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Abstract. Specifics and advantages of using high performance event timing for signal 

transmission and representation in the time and frequency domains are described. The focus is on 

the methods and systems for energy-efficient computing of Discrete Fourier Transform based on 

replacing the sinusoidal basis functions by binary-valued rectangular functions. The sources of 

potential errors are revealed and methods for avoiding them are discussed and evaluated. 
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1. Introduction 

Using timing information for signal digitizing and representing in the time and frequency 

domains and measuring various parameters of them has been known for a long time. The 

first developed and more popular is the approach based on timing the time instants of 

signal zero-crossing events. It is discussed, in particular, in (Curtis and Oppenheim, 

1987; Kumaresan and Wang, 2001) where many references to publications in this area 

are given. Using the timing information obtained at timing signal crossings of reference 

functions, including sine-waves, are also considered and discussed in (Bilinskis and 

Sudars, 2008a, 2008b) as it is also done within the framework of this paper. 

Actually signal crossings of well-chosen and precisely generated reference functions 

might carry much more information than timing the zero-crossings during the same time 

interval. Various types of waveforms can be used for getting this type of information. At 

first glance application of saw-tooth waveforms for that theoretically is most appropriate. 

However experience gained at using the event timing shows that in practise it is much 

better to use the sine-wave reference functions as they could be precisely generated 

electronically at much higher frequencies in a considerably simpler way. Various aspects 

of signal digitizing based on timing the signal and sine-wave crossing (SWC) events 

have been studied and are described in (Bilinskis, 2007).  

Considerably less attention, in general, has been paid to the problem of achieving 

high precision at the crossing event timing by using specific high performance Event 

Timers capable of performing picosecond resolution event timing at sufficiently high 

repetition rate of these events. In our earlier publications (Bilinskis et al., 2013a, 2013b) 
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we have drawn attention to using Event Timer A033-ET as an effective tool for 

applications in the field of signal digitizing and transmission over optical lines.  

Maturity and competitiveness of this Event Timer have been proven by successful 

using it for Satellite Laser Ranging in many countries worldwide in the framework of the 

International Laser Ranging Service network. Experience accumulated over last 20 years 

of using the Event Timer for Laser Ranging in about 30 Satellite Laser Ranging stations 

around the world confirms the high application potential for building and exploiting 

various systems with this Event Timer in the core (Zhongping et al., 2008; Artyukh et 

al., 2011).  

Conditions for signal transmission and representation in time and frequency domains 

can be flexibly varied by choosing and using an appropriate method for signal digitizing 

based on event timing. That is explained in (Sudars et al., 2015). Various aspects of 

using picosecond resolution event timing at data acquisition and transmission over 

optical lines are described and discussed in (Bilinskis et al., 2015; Sudars et al., 2016; 

Bilinskis et al., 2016).  

This paper addresses the topic of representing signals encoded by Pulse Width 

Modulation, transmitted and then reconstructed by using high performance event timers. 

Specifics of such signal transmission and representing them in the Time and Frequency 

domains are considered in Section 2 and Section 3, respectively. The topic of this paper 

is related to the work discussed in (Bilinskis et al., 2015; Sudars et al., 2016; Bilinskis et 

al., 2016) and it is focused on research and development of innovative approaches to 

Fourier coefficient estimating with significantly improved precision and applicability in 

a widened frequency range. Specifically, application of input signal heterodyning is 

described in Section 4 and the proposed method for reducing noise at DFT by using 

different rates at sampling the input signals and the rectangular basis functions is 

discussed in Section 5. The obtained results are summarised in Section 6. 

2. Specifics of transmitting the timing information 

Specific conditions for representing the transmitted signals in the time and frequency 

domains obviously depend on the used approaches to encoding and transmitting the 

timing information. In the considered case that is done on the basis of using high 

performance event timers. 

2.1. Two approaches to transmitting the timing information 

The structure of the whole system used for information transmission, in this case, is 

given in Fig. 1. Two types of converters are used, specifically, the Analog-to-Event 

Converter (AEC) and Event-to-Digital Converter (EDC), as it is shown in Fig. 1a. 

