
Baltic J. Modern Computing, Vol. 5 (2017), No. 1, pp. 87–106
http://dx.doi.org/10.22364/bjmc.2017.5.1.06

Gravitationally Inspired Search Algorithm for
Solving Agent Tasks

Margarita SPICHAKOVA

Institute of Software Science at Tallinn University of Technology
Tallinn, Estonia

margarita.spitsakova@ttu.ee

Abstract. Artificial ant problem is defined as constructing the agent that models the behavior of
the ant on trail with food. The goal of the ant is to eat all food on trail with limited number of
steps. Traditionally, the recurrent neural network or state machines are used for modeling ant and
heuristic optimization methods for example Genetic Programming as search algorithm. In this
article we use Mealy machines as ant model in combination with Particle Swarm Optimization
method and heuristic algorithms inspired by gravity. We propose new gravitationally inspired
search algorithm and its application to artificial ant problem. Proposed search algorithm requires
discrete search space, so the specific string representation of Mealy machine is introduced. The
simulation results and analysis of the search space complexity show that the proposed method
can reduce the size of the search space and effectively solve the problem.

Keywords: Soft computing, swarm intelligence, agent, artificial ant, gravitational
search, Particle Swarm Optimization.

Introduction

Agent games on grid world are used to understand the behavior of agents, especially
their controllers in real world tasks. To behave correctly on the grid, the controller
requires some memory, so, for example, finite state machine can be used to model agent.

The artificial ant task can be described as designing trail tracker, which acts as
artificial ant and follows some trail, which contains food (see Fig. 1). The goal of ant is
to collect maximal amount of food for limited number of steps, traditionally 200 steps.
In our case, ant is modeled by finite state machine (Mealy type) like agent, but it is
possible to use other models, for example recurrent neural networks. The input of such
machine is only one variable: is there food in the next cell, with values FOOD and EMPTY,
the outputs are defined as actions of ant: WAIT, TURN LEFT, TURN RIGHT, MOVE.



88 Spichakova

  

Artificial
Ant

FOOD
EMPTY

DO_NOTHING
MOVE_FORWARD
TURN_LEFT
TURN_RIGHT

TRAIL

Fig. 1. General model of artificial ant

There is no deterministic solution for this problem, so stochastic optimization meth-
ods can be used for solving artificial ant problem. In most of the cases the population
based heuristic methods, such as Evolutionary Algorithms or simulated annealing, are
used.

Initially, this task was proposed by Jefferson (1991) to benchmark Evolutionary
Algorithms and was researched afterward by many authors: Koza (1992), Angeline
(1993), (1994), Kuscu (1998). We use artificial ant task for benchmarking our proposed
method based on gravitationally inspired search algorithm.

This task is applicable not only in case of FSM inference, but also in a case of Ge-
netic Programming by Koza (1992) and artificial neural network learning by Jefferson
(1991). Chellapilla (1999) uses modular Mealy machine as artificial ant and Evolution-
ary Programming procedure for the optimization. We focus only on traditional Mealy
machines.

In this article we propose a new stochastic optimization method, which can be ap-
plied for the problem of FSM identification. The proposed method is inspired by com-
bination of Particle Swarm Optimization (PSO) method and Gravitational Search Al-
gorithm (GSA).

The article is constructed as follows: Section 1 describes the problem statement in
details, Section 3 presents the general idea of proposed stochastic optimization method,
Section 4 covers the problem of FSM representation, Section 5 gives the main ideas of
the method with application to FSM identification and Section 6 presents the simulation
results and analysis.



GrIS Algorithm for Solving Agent Tasks 89

1 Artificial ant problem

The problem in hand is known as ’Artificial ant problem’ or ’Trail tracker problem’.
It was originally proposed by Jefferson et al. (1991). The goal is construct the agent,
which takes information about the food in the next cell and moves on the grid, so that it
finds the optimal trail to collect all food on the grid with pre-given amount of steps.

1.1 Trail

The grid is presented by 32×32 toroidal structure, so that if ant is at the bottom of such
grid and the next move is MOVE DOWN, the next cell will be at the top.

The food on the grid is located in a special way, constructed to make the task more
complex. The are two well known trails John Muir Trail (Fig. 2 (left)) developed by
Jefferson et al. (1991) and Santa Fe Trail (Fig. 2 (right)). Both of them contain 89 cell
of food.

Fig. 2. John Muir Trail (left) and Santa Fe Trail (right)

1.2 Finite state machine as ant model

The ant is modeled by Mealy type machine with n states. The ant sees only one cell
directly in front of him, so there is only one input variable with two values (events). So,
the input alphabet contains only two chars: F (FOOD) – there is food in the next cell,
E (EMPTY) – the next food is empty.

The allowed actions of ant can be coded by 4 letter alphabet: W (WAIT) – the ant
will do nothing at this step, M (MOVE) – the ant will move to the next cell, if there is
a food it will eat it (the eaten food is removed from the grid), R (TURN RIGHT) – the
ant will stay in the same cell, but turn the right, L (TURN LEFT) – the ant will stay in



90 Spichakova

the same cell, but turn the left. WAIT action can be omitted, in that case the size of the
alphabet is 3.

The ant can see only the cell in front of it, the address of the cell is defined by
orientation of the ant: N (NORTH) – ant is looking the top cell, E (EAST) – ant is
looking the right cell, S (SOUTH) – ant is looking the bottom cell, W (WEST) – ant is
looking the left cell.

