actual target value in short-
term predictions. The relative errors of Figure 2(a) are represented in Figure 2(b), which
shows the closeness (accuracy) of prediction of the model in short-term predictions.

Then, the model under goes for end-point predictions using test data on data set
sample DBS-1. The predicted result for end-point prediction of various measurement
units are shown in Table 4. The prediction performance for end-point predictions are
demonstrated in Figures 3(a)-3(c). Figure 3(c) is the plot between numbers of epochs
and error rate in terms of RMSE during prediction. The observation on this predicted
data and comparison is described in Section 4.2. Figure 3(c) shows the error rate (in
terms of RMSE) w.r.t. the number of epochs. From Figure 3(c), it can be observed that,
the error rate decreases as the number of epochs increases. This shows that our proposed
model performs accurate prediction.
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(a) STP of FFBPN network using data set DBS-1.

(b) Deviation between the STP value and the actual
value using data set DBS-1.

Fig. 2. Short Term Prediction and relative error of FFBPN network using data set DBS-1.

Analysis and Verification for DBS-2: Using data set DBS-2, we carried out two analy-
ses; 1) Results in next-step prediction, 2) Results in end-point prediction. The various
results for data set DBS-2 is given in Table 5 which contains 191 failures. The predicted
result for next-step prediction of various measurement units are shown in Table 3. The
relative errors of Figure 4(a) are represented in Figure 4(b), which shows the closeness
(accuracy) of prediction of the model in short-term predictions.

Then, the model under goes for end-point predictions using test data on data set
sample DBS-2. The predicted result for end-point prediction of various measurement
units are shown in Table 4. The prediction performance for end-point predictions are
demonstrated in Figures 5(a)-5(c). Figure 5(c) is the plot between number of epochs and
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(a) LTP of FFBPN network using data set DBS-1.

(b) Deviation between the LTP value and the real
value using data set DBS-1.

(c) Performance result against RMSE using data set DBS-1.

Fig. 3. LTP and relative error of FFBPN network using data set DBS-1.
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Table 5. Data set by Iyer and Lee (1996) for DBS-2.

Failure No Cumulative
Execution
Time

Failure No Cumulative
Execution
Time

Failure No Cumulative
Execution
Time

Failure No Cumulative
Execution
Time

Failure No Cumulative
Execution
Time

1 9.9898 40 369.61 79 858.68 118 1336.2 157 1792.4
2 18.747 41 379.51 80 872.67 119 1349.9 158 1806.6
3 28.962 42 391.11 81 879.07 120 1363.9 159 1820.8
4 40.719 43 403.37 82 885.46 121 1377.8 160 1835.1
5 52.872 44 417.38 83 889.07 122 1383 161 1847.8
6 61.037 45 431.38 84 902.73 123 1388.2 162 1861.5
7 70.447 46 445.39 85 916.75 124 1396.9 163 1875.7
8 80.03 47 453.99 86 930.94 125 1409.4 164 1890.3
9 88.819 48 462.8 87 945.24 126 1422.5 165 1904.9
10 100.3 49 472.18 88 959.53 127 1436.2 166 1916.9
11 110.31 50 483.2 89 973.83 128 1449.8 167 1930.2
12 117.3 51 494.25 90 988.13 129 1463.7 168 1943.5
13 124.36 52 505.39 91 993.81 130 1478.2 169 1957.9
14 130.85 53 516.55 92 1001.5 131 1485.7 170 1972.3
15 137.48 54 527.7 93 1009.5 132 1496.8 171 1986.7
16 143.67 55 539.81 94 1017.5 133 1509.7 172 2001.3
17 149.64 56 551.94 95 1025.9 134 1522.8 173 2015.8
18 154.47 57 563.97 96 1034.6 135 1536.9 174 2025.7
19 164.37 58 576.01 97 1048.3 136 1551.3 175 2038.1
20 177.25 59 588.08 98 1062 137 1565.9 176 2050.9
21 183.9 60 600.39 99 1075.8 138 1580.5 177 2062.3
22 191.83 61 612.71 100 1089.6 139 1595.2 178 2075.6
23 200.02 62 625.03 101 1103.3 140 1609.8 179 2088.9
24 208.79 63 637.37 102 1117.1 141 1620.8 180 2102.8
25 218.06 64 650.49 103 1130.9 142 1628.6 181 2113.5
26 227.6 65 664.14 104 1145.4 143 1639.5 182 2124.3
27 237.5 66 677.97 105 1159.9 144 1650.7 183 2135.6
28 247.47 67 691.79 106 1174.5 145 1661.8 184 2147.4
29 257.56 68 705.63 107 1189 146 1669.4 185 2160.1
30 267.7 69 719.47 108 1203.5 147 1677.5 186 2172.8
31 280.18 70 733.31 109 1218.3 148 1686.3 187 2186
32 292.96 71 747.19 110 1233.3 149 1695.5 188 2199.1
33 305.79 72 761.09 111 1248.2 150 1705.1 189 2212.3
34 319.6 73 775 112 1263.1 151 1715 190 2225.5
35 328.15 74 788.92 113 1278 152 1727.8 191 2238.7
36 336.82 75 802.83 114 1284.3 153 1740.6
37 345.49 76 816.77 115 1296.5 154 1753.5
38 354.17 77 830.72 116 1309.4 155 1766.3
39 362.81 78 844.69 117 1322.4 156 1779.1