Picosecond resolution event timers are in the core of both of these converters and the 

event timing function plays a very important role at signal encoding (performed by 

AEC) and at reconstruction the transmitted signal carried out by the Receiver. The block 

diagram of the Receiver is given in Fig. 1b. 

What are the features of the transmitted signal first of all depends on the approach to 

signal encoding used on the transmitter side for supporting precise forming of the pulses 

carrying the information of the signal and sine-wave reference crossing (SWC) events. 

Transmitting the information obtained in result of direct timing the SWC events then is 

performed by using the Pulse Position Modulation (PPM). Although this approach has 
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significant advantages and provides for obtaining better results than the widely used zero 

or level crossing approaches, it has also a significant drawback. Indeed, the transmitted 

pulses then carry the information of both the signal sampling time instances and the 

respective sample values as it is described, for example, in (Bilinskis et al., 2013a). That 

actually complicates digital processing of the transmitted information as the SWC event 

streams are non-uniform. 

 

Fig. 1. Block diagrams illustrating the system used for transmitting event timing information: (a) 

structural diagram of the transmission system; (b) diagram of the receiver structure. 

In this paper we consider the approach to transmitting the timing information 

described in (Sudars et al., 2015), which does not have the mentioned drawback. 

According to this approach, a Track&Hold device is used for periodic sampling of the 

input signal and the events that are timed are formed as the Track&Hold output level 

crossings with the sine-wave reference function. Then the timing information related to 

signal sample values are taken periodically at predetermined time instants tk, (k = 0, 1, 2, 

…) and the mentioned crossing events carry only the information of these sample values 

x(tk) = xk. In this case transmitting the timing information is performed by using the 

Pulse Width Modulation (PWM) as it is shown in the diagrams given in Fig.1. 

2.2. Reconstruction of the transmitted signal 

According to the mentioned second approach, the transmitted signal is represented in the 

Time domain by the input signal sample values xk. They have to be recovered from the 

transmitted width modulated pulse stream. Demodulation of the received PWM signal is 

performed by the Event-to-Digital Converter (EDC) added to the Receiver. EDC, used 

for demodulation, in this case performs timing of the falling edges of the transmitted and 

received pulses, providing for recovery of signal sample value as 12 bit numbers.  

Compressive information transmission is achieved as each transmitted single pulse 

carries a 12 bit word and that makes it possible to transmit event timing information at 

300 Mbps bit rate (Bilinskis et al., 2015). The quantization step of the transmitted pulses 

then is equal to 6.1 ps.  To achieve information compression at transmission over the 

optical transmission lines on that level, using the picosecond resolution high-speed 

Event Timer A033-ET systems is essential. It supports time interval measurements 

between two events with the typical RMS errors in the range of 3.5 to 4 ps with errors of 

a single time measurements approximately in the range of 2.3-2.8 ps. Capabilities of this 

Event Timer are described, in particular, in (Artyukh et al., 2011). Design and 

performance of Event Timer A033-ET are on high level and that has been proved by 

successful meeting the demands dictated by practical applications of these systems in 

many countries worldwide in the framework of the International Laser Ranging Service 

network. 

Let us consider in some detail the process of transforming the received PWM signals 

into the representative digital signals under the specific conditions related to periodic 
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sampling of the input signals. The sampling time instants tk, (k = 0, 1, 2, …) mark the 

leading edges of PWM pulses. They are fixed as the transmitter and receiver time scales 

are synchronized. Using synchronized clocks on both sides provide for adequate 

measurements of the pulse widths 710 ,...,, www  proportional to the respective sample 

710 ,...,, xxx  of the transmitted analog signal. Only the trailing edges of these pulses then 

have to be timed at demodulation of the PWM pulse train performed in the process of the 

signal sample value xk recovery. The Event Timing block, shown in Fig.1b, performs 

precise and fast event timing function needed for demodulation. It means that it 

measures the time instants k when the signal sample value level xk (output signal of the 

T/H device) and the reference function crossing events occur. Under these conditions the 

signal sample value xk, representing the transmitted in the Time domain, are calculated 

as  

 
)](2cos[ kkrrk tfAx    (1)  

where rr fA , are the amplitude and frequency of the reference sine-wave. 