The start position of ant (0, 0) is top left cell. The initial orientation is EAST. So, we
define Σ = {E, F} and ∆ = {W, M, L, R}. Fig. 3 (left) demonstrates the defined
alphabets (actions and events) for the situation, where ant is oriented EAST.

N

E

S

W R: turn right

L: turn left

M: move

F: food

E: empty

0 1

2

3
4

E/RF/M

E/L
F/M

F/MF,E/M

F/M

E/LE/R

Fig. 3. Ant actions (left) and Mealy machine as artificial ant (right)

The FSM, which is able to fulfill the task is quite complex (we measure complexity
by number of states). Jefferson (1991), the author of original task, constructed the FSM
with 5 states (Fig. 3 (right)), which was able to eat 81 pieces of food out of 89 on John
Muir Trail by 200 steps and eat all food by 314 steps. As you can see, this ant with
5 steps was not able to eat all the food by 200 steps, to do so, the number of states
(memory) must be greater. In the literature ant with up to 13 states are used.

1.3 Ant evaluation

If we want to answer the question ’How well the given ant solves the problem?’, we
need to construct so called objective function. The score of the ant can be found only
by modeling situation. The process of objective function computation is the most time
consuming part of the search algorithm.

There are several possible function. In the easiest case, we can take into account
only amount of food that was eaten during given number of steps. We modify this
function so that it returns value ∈ [0 . . . 1] (Equation 1): we divide the number of eaten
food by the total number of food on grid.

ObjV alue =
eaten food

total food on trail
(1)

As you have noticed, presented function does not take into account the number of states
of the model and the number of steps that was required to eat all the food, if it is less



GrIS Algorithm for Solving Agent Tasks 91

than given number of steps. The objective function can be modified to minimize the
number of states, but we use the simplified version.

2 Inference of finite state machines

To define our problem in the context of stochastic optimization methods we need first of
all define several concepts. We have the problem statement – ’find the Mealy machine
with n states, which models the artificial ant that eats all food on given trail in given
number of steps’. In fact we have our search space defined as set of all possible Mealy
machines with n states. Each point of such space is candidate solution. For each candi-
date solution we can assign objective value using the above defined objective function
(Equation 1). Now, we can redefine the problem as find the candidate solution with
maximal objective value, which is exactly the definition of the optimization task.

Such tasks are solvable by population based heuristic algorithms.

  

     E      Environment

        

Representation

setScore

Best performing FSM

Search algorithm

Task

Decoder

String

Finite state machine

Fig. 4. The outline of the FSM search process

The proposed system implements the ideas of unified methods for FSM identifica-
tion consists of three main modules (see Fig. 4). Each module of the system presents
the independent part of the system and can be replaced by another implementation or
definition:

– ’Task’ module contains the implementation of basic concepts and definitions that
are used to describe the statement of the problem. To describe the problem, we need
to define the type of the FSM, choose alphabets, number of states and construct the
FSM evaluation algorithm. These parameters (number of states, type of the machine
and alphabets) can be derived from problem specification (see Section 1).

– ’Search algorithm’ module contains the implementation of different stochastic op-
timization algorithms, such as GA or PSO (see Section 5).

– ’Representation+Decoder’ module. This subsystem contains algorithms for defini-
tion of FSM and string representation of FSM (see Section 4).



92 Spichakova

3 Heuristic search

There are many different heuristics, for example Genetic Algorithms (GA) or Particle
Swarm Optimization (PSO). Some of them are inspired by natural mechanisms, such as
evolutionary theory, physics or social behavior.

But still, they have several mechanisms in common. First of all, initial set of the
candidate solutions are generated randomly. Each of them is evaluated and the score
value is assigned. Using those values some of the candidate solutions are chosen for
modification. There are several algorithm specific modification methods. Using them
we can improve the candidate solutions. After the modifications all candidate solutions
are evaluated again. The process continues until the optimal solution is found or the
number of generation is reached. The important fact is that in most of the cases can-
didate solutions are usually presented indirectly, encoded to some structure: Boolean
vector, vector of integer or real values. The choice of representation and search algo-
rithm plays important role in resolvability of the problem.

3.1 Evolutionary Algorithms

Evolutionary Algorithm (EA) is a search algorithm based on simulation of biological
evolution. In EA some mechanisms inspired by evolution are used: reproduction, muta-
tion, recombination, selection. Candidate solution presents the individuals of the evo-
lution.

Some differences in implementation of those principles characterize the instances
of EA (Bäck 1997):

– Genetic Algorithms (originally described by Holland in 1962) (GA) — the solution
represented as an array of numbers (usually binary numbers). A recombination
operator is also used to produce new solutions.

– Evolutionary strategies (developed by Rechenberg and Schwefel in 1965) — use
the real number vectors for representing solution. Mutation and crossover are es-
sential operators for searching in search space.

– Evolutionary Programmings (developed by Lawrence J. Fogel in 1962) — the algo-
rithm was originally developed to evolve FSM, but most applications are for search
spaces involving real-valued vectors. Does not incorporate the recombination of
individuals and emphasizes the mutation.

EAs are often used to solve artificial ant task: Jefferson (1991), Koza (1992), An-
geline (1993), (1994), Kuscu (1998).

3.2 Standard Particle Swarm Optimization algorithm

Particle Swarm Optimization algorithm is inspired by social behavior of some set of
objects, for example bird flock or fish school. Initially, it is designed by Kennedy at al.
(1995) for the real-valued vector.