error rate in terms of RMSE during prediction. The observation on this predicted data
and comparison is described in Section 4.2. Figure 5(c) shows the error rate (in terms of
RMSE) w.r.t. the number of epochs. From Figure 5(c), it can be observed that, the error
rate decreases as the number of epochs increases. This shows that our proposed model
performs accurate prediction.

The short term predictions result shows better accuracy than end-point predictions
for both the data sets. The AE, we found in this experiment show better accuracy and
consistent result than some well-known methods that are presented in Table 6 Table 7.

4.2 Comparison with Related Work and Observations

The prediction accuracy on the whole yields by using a large number of data sets. Since
it is not practically feasible to represent graphically for large number of data set within
these limited pages, we summarize the comparison using DBS-1 and DBS-2. The com-
parison between some analytical models and the feed forward neural network models
are summarized for DBS-1 and DBS-2 in Table 6 Table 7 respectively. It is observed
that FFBPN is the better predictor than that of the described models in Table 6 Table 7.
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(a) STP of FFBPN network using data set DBS-2.

(b) Deviation between the STP value and the real
value using data set DBS-2.

Fig. 4. STP and relative error of FFBPN network using data set DBS-2.

The accuracy and consistency of software are measured by the value of NRMSE and
AE on data set which is also used as software measurement criteria. From the above
result, it is found that the next-step prediction shows better accuracy than end-point
predictions results for both data sets DBS-1 & DBS-2. From Table 3 and 4, we observed
that DBS-1 produce better result than predictive results of DBS-2.

The comparison between some analytical models and the proposed feed-forward
neural network model for software reliability prediction for DBS-1 is summarized in
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(a) LTP of FFBPN network using data set DBS-2.

(b) Deviation between the LTP value and the actual
value using data set DBS-2.

(c) Performance result against RMSE using data set DBS-
2.

Fig. 5. LTP and relative error of FFBPN network using data set DBS-2.
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Table 6. The AEs found in this experiment in next-step prediction shows better accuracy
and consistent result than some well known methods.
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Fig. 6. Comparison with other models for data set DBS-1.

In Figure 6, we experimented on well-known parametric software reliability growth
models such as: Inv Polynomial model proposed by Littlewood and Verrall (2009), Du-
ane Model (2009), Logarithmic model proposed by Musa and Okumoto (1987), G-O
Model (1979) with our propose model FFBPN in STP. We observed that our propose
model produce satisfactory results than the above model mentioned in Table 6 in STP.
It is also observed that the propose model FFBPN, predictive performance in STP is
better than in LTP for both data sets.