3. Representing the transmitted signals in the frequency 

domain 

Representing the transmitted signals in the frequency domain, when it is based on 

application of the high performance event timers, evidently is specific. It has been 

discussed before, for example, in papers (Sudars et al., 2016; Bilinskis et al., 2016). This 

paper is focused on development of computationally and energy efficient approach to 

exploiting Discrete Fourier Transform (DFT) for obtaining representative signal 

parameter estimates.  

3.1. Considered options 

The classical approach to estimating the Fourier coefficients ai, bi, characterizing digital 

signals x(tk)=xk, k=0,1,2,…,N in the frequency domain at frequencies fi, i=0, 1, 2, …, M 

is based on calculations performed according to the following equations: 
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where tk are the sampling instants and ωi = 2πfi, k=0,1, 2, …, N. 

This paper is focused on considering another option of performing DFT. It is based 

on replacement of kiki tt  sin,cos  by the functions )sgn(sin),( kiks ttiR  , 

)sgn(cos),( kikc ttiR   and on estimating the coefficients ai, bi as follows: 
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Conditions for processing signals at performing DFT according to (3) then are quite 

different in both the positive and negative senses. While estimating the coefficients ai, bi 

in this case evidently can be done in a significantly simplified way as ),(),,( kskc tiRtiR

have only the values -1, +1, the estimation precision is worse.  

Explanation of this precision worsening fact seems to be simple and obvious if the 

involved rectangular functions are considered as rough approximation of the sinusoidal 

functions. Indeed, the errors of such approximation are large and, unfortunately, they 

cannot be reduced. Actually this assumption is wrong. Investigations described in 

(Sudars et al., 2016; Bilinskis et al., 2016) show that these approximation errors do not 

represent the true reason for worsening the Fourier coefficients ai, bi estimation by using 

the rectangular ),(),,( kskc tiRtiR functions. It is shown that these functions under 

certain conditions actually can be used as well as the respective sinusoidal functions. To 

reveal what exactly these conditions are, specific properties of the rectangular functions 

must be taken into account. Consideration of them follows. 

3.2. Specifics of the rectangular basis functions 

The problem is that the rectangular basis functions of the considered type are not 

orthogonal, they have many components. Specifically, these functions contain 

components at odd frequencies ,ti 3 ,ti 5 ,ti 7 ,ti 9 ,ti 11 ,ti … and the 

amplitudes of these components at the respective frequencies are equal to 1, 1/3, 1/5, 1/7, 

1/9, 1/11, …. It means that whenever the input signal has components at frequencies 3fi, 

5fi, 7fi, 9fi, 11fi, …, errors will affect the values of the Fourier coefficients estimated at 

frequency fi. Therefore estimation of the coefficients ai, bi, performed on the basis of 

functions ),,(),,( kskc tiRtiR  has to be done in a restricted frequency range, excluding 

from the input signal x(t) the frequencies within the range [DC, 1/3(fs/2)] from the full 

frequency range (DC, fs/2).  

What happens if this requirement is not satisfied is shown in Fig.2. Spectrum 

analysis of a signal, containing 6 components in the frequency range (0, 300), is 

performed in the classical way and by using the rectangular basis functions. As can be 

seen, the first component of the signal within the frequency range [DC, 1/3(fs/2)], shown 

in the spectrogram obtained by using the classical approach to DFT, is significantly 

distorted in the spectrogram calculated at using the rectangular basis functions. 

The necessity of such narrowing the input signal frequency range by using band-

limited filtering represents a significant disadvantage of the approach to complexity-

reduced DFT based on using this type of rectangular functions. In result of studies 

related to this problem (Sudars et al., 2016; Bilinskis et al., 2016) an approach to 

resolution of it has been developed. Description of it, used for avoiding this particular 

disadvantage of using the rectangular basis functions, follows. 
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Fig.2. Two types of spectrograms obtained in the case where the signal has a component in the 

low frequency area. 