There is the set of the particles – swarm. Each of them is characterized by position
vector, velocity vector and the best known position for this object. Also, there is the
global best known position for the whole swarm.



GrIS Algorithm for Solving Agent Tasks 93

The position vector pd, d ∈ [0 . . . n] presents the candidate solution. Dimensionality
n of the vector depends on the problem size.

We assign value for each candidate solution using evaluation function. According
to those values we can choose the global best known position Gbest, which is the point
with optimal value found so far by the whole swarm, and the local best known position
Pbest, which is the best position that was found by this exact particle.

The velocity vector vd, d ∈ [0 . . . n] represents the trend of movement of the particle.
It is computed by using ( 2),

vd(t) = α ·vd(t−1) +β · r1 · (Pbestd−pd(t−1)) +γ · r2 · (Gbestd−pd(t−1)) (2)

where:

– α, β, γ are learning coefficients and α represents the inertia, β - the cognitive
memory, γ - the social memory. Those coefficients must be defined by user.

– r1 and r2 are random values in range [0 . . . 1].
– Pbestd is a local best known position for this particle,Gbestd is global best known

position of the swarm.
– vd(t) is the new value of the velocity vector at dimension d, vd(t−1) is the previous

value of the velocity.

The new position pd(t) is simply defined as sum of the previous position pd(t− 1)
and new velocity vd(t) ( 3).

pd(t) = pd(t− 1) + vd(t) (3)

3.2.1 PSO algorithm work-flow The initialization part consists of defining required
learning parameters, setting up boundaries of the search space and generating the swarm
with random position and velocity. The search process is iterative update of the positions
and velocities. The process ends when the ending criteria are met: either the number of
iterations is exceeded or the optimal solution is found.

3.3 Gravity as inspiration for optimization algorithms

There are four main forces acting in our universe: gravitational, electromagnetic, weak-
nuclear and strong nuclear. These forces define the way our universe behaves and ap-
pears. The weakest force is gravitational, it defines how objects move depending on
their masses.

The gravitational force between two objects i and j is directly proportional to the
product of their masses and inversely proportional to square distance between them

Fij = G
Mj ·Mi

R2
ij

. (4)

Knowing the force acting on body we can compute acceleration as

ai =
Fi

Mi
. (5)

To construct the search algorithm based on gravity, we can adapt the following
ideas:



94 Spichakova

– Each object in the universe has mass and position.
– There are interactions between objects, which can be described by using law of

gravity.
– Bigger objects (with greater mass) create larger gravitational field and attract smal-

ler ones.

During the last decade some researchers have tried to adapt the idea of gravity to find
out optimal search algorithms. Such algorithms have some general ideas in common:

– The system is modeled by objects with mass.
– The position of those objects describes the solution and the mass of the objects

depends on the evaluation function.
– The objects interact with each other using gravitational force.
– The objects with greater mass present the points in search space with better solu-

tion.

Using these characteristics, it is possible to define family of optimization algorithms
based on gravitational force. For example, Central Force Optimization (CFO) is deter-
ministic gravity based search algorithm proposed and developed by Formato (2007). It
simulates the group of probes which fly into search space and explore it. Another algo-
rithm, Space Gravitational Optimization (SGO) was developed by Hsiao and Chuang
(2005). It simulates asteroids flying through curved search space. A gravitationally-
inspired variation of local search algorithm, Gravitational Emulation Local Search Al-
gorithm (GELS) was proposed by Webster (2003), (2004). Another one, Gravitational
Search Algorithm (GSA) was proposed by Rashedi (2009)as a stochastic variation of
CFO.

Basically, the gravitationally inspired algorithms are quite similar to PSO algo-
rithms. Instead of particle swarm we have set of bodies with masses, ideas of position
and velocity vectors are the same, the movement laws are similar.

The idea of hybridization of PSO algorithm and gravitationally inspired search al-
gorithms is not new. There are several existing algorithms that adapt both ideas (PSO
algorithm and gravity) to construct heuristic search algorithm: PSOGSA - PSOalgorithm
and Gravitational Search Algorithm developed by Mirjalili (2010), Extended Particle
Swarm Optimization Algorithm Based On Self - Organization Topology Driven By Fit-
ness - PSO algorithm and Artificial Physics, created by Mo et al. (2011), Gravitational
Particle Swarm, proposed by Tsai (2013), Self-organizing Particle Swarm Optimization
based on Gravitation Field Model, created by Qi et al. (2007).

The traditional way of hybridization of PSO algorithm with gravitationally-inspired
search algorithms is to add gravitational component to the velocity computation. ( 2)
has additional component, which is computed by using gravitational interactions. Un-
fortunately, this makes the behavior of the search algorithm even more complex and
unpredictable. Additionally, the user defined parameters still need to be found.

The choice of the optimization method and its effectiveness strictly depends on type
of the search space. In next Section we discuss the definition of our search space.



GrIS Algorithm for Solving Agent Tasks 95

4 Representation of finite state machines

Let’s have a target Mealy machine with n states.

– Input alphabet: Σ = {i0, . . . , ik−1};
– Output alphabet: ∆ = {o0, . . . , om−1};
– Set of states: Q = {q0, . . . , qn−1 };

One row of the transition table for such Mealy machine can be described by structure
presented on Fig. 5, where we store the information for corresponding state qj : for all
transition from this state with respect to input symbol i0...k−1 we encode output value
oi... and the label of target state qi... .