Moreover, in Table 7, the NRMSE value is showing satisfactory result than that of
Mohanty et al. (2013). Mohanty et al. (2013) also used the same data set to test the effi-
cacy of their method. However, since they used the lagged data in their experimentation.
Here, our results compared with one of their lagged result.

It is observed that next-step prediction produces better accuracy compared to end-
point predictions for data sets DBS-1 & DBS-2.

The STP result in Table 6 shows that our proposed model has less AE values than
the other models in (Karunanithi et al., 1992b). Again by comparing this NRMSE with
the NRMSE of many related work (Mohanty et al., 2013), it is observed that FFBPN is
giving satisfactory result.

Model quality is considered to be better if its prediction points are close to the ideal
line passing through the zero error (Karunanithi et al., 1992). In these experiments,
Figure 2(b), Figure 3(b), Figure 4(b), and Figure 5(b) show the prediction closeness
between the actual vale and prediction value. It is found that the difference between
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Table 6. Comparison of AE values with various approaches.

Approach Values
FFN Generalization (Karunanithi et al., 1992b) 9.48
(with encoding)
(Tian and Noore, 2004) 4.51
(Cost et al., 2005) 7.15
Inv Polynomial 10.64231
Logarithmic 11.97389
Duane Model 10.5328
G-O Model 4.4835
FFBPN(Proposed)(DBS-1) 3.0018
FFBPN(Proposed)(DBS-2) 3.3540

Table 7. Comparison of NRMSE values with various approaches.

Approach Values
GMDH (Mohanty et al., 2013) 0.076335
(Kiran et al., 2007) 0.119402
Inv Polynomial 1.51
Logarithmic 2.24
Duane Model 1.71
G-O Model 2.34
GP Model (Cost et al., 2005) 4.74
FFBPN(Proposed) (DBS-1) 0.0334
FFBPN(Proposed) (DBS-2) 0.0721

two predicted values is significantly close to each other, which indicates that the lesser
AE, higher is the accuracy in prediction.

Some observations on software reliability prediction using our proposed feed for-
ward neural network model are listed below:

– The network can easily be built with a simple optimizing algorithm (e.g. Steepest
descent method) and less memory storage requirement that accelerates the training
process as well.

– The training time cost is minimum in this model for less number of epochs required
for output prediction.

– It is producing better accuracy and consistency for experimented data set like DBS-
1 & DBS-2.

4.3 Threats to Validity

Below we discuss the possible internal and external threats to the validity of our work.

– Our experiment uses MATLAB as tool for reliability prediction and therefore suf-
fers the same threats to validity as MATLAB does (i.e. Finding the exact result and
number of epochs may not be exact value for every run).

– Weights are taken randomly, so every time expecting the same result on the same
number of epochs is an issue.
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– Our model may not produce satisfactory result for insufficient training data size.
– Our model cannot manage well with major changes that are not reflected in training

phase.

Our FFBPN model is a powerful model because of it’s nonlinear and logistic prop-
erties and having less constraints on the number of observations.

5 Conclusions

In this paper, we presented a novel technique for software reliability prediction using
feed forward neural network with back-propagation. Our proposed technique accurately
predicts the software reliability. Unlike most of the computational intelligence models,
our model computes AE, RMSE, NRMSE, MAE simultaneously. In this work, most of
the predictive criteria are considered. We presented experimental evidence showing that
feed forward network with back propagation yields accurate result comparable to other
discussed methods. Results shows with two data sets, suggest that the FFBPN model
is better at short-term prediction than end-point predictions. Our experimental results
show that this approach is computationally feasible and can significantly reduce the
cost of testing the software by estimating software reliability. The proposed network
can significantly influence the predictive performance. In our future work, we will try
to develop a model to predict software reliability at an early stage of software develop-
ment using some hybrid techniques such as neuro-fuzzy, neuro-genetic, fuzzy-genetic of
computational intelligence.
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