4. Using input signal heterodyning 

The mentioned and described above disadvantage of using rectangular basis functions 

for DFT can be avoided by using heterodyning of the input signals for shifting the 

frequencies of signal x(t) to a higher intermediate frequency (IF) range. Then it is 

possible to use the rectangular functions ),(),,( tiRtiR sc  at performing the complexity-

reduced DFT of this frequency-shifted signal without distortions related to the impact of 

the higher frequency components  at 3 ,ti 5 ,ti 7 ,ti 9 ,ti 11 ,ti …. Diagrams given 

in Fig. 3 explain how that can be achieved. 

 
Fig.3. Diagrams illustrating frequency shifting of the input signal performed by using IF and 

the signal frequency multiplications (heterodyning): (a) usable frequency band of the input signal 

bandwidth Bx  spectrum; (b) frequency shift for fH leads to widening the usable frequency band so 

that it covers the whole bandwidth of the input signal, as it is shown in (c). 

4.1. Essence of the method 

Specifically, the diagrams in Fig.3 illustrate the fact that only the frequencies from 

1/3(fs/2) to fs/2 of the respective signal bandwidth Bx can be recovered from its sampled 
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version by using a band-limited filter in the case where the rectangular functions 

),(),,( tiRtiR sc  are used for estimating the Fourier coefficients.  

The price that should be paid for using heterodyning is increasing the signal 

sampling frequency to (fs+2fH) in accordance to the diagram in Fig.3b. Note that the 

signal x(t) is then recovered in the IF range. Fortunately that does not represent a 

problem. The diagram in Fig.3c illustrates the simplicity of recovering the signal true 

frequencies. For that, the frequency scale simply should be moved to the right for the 

frequency interval equal to fH.  

4.2. Simulation of using Heterodyning  

Applicability of this approach to avoiding the limitation of the input signal frequency 

band, imposed by using the wide-band rectangular basis functions, was investigated by 

computer simulations and the obtained results were positive.  

 
Fig.4. Illustration of the signal spectrogram in the full frequency range (DC, 0.5fs) shifted in 

the frequency domain to the right for the interval of the heterodyning frequency fH=200. 

The spectrograms, given in Fig.4, illustrate application of heterodyning for 

eliminating the mentioned limitation of the input signal frequency band. The input signal 

contains sinusoidal components at frequencies 75, 148, 192, 223, 248, 267 and the 

amplitudes of these components are equal to 0.35; 0.3; 0.6; 0.45; 0.27 and 0.4, 

respectively. The classically obtained upper spectrogram shown in Fig.4 displays the 

input signal frequencies shifted for fH = 200. To recover the true values of these 

frequencies, the frequency scale of the spectrogram should be shifted to the left for the 

frequency interval fH = 200. It means that the spectrograms obtained by using the 

rectangular basis functions also shown in Fig.4 actually cover the whole frequency range 

of the input signal from DC up to 300.  
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4.3. Heterodyning as part of the Analog-to-Event conversion 

Input signal x(t) in this case is transformed according to the heterodyning principle. The 

signal frequencies are multiplied in the Mixer, shown in the structural diagram given in 

Fig.5, with the frequency fH supplied by the Oscillator. The obtained heterodyne signal 

then is periodically sampled in the Track and Hold mode so that the levels of the hold 

signal sample values can be passed to the Comparator of the Crossing Event Detector. 

Sampling is performed periodically at predetermined rate dictated by the output pulses of 

the Clock. The clock pulse frequency is quite accurate and these pulses are used also for 

synchronizing generation of the reference function and forming the front edges of the 

Pulse Width Modulated output pulses. 

 

 
Fig.5. Block diagram of the transmitter used for transforming analog signals to PWM signals by 

using the considered heterodyning method. 