State qj
oi0 qi0 oi... qi... oik−1 qik−1

Fig. 5. One row of Mealy machine transition table

The structure required to code whole transition table is constructed as concatenation
of such sections in the order of state labels (see Fig. 6).

State q0 . . . State qn−1

oi00 qi00 . . . o
ik−1
0 q

ik−1
0 . . . oi0n−1 qi0n−1 . . . o

ik−1
n−1 q

ik−1
n−1

Fig. 6. SR(MeFST) as concatenation of transition table rows

Definition 1 (SR(MeFST): String representation of Mealy machine). The string
representation of Mealy machine is a structure in form:
oi00 q

i0
0 . . . o

ik−1

0 q
ik−1

0 . . . oi0n−1q
i0
n−1 . . . o

ik−1

n−1 q
ik−1

n−1 , where [oi00 . . . o
ik−1

n−1 ] ∈ [0 . . .m − 1]

presenting codes for output values of the transitions and [qi00 . . . q
ik−1

n−1 ] ∈ [0 . . . n − 1]
presenting target states of the transitions.

Theorem 1 (The space complexity of SR(MeFST)). The length of SR(MeFST) rep-
resenting Mealy machine with n states and over input alphabet k with output alphabet
with m symbols is

((1 + 1)× k)× n

The number of corresponding SR(MeFST) strings is

((m× n)k)n



96 Spichakova

?>=<89:;0b/0 66
a/1 //?>=<89:;2

a/1,b/0

��?>=<89:;1b/1 66

a/0

OO

?>=<89:;3
b/0

oo

a/1

__>>>>>>>>>>>>>>>>>

Fig. 7. Transition diagram of Mealy machine Mme1

Example 1. Let’s take a look at a Mealy machine Mme1 with transition diagram repre-
sented on Fig. 7. Q = {0, 1, 2, 3}, Σ = {a, b}, ∆ = {0, 1}.

The string representation for such machine will be
SR(Mme1) = [1, 2, 0, 0, 0, 0, 1, 1, 1, 3, 0, 3, 1, 0, 0, 1] (see Fig. 8).

State 0 State 1 State 2 State 3
a b a b a b a b

1 2 0 0 0 0 1 1 1 3 0 3 1 0 0 1

Fig. 8. String representation SR(Mme1)

The separation of the the transition and output functions can be easily done by
constructing two strings from a SR(MeFST) string. Fig. 9 describes separating the
transition and output functions transformation for Mealy machine.

State q0 . . . State qn−1

oi00 qi00 . . . o
ik−1
0 q

ik−1
0 . . . oi0n−1 qi0n−1 . . . o

ik−1
n−1 q

ik−1
n−1

State q0 . . . State qn−1

qi00 . . . q
ik−1
0 . . . qi0n−1 . . . q

ik−1
n−1

State q0 . . . State qn−1

oi00 . . . o
ik−1
0 . . . oi0n−1 . . . o

ik−1
n−1

Fig. 9. SRS(MeFST): Separating transition SRS(MeFST.transition) (right) and output
functions SRS(MeFST.output) (left) for Mealy machine SR(MeFST) (top)

Based on this transformation process the SR(MeFST) is defined (Definition 2).

Definition 2 (SRS(MeFST): Separated string representation of Mealy machine).
The separated string representation of Mealy machine is a structure formed from



GrIS Algorithm for Solving Agent Tasks 97

SR(MeFST):

SRS(MeFST ) = {SRS(MeFST.transition), SRS(MeFST.output)},

where

– SRS(MeFST.transition) presents transition function
qi00 . . . q

ik−1

0 . . . qi0n−1 . . . q
ik−1

n−1 , with [qi0 . . . q
ik−1

n−1 ] ∈ [0 . . . n− 1] presenting target
states of the transitions and

– SRS(MeFST.output) presents output function oi00 . . . o
ik−1

0 . . . oi0n−1 . . . o
ik−1

n−1 ,
where [o0 . . . on−1] ∈ [0 . . .m− 1] is presenting codes for output values.

Example 2. Let’s return to Mme1 (Example 1). The original code is
SR(Mme1) = [1, 2, 0, 0, 0, 0, 1, 1, 1, 3, 0, 3, 1, 0, 0, 1],
so if we transform it to separated string representation the result will be:
SRS(Mme1) = {[2, 0, 0, 1, 3, 0, 3, 0, 0, 1], [1, 0, 0, 1, 1, 0, 1, 0, ]}

Example 3. The ant on Fig. 3 (right) can be presented by
cSRS(Mant81t314) = {[1, 0, 2, 0, 3, 0, 4, 0, 0, 0], [3, 1, 2, 1, 2, 1, 3, 1, 1, 1]}.

The SRS(FSM.transition) code depends on the labels of the states and their
ordering, renaming states leads to isomorphisms. We can solve this problem by deter-
mining the way the state labels will be named. To do so, we adapt a method known as
normal form string.

4.1 Normal form strings

We describe the basic theory we use in further algorithms. The used methods were pro-
posed by Almeida, Moreira and Reis (2005), (2007), (2009) in a context of enumeration
of deterministic finite state acceptors (DFA). We present only some definitions and al-
gorithms we require for the research, so more information, proofs and other algorithms
can be found in original sources.

The main goal of their approach is to find unique string representation of initially
connected (all states are reachable from the initial one) DFA (ICDFA), this is done by
construction of state label ordering. This representation is unique.

Suppose we have ICDFA∅ = (Q,Σ, δ, q0), where Q is a set of states |Q| = n, q0
is initial states, Σ is the input alphabet with k symbols and δ is a transition function. As
you can notice, the set of final states is omitted.

The canonical string representation (based on canonical order of states of the
ICDFA) is constructed by exploring set of states of given ICDFA using bread-first search
by choosing outgoing edges in the order of symbols in Σ.

So, first of all, the ordering of input alphabet must be defined, for given Σ =
{i0, i1, . . . , ik−1}, there is order i0 < i1 < . . . < ik−1, for example the lexicographical
ordering can be used.

For given ICDFA∅, the representing string will be in form (sj)j∈[0...kn−1] with
sj ∈ [0 . . . n−1] and sj = δ(bj/kc , ij mod k). There is a one-to-one mapping between



98 Spichakova

string (sj)j∈[0...kn−1] with sj ∈ [0 . . . n− 1] satisfying rules (more details in Almeida
(2009) work):

(∀m ∈ [2 . . . n− 1])(∀j ∈ [0 . . . kn− 1])

(sj = m⇒ (∃l ∈ [0 . . . j − 1])sl = m− 1) (6)
(∀m ∈ [1 . . . n− 1])(∃l ∈ [0 . . . km− 1])sl = m (7)

and non-isomorphic ICDFA∅ with n states and input alphabet Σ with k symbols.
In the canonical string representation (sj)j∈[0...kn−1] we can define

flags (fj)j∈[1...n−1] that will be sequence of indexes of first occurrence of state label
j. The initial sequence of flag is (ki − 1)i∈[1...n−1]. The rules described before can be
reformulated as

(∀j ∈ [2 . . . n− 1])(fj > fj − 1) (8)
(∀m ∈ [1 . . . n− 1])(fm < km) (9)

For given k and n, the number of sequences (fj)j∈[1,n−1], Fn,k can be computed
by

Fk,n =

(
kn

n

)
1

(k − 1)n+ 1
= C(k)

n , (10)

where C(k)
n are the Fuss-Catalan numbers. The proof can be found in Almeida (2009).

The process of enumeration of all possible ICDFA presented by canonical string
representation consists from two parts: generating flags and generating all sequences
inside the flag.

We define cSRS(FST) as a special case of SRS(FST) system, where
SRS(FSM.transition) is represented by canonical string representation. This ap-
proach ensures that there are no isomorphisms and machines with unreachable states in
the enumeration list.

4.2 Search space structure

The normal form string representation method allows us to define non-intersecting sub-
spaces in the search space (Fig. 10). This gives the possibility to handle those subspaces
separately in space or in time. Those subspaces are characterized by flags.

Definition 3. The universe is a set of all possible FSTs, represented by canonical string
representation cSRS(FST), where canonical string representations of transition func-
tions belong to one flag.

Definition 4. The multiverse is a set of all possible Universes defined by flags.



GrIS Algorithm for Solving Agent Tasks 99

Search space

Flag
initial

Flag
final

Flag
1

Flag
...

Flag
n-2

Seq
initial

Seq
final

Seq
1

Seq
...

Seq
initial

Seq
final

Seq
1

Seq
...

Seq
initial

Seq
final

Seq
1

Seq
...

Seq
initial

Seq
final

Seq
1

Seq
...

Seq
initial

Seq
final

Seq
1

Seq
...

Subspace
0

Subspace
1

Subspace
...

Subspace
n-2

Subspace
n-1

Fig. 10. Search space structure

5 Search algorithm

The task of the search algorithm is to find a point in a search space, which corresponds
to the FST with the optimal behavior. For each point in a search space evaluation func-
tion assigns a score value from [0 . . . 1], which describes how well corresponding FST
behaves. So, the task is to find the point with maximal value (1.0) or at least the point
with maximal score value.

Subspace
n-1

Subspace
n-2

Subspace
...

Subspace
2

Subspace
1

Subspace
0

Subspace
best

point
0

point
1

point
2

point
...

point
k-2

point
k-1

point
best

Meta 
search

Local
search

solution

Solution?

YN

Fig. 11. Search algorithm

Search space (Multiverse) (see Definition 4) consists from several Universes (non-
intersecting subsets) (see Definition 3) and each Universe contains points (see Subsec-
tion 4.2). Some of the Universes have higher probability to contain the solution than



100 Spichakova

others. The idea is to subdivide the search algorithm into two phases, the first one
chooses the Universe (which is ’better’ than others) and second phase searches this
Universe locally, to find the best point (Fig. 11):

1. Phase 1. ’Multiverse search’. During meta search we try to evaluate the Universes
(subspaces), so that it is possible to choose the Universe, which includes solutions
with higher probability.

2. Phase 2. ’Universe local search’. The task of the local search is to find the maximal
point inside pre-given Universe. If solution was not found the algorithm will return
to the meta search phase. This cycle is done until solution (with maximal value) is
found or all Universes are explored. If all subspaces are explored and solution with
value 1.0 was not found, then algorithm will return the solution with maximal value
(< 1.0).

5.1 Multiverse search
The task of meta search algorithm is to assign value to each subspace (described by flag)
and to choose ’the best’ subspace, which contains the solution with higher probability.