The Track and Hold (T/H) block converts the analog input signal x(t) to its stepwise 

approximation with the step levels equal to the respective signal sample values. The 

representative events in this case are formed as the crossing events of the T/H output 

signal with a specific reference function. The reference function in this case is formed 

from the direct and inverted half-waves of the generated reference sine-wave. The 

Switch forms the doubled frequency reference function and Pulse Shaper forms the 

output pulse width modulated signals. While rise times of these pulses are formed at the 

sampling time instants, the pulse fall edges mark the time instants of the representative 

event happening. The formed PWM signal then is transmitted over the optical lines 

where it is demodulated and processed.  

4.4.  Taking heterodyning into account 

In general, using the mentioned rectangular functions as the basis for estimating the 

Fourier coefficients is done according to equations (3). However definition of these 

functions in this case differs. It is specific as estimating the Fourier coefficients ai, bi for 

the input signal component at the frequency fi is performed by using the frequency 

(fi+fH). Evidently then   
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Actually taking into account the effect due to application of heterodyning is simple 

enough and does not complicate the involved calculations. Using heterodyning 

represents the first principal improvement of the approach to DFT based on using the 

binary (-1, +1) valued rectangular functions Rc(i,tk), Rs(i,tk). Brief description of 

implementing the second type of improvement (suggested in (Sudars et al., 2016; 

Bilinskis et al., 2016)), follows. 

5. DFT of the transmitted PWM signals 

The difference between the results obtained at spectrum analysis by using either the 

sinusoidal or the rectangular basis functions is considered as presence of the noise 

degrading DFT results in the second case. At first glance it seems that these results must 

be worse because the basis functions Rc(i,tk), Rs(i,tk) then significantly differ from the 

sine-wave basis functions used at performing DFT in the classical way. Actually 

interpretation of the rectangular functions as an approximation of the sine-wave 

functions does not lead to the right explanation of the role they play at DFT as it is 

shown in (Sudars et al., 2016). 

To improve DFT precision by significant reduction of the noise, related to the 

widespread spectrum of the used functions Rc(i,tk), Rs(i,tk), they have to be sampled at a 

relatively high frequency whenever the time instants of switching the rectangular 

functions from one binary value to other do not coincide with the signal sampling time 

instants. Sampling frequency used for digitizing the input signal x(t), determined by 

taken into account the highest frequency of its components, usually is lower. In other 

words, requirements to the sampling rates to be used for digitizing the input signal x(t) 

and the generated rectangular functions Rc(i,tk), Rs(i,tk) then are different.  

5.1. Using two-rate sampling at DFT.  

Actually sampling of the rectangular basis functions must be performed at a significantly 

higher frequency for suppressing the noise due to aliasing of the rectangular function 

components. The problem is that suppressing this type of noise requires significant 

increasing the frequency of sampling these functions. Using a single source of the 

sampling frequency for digitising the input signal and the basis functions then represents 

a problem as taking and processing many signal sample values at a higher sampling 

frequency would significantly complicate digital signal processing performed at the 

spectrum analysis.  

An approach to resolution of the mentioned problem has been found. It is based on 

sampling the signal and the rectangular basis functions separately at two different 

sampling rates. Then the used rectangular basis functions are sampled with a small time 

step providing for precise timing the events when the values (-1, +1) of these functions 

change the polarity. This approach has been computer simulated with the focus on the 

achievable suppression rate (SR) of the difference between the spectra obtained by using 

the sine-wave and rectangular basis functions. Brief description of the obtained results 

follows.  

The spectrum, given in Fig.6, is obtained at using 2 times higher frequency fsR for 

sampling the rectangular basis functions than frequency fs used for sampling the input 

signal. The noise overlapping the spectrum, due to the mentioned aliasing effect, in this 

case is noticeable. Increasing the frequency of sampling the basis function only two 
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times (in comparison with fs) clearly is not enough.  The signal x(t) in this case has 

components at frequencies 115, 135, 185, 210, 237 and the amplitudes of these 

components are equal to 0.5, 0.2, 0.6, 0.3 and 0.55, respectively. This signal is sampled 

at frequency fs = 512 and the processed number of the signal sample values is N=1024. 