Size of search space: 9487698075
0 Universe: (1, 3, 5, 7): * 1 * 2 * 3 * 4 * * Size: 600 * 59049 From: 0 to: 599

1 Universe: (1, 3, 5, 6): * 1 * 2 * 3 4 * * * Size: 750 * 59049 From: 600 to: 1349
2 Universe: (1, 3, 4, 7): * 1 * 2 3 * * 4 * * Size: 800 * 59049 From: 1350 to: 2149
3 Universe: (1, 3, 4, 6): * 1 * 2 3 * 4 * * * Size: 1000 * 59049 From: 2150 to: 3149
4 Universe: (1, 3, 4, 5): * 1 * 2 3 4 * * * * Size: 1250 * 59049 From: 3150 to: 4399

...

37 Universe: (0, 1, 2, 7): 1 2 3 * * * * 4 * * Size: 6400 * 59049 From: 108150 to: 114549
38 Universe: (0, 1, 2, 6): 1 2 3 * * * 4 * * * Size: 8000 * 59049 From: 114550 to: 122549
39 Universe: (0, 1, 2, 5): 1 2 3 * * 4 * * * * Size: 10000 * 59049 From: 122550 to: 132549
40 Universe: (0, 1, 2, 4): 1 2 3 * 4 * * * * * Size: 12500 * 59049 From: 132550 to: 145049
41 Universe: (0, 1, 2, 3): 1 2 3 4 * * * * * * Size: 15625 * 59049 From: 145050 to: 160674

Fig. 12. The structure of the search space: subspaces and their flags

Fig. 12 illustrates the structure of the search space for the case of Mealy machine
with 5 states. It consists of 42 Universes characterized by flags: from (1, 3, 5, 7) to
(0, 1, 2, 3). The only useful information we know about subspace is its flag. Flag gives
the pattern for sequences and basically defines how states are connected (some part of
transition function). The idealistic meta search algorithm evaluates subspaces without
generating points in any of them. The realistic meta search algorithm evaluates sub-
spaces based on generated points.

The simplest idea is to evaluate the Universe subspace based on average value of
all points. The idea of this method is to generate randomly some amount of points
(defined by per cent from the size of the search space) and based on values of those
points construct the subspace score. This method uses the average function to get the
score. Current method uses the maximal value of the points to get the score function
Universe.score = best(Points[k].value) for Universe.



GrIS Algorithm for Solving Agent Tasks 101

5.2 Universe local search. Gravitationally inspired search algorithm

For the Universe local search we propose to apply heuristic search method. We reuse the
ideas presented in PSO algorithm (Section 3.2) and in gravitationally inspired algorithm
(Section 3.3), although both of them are for continuous search space we adapt their main
ideas to discrete search space. The proposed method is called ’Discrete Gravitational
Swarm Optimization’ (DGSO).

Each point in a search space characterized by:

– position[] – which represents the solution,
– velocity[] –which stores the information about the change of the position[] vector,
– mass – corresponds to score value of the solution,
– position[]best – the best known position for this point,
– position[]global – the best known position in explored search space.

First of all, we will define the distance between points. Each point, in our case, is
the n-dimensional vector of integers. To calculate the distance between vectors, we use
distance in one dimension

distanceInD(valueD1, valueD2) =

{
0 : valueD1 == valueD2

1 : valueD1 6= valueD2
, (11)

which returns ’1’, if values in corresponding dimension are not equal and otherwise it
returns ’0’.

The distance between vectors is defined as sum of distances for all dimensions:

distance(p1[], p2[]) = Σp.length−1
d=0 distanceInD(p1[d], p2[d]) (12)

Now we need to redefine two operations: movement (change of the position) and
acceleration (change of the velocity). In PSO and GSA algorithms those operations are
defined as sums, in our case we will use algorithms similar to ’crossover’ operator in
EA.

Algorithm 1Accelerate(Forcep, Forceg, velocity[], position[]pBest, position[]gBest)

for dimension = 0→ velocity.length− 1 do
if Random() < Forcep then

newV elocity[dimension] = positionpBest[dimension]
else

newV elocity[dimension] = velocity[dimension]
end if

end for
for dimension = 0→ velocity.length− 1 do

if Random() < Forceg then
newV elocity[dimension] = positiongBest[dimension]

else
newV elocity[dimension] = velocity[dimension]

end if
end for
return newV elocity[]



102 Spichakova

The ’move’ operator (Algorithm 2) is the procedure, which changes the current
position to the new one according to the tendency, which described by velocity[] vector.
The ability of changing is described by massinertial, the bigger massinertial means,
that this point tends to save it’s current position. The ’move’ operator is similar to
uniform ’crossover’ operator between position[] and velocity[] vectors.

Algorithm 2 Move(position[], velocity[],massinertial)

for dimension = 0→ position.length− 1 do
if Random() < 1−massinertial then

newPosition[dimension] = velocity[dimension]
else

newPosition[dimension] = position[dimension]
end if

end for
return newPosition[]

The proposed gravitationally inspired search algorithm was evaluated in a context
of Diophantine Equation Solver by Spichakova (2016) and showed good results.

6 Simulations and analysis

Before discussing the experiments and algorithm effectiveness, we describe the com-
plexity of the search space.

6.1 Size of the search space

Search space complexity shows how many points (which can be considered as FST)
there are in a search space for given number of states n, size of input alphabet k = 2 and
size of the output alphabet m = 3 (we leave out W (WAIT) action, see Subsection 1.2).

Table 1. Search space complexity

n cSRS(Ant) SRS(Ant)

2 972 1 296
3 157 464 531 441
4 34 432 128 429 981 696
5 9 487 698 075 576 650 390 625
6 3 152 263 549 140 1 156 831 381 426 180
7 1 225 311 951 419 010 3 243 919 932 521 510 000



GrIS Algorithm for Solving Agent Tasks 103

Table 1 shows how search space grows with change of number of states n. Columns
cSR(Ant) and SR(Ant) show the size of search space (the number of all possible
FST) with respect to corresponding string representation: cSRS(FST) and SRS(FST).
As you can see, proposed cSRS(FST) string representation significantly reduces the
size of the search space.

6.2 How to compare the effectiveness of solutions

Due to different methods and algorithms for artificial ant representation (grammars
(Sugiura 2016), trees, FSMs, neural nets etc.), different heuristic search methods (GP,
GA, Ant Colony Optimization (Chivilikhin et al. 2013)) and different possible evalu-
ation function the proposed method can not be directly compared to already existing
solutions. Also, we minimized and structured the search space, so it is hard to separate
the effect of the proposed gravitationally inspired search algorithm from the effect of
the search space minimization.

One of the most time consuming process during the search algorithm is evaluation
of the ant. To optimize the search process we need to minimize the number of evalua-
tions. The number of fitness evaluations (Neval) shows how many times the evaluation
function was computed. Neval is also applicable for different search methods, so it can
be used as metric for algorithm comparison.

6.3 Experimental results

During experiments we have tried to construct MeFST with 5 . . . 7 states, which models
the artificial ant. The ant is simulated on Santa Fe Trail. The input and output alphabets
are defined as Σ = {E, F} and ∆ = {M, L, R}, the objective function counts the
number of food eaten during 400 steps using ( (1)).

The parameters for the proposed DGSO method are the following:

– number of steps in each local search phase e = 50,
– at the initial stage of the Multiverse search some amount of point for Universe must

be generated. Coefficients Ct (coefficient for transition function) and Co (coeffi-
cient for output function) (Table 2) show how many points are generated:
• |Universe(MeFST.transition)| = |cSRs(MeFST.transition)| · Ct

• |Universe(MeFST.output)| = |cSRs(MeFST.output)| · Co

Table 2. Initialization parameters

n Ct Co

5 0.002 0.002
6 0.00015 0.00015
7 0.00005 0.00005



104 Spichakova

We use Neval (see Subsection 6.2) for measuring the quality of proposed DGSO
method. Christensen, S. and Oppacher, F. (2007) proposed a method with Neval = 20696
fitness evaluations for Santa Fe Trail based on GP + small tree analysis. In Table 3 the
third column contains the results of the method proposed by Chivilikhin et al.( 2013)
with respect to number of states in the FSM.

Table 3. Fitness evaluations

Christensen n Chivilikhin DGSO (avg) DGSO (min)
(2007) (2013)

20696 5 10975 114912 4642
20696 6 9313 233508 5205
20696 7 9221 423208 93290

Table 3 contains the result for a proposed DGSO method: the mean number of evalu-
ations and the minimal number of evaluations in 100 runs. The arithmetic mean of Neval

for DGSO method is bigger than for the Chivilikhin (2013) and Christensen (2007)
methods, but the minimal Neval is better for the case of 5–6 states.

6.4 Analysis

Despite the fact that the mean number of evaluations Neval is bigger than for the other
existing methods, the proposed DGSO method has lot of potential and for some cases
was able to find the solution with smaller Neval. The results with smaller Neval were
produced, when the method was able to find the correct Universe (the Universe, which
contains the solution) during meta-search stage in the first step. The results with bigger
Neval were produced during runs, where several Universes (25 for the case of 5 states
and 34 for the case of 6 states) were searched before the solution was found.

There are two main problems with proposed method that lead to such big Neval:

– During the initialization process some amount of points in each Universe must
be generated (for test cases these parameters presented in Table 2). Currently this
amount is defined with respect to size of the Universe. If the search space is big,
as for n = 7, huge amount of points are generated and evaluated already at initial
stage.

– The worst case scenario for the search method is the situation, when the all Uni-
verses are searched and the last one contains the solution (of cause if there is solu-
tion). The best case scenario is the situation, when the solution is found in the first
Universe. Currently, the Universes are evaluated by the best point found during the
initialization phase, which is not optimal.

One of the possible solutions for these two problems is to change the initialization
process and modify the function for Universe evaluation. The ideal situation would be



GrIS Algorithm for Solving Agent Tasks 105

the possibility to evaluate the Universe without point generation. Such optimization can
be researched in future.

7 Conclusion and future work

We presented a method for identification of FSMs in a context of artificial ant problem,
which is based on heuristic optimization algorithm.

The special coding system ’Canonical String Representation’ is used to represent
search space. Proposed string representation of FSMs is adaptation of existing method
for enumeration of FAs, it was updated to take into account output function of FST .
First of all, such representation allows to minimize search space, and, secondly, search
space can be partitioned and non-intersecting partitions can be handled in parallel or
separately in time.

The specifics of the search space representation gives the possibility to create two
stages of the search: the search of ’best’ partition (meta-search) and search inside the
partition.

Due to complex structure of search space, standard PSO is not working well, so we
propose to combine PSO and modern gravitational algorithm and present new hybrid
Discrete Gravitational Swarm Optimization method. Also, the search method is modi-
fied to be able to work in discrete search space, because our search space is presented
by decimal strings. So, all algorithm operators were redesigned.