 
Fig.6. Spectrum (upper diagram) of the signal x(t), obtained at using the rectangular basis 

functions sampled at two times higher frequency fsR than the frequency fs used for sampling x(t). 

The squared difference between the spectra obtained in the classical way and by using the 

rectangular basis functions (lower diagram). 

Much better are the results obtained in result of using eight times higher frequency 

for sampling the rectangular basis functions. The improvement achieved under this 

condition is illustrated in Fig.7. 

 
Fig.7. Spectrum obtained at sampling the rectangular basis functions in the case where fsR=8fs 

(upper diagram); the squared difference between the spectra estimated by using the sinusoidal and 

rectangular basis functions (lower diagram). 
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As it is shown in Fig.7, the difference between both spectra obtained in the 

considered ways is significantly smaller in the case where 8 times higher sampling 

frequency fsR is used.   

5.2. Improvement achievable by increasing the sampling frequency fsR 

The rate of suppressing (SR) the mean power of the difference between the spectra 

estimated by using the sinusoidal and rectangular basis functions evidently depends on 

the parameters of the respective signal and on the ratio fsR /fs of the sampling frequencies. 

The numerical values given in Table 1 show how this rate SR and the average sample 

value AD of the mentioned difference between the estimated spectra is changing in 

response to the higher ratio fsR /fs values in the specific case where the input signal has 

the components with the parameters given above.  

Table 1 

fsR /fs 2 4 8 16 

SR 1 2.99 6.89 12.11 

AD 0.0129 0.0074 0.0049 0.0037 

 

The plot in Fig.8 illustrates how the precision of performing DFT of the considered 

signal is improving at using increased frequencies for sampling the rectangular basis 

functions at estimation of the Fourier coefficients. It is built by using the numerical data 

given in Table 1. 

The difference between the spectra estimated by using the sinusoidal and rectangular 

basis functions is considered as the noise introduced by using the rectangular functions. 

Actually power of this noise is not so high even at moderate increasing the frequency of 

sampling this type of the basis functions. As it can be seen in Fig.8, while increasing the 

sampling rate fsR /fs  for 2, 4, 8 times leads to significant reducing this noise, further 

increasing the sampling frequency fsR up to the 16 times higher level than fs provides for 

gaining relatively much smaller decreasing of the noise. It seems that sampling the 

rectangular basis functions at the rate 8 times higher than the rate of sampling the input 

signal should be acceptable in a wide application area. 

 
Fig.8. Typical achievable rate of suppressing the mean power of the difference between the 

spectra estimated by using the sinusoidal and rectangular basis functions. 
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6. Conclusions 

Specifics of using high performance event timers for signal transmission and 

representation in the time and frequency domains are considered and described.  

Representing the transmitted signal in the Time domain is performed by the input 

signal sample value recovering from the transmitted width modulated pulse stream. It is 

essential to use the picosecond resolution high-speed Event Timer A033-ET systems for 

recovery the transmitted signal sample values as 12 bit numbers from each transmitted 

single pulse carrying a 12 bit word. 

More complicated is representing the transmitted signal in the frequency domain. 

That is done on the basis of Fourier coefficient estimation and the used approach is 

based on replacing the sinusoidal basis functions by binary (+1, -1) valued rectangular 

functions. Assumption that these functions represent a rough approximation of the 

sinusoidal functions actually is wrong. It is shown that under certain conditions the 

rectangular basis functions can be used as well as the respective sinusoidal functions. 

These conditions are revealed and discussed.  

Firstly, they are well applicable if the input signal frequency band does not cover the 

frequencies from 0 up to 1/3 of the Nyquist frequency. The second condition is that the 

time instants of switching the rectangular functions from one to other binary values must 

coincide with the signal sampling time instants. 

The following two methods are suggested which can be used in the cases where these 

two requirements are not met: 

 Shifting the input signal frequencies by heterodyning; 

 Using different sampling rates for digitizing the input signals and the 

rectangular basis functions. 

In particular it is shown that sampling the rectangular basis functions at the rate 8 

times higher than the rate of sampling the input signal should be acceptable in a wide 

application area. 
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