The experimental results show that proposed method is efficient in some cases, but
the ’meta-search phase’ must be improved to make results more stable.

There are several ways to extend current research. First of all, we can adapt the
proposed method to other structures, for example neural nets. Secondly, we can try the
method to other similar tasks. Thirdly, the family of heuristic optimization techniques
is constantly growing, so some of them can be modified to match the search space
representation.

Acknowledgments

This research was supported by the Estonian Ministry of Research and Education insti-
tutional research grant no. IUT33-13.

References

Almeida, M., Moreira, M., Reis, R. (2007). Enumeration and generation with a string automata
representation, Theoretical Computer Science, 93–102.

Almeida, M., Moreira, N., Reis, R. (2009). Aspects of enumeration and generation with a string
automata representation, CoRR.

Angeline, P. J., Pollack, J. B. (1993). Evolutionary Module Acquisition, Proceedings of the Sec-
ond Annual Conference on Evolutionary Programming , 154–163.

Angeline, P. J., Pollack, J. B. (1994). Coevolving High-Level Representations, Addison-Wesley
C. Langton (Eds.), Artificial Life III, 55–71.



106 Spichakova

Bäck, T., Fogel, D.B., Michalewicz Z. (1997). Handbook of Evolutionary Computation, IOP
Publishing Ltd..

Chellapilla, K., Czarnecki, D. (1999). A preliminary investigation into evolving modular finite
state machines Proceedings of the 1999 Congress on Evolutionary Computation, CEC 99,
1349–1356 Vol. 2.

Chivilikhin, D., Ulyantsev, V., Shalyto, A. (2013). Solving Five Instances of the Artificial Ant
Problem with Ant Colony Optimization Proceedings of the 7th IFAC Conference on Manu-
facturing Modelling, Management, and Control, 1043–1048.

Christensen, S., Oppacher, F. (2007). Solving the artificial ant on the santa fe trail problem in
20,696 fitness evaluations. Proceedings of the 9th annual conference on Genetic and evolu-
tionary computation, GECCO 07, 15741579.

Formato, R.A. (2007). Central force optimization: a new metaheuristic with applications in ap-
plied electromagnetics, Progress in Electromagnetics Research, 425–491.

Hsiao, Y.-T., Chuang, C.-L., Jiang J.-A., Chien C.-C.(2005). A novel optimization algorithm:
space gravitational optimization, IEEE International Conference on Systems, Man and Cy-
bernetics, 2323–2328, Vol. 3.

Jefferson, D., Collins, R., Cooper, C., Dyer, M., Flowers, M., Korf, R., Taylor, C., Wang, A.
(1991). Evolution as a theme in artificial life: The Genesys/Tracker system, C. G. Langten,
C. Taylor, J. D. Farmer, and S. Rasmussen (Eds.), Artificial life II, 549–578.

Kennedy, J., Eberhart, R. (1995). Particle swarm optimization, IEEE International Conference on
Neural Networks, 1942–1948, Vol.4.

Koza, J. R. (1992). Genetic programming: on the programming of computers by means of natural
selection, MIT Press.

Kuscu, I. (1998). Evolving a Generalised Behavior: Artificial Ant Problem Revisited, Proceed-
ings of Seventh Annual Conference on Evolutionary Programming, LNCS, 799–808.

Mirjalili, S., Hashim, S. Z M. (2010). A new hybrid PSOGSA algorithm for function optimization
Proceedings of International Conference on Computer and Information Application (ICCIA),
374–377.

Mo, S., Zeng, J., Xu, W. (2011). An Extended Particle Swarm Optimization Algorithm Based
On Self-Organization Topology Driven By Fitness, Journal of Computational Information
Systems, 7:12, 4441–4454.

Qi, K., Lei, W., Qidi, W. (2007). A Novel Self-organizing Particle Swarm Optimization based on
Gravitation Field Model American Control Conference, 2007. ACC ’07, 528–533.

Rashedi, E., Nezamabadi-pour, H., Saryazdi, S. (2009). GSA: A Gravitational Search Algorithm,
Inform. Sciences, Nr.13, Vol. 179, 2232–2248.

Reis, R., Moreira, N., Almeida, M. (2005). On the representation of finite automata, Proc. of
DCFS05, 269–276.

Spichakova, M. (2016). Modified Particle Swarm Optimization Algorithm Based on Gravitational
Field Interactions, Proceedings of the Estonian Academy of Sciences, Vol. 65, Issue 1, 15–27.

Sugiura, H., Mizuno, T., Kita, E. (2012). Santa Fe Trail Problem Solution Using Grammatical
Evolution , 2012 International Conference on Industrial and Intelligent Information (ICIII
2012), 36–40.

Tsai, H.-C., Tyan, Y.-Y., Wu, Y.-W., Lin, Y.-H.(2013). Gravitational Particle Swarm, Applied
Mathematics and Computation, Vol. 219, Num. 17 , 9106–9117.

Webster, B., Bernhard, P. J. (2003). A Local search optimization algorithm based on natural
principles of gravitation, CS-2003-10, Florida Institute of Technology.

Webster, B. (2004). Solving combinatorial optimization problems using a new algorithm based
on gravitational attraction, Ph.D. thesis, Florida Institute of Technology.

Received September 9, 2016 , revised December 12, 2016, accepted February 21, 2017


