
Baltic J. Modern Computing, Vol. 5 (2017), No. 1, pp. 124–135
http://dx.doi.org/10.22364/bjmc.2017.5.1.08

Systematic Literature Review of the Cloud-ready
Software Architecture

Olesia POZDNIAKOVA, Dalius MAŽEIKA

Vilnius Gediminas Technical University, Saultekio al. 11, LT-10223 Vilnius

olesia.pozdniakova@vgtu.lt, dalius.mazeika@vgtu.lt

Abstract. Many companies are adopting cloud for hosting applications delivered as a service
over the Internet. An application service delivered in this way is referred as Software as a Service
(SaaS). The SaaS providers get benefits from getting cloud resources provisioned on-demand and
through pay-as-you-go billing models. These capabilities enable faster application development
and deployment with lower upfront investment into infrastructure. To benefit the most from the
cloud, software architecture must be designed with consideration that software will run on the
cloud. However, a legacy application is often developed by using monolithic architecture ap-
proach and might not get all advantages provided by a cloud computing. A growing monolithic
application gets less flexible in development, has longer provisioning time, slows down the speed
of innovation and lowers economy of scale. As result of such problems, not only commercial
companies, but also the various academic researchers aim to design software as a “cloud-native”
application. This kind of software has specific non-functional requirements that define scalability,
reliability, fault tolerance and other cloud-specific requirements. This systematic literature review
is based on the case studies, published articles and other literature related to the cloud-native or
cloud-ready applications. It generalizes common traits of non-functional requirements defined in
analyzed resources. Also, it walks through architectural styles of the applications running on a
cloud and presents recently developed architectures that are used for large-scale software services
delivered on a cloud.

Keywords: cloud-native; cloud-ready; cloud-aware; architecture; microservice; literature review

1 Introduction

Cloud computing essential characteristics, such as on-demand self-service, broad net-
work access, resource pooling, rapid elasticity and measured service, made the cloud
convenient for software systems deployments and software delivery as a service. Sys-
tems deployed on the cloud are often referred as Software as a Service (SaaS). To ben-
efit the most from the cloud, software must be designed with the consideration that it
will run on the cloud. Applications developed in such manner are commonly called

Systematic Literature Review of the Cloud-ready Software Architecture 125

cloud-native or cloud-ready applications and sometimes cloud-aware. For the past few
years a cloud-native term is industrialized by companies like VMware (see Web, a) or
Pivotal (see Web, b) and is used to define containerized applications or applications de-
veloped using microservices. This term was used in Andrikopoulos et al. (2012) long
time before microservices and Docker or similar solutions came up. Ambiguity of this
term is also realized by Kratzke and Quint (2016), and Leymann et al. (2016). To avoid
confusions in this study, “cloud-ready” term is to define application that are developed
specifically to run on the cloud, non cloud-ready applications will be called “conven-
tional”. “Cloud-native” term is used only when referencing to a particular study that
uses this term.

Wisely chosen software architecture helps to overcome potential problems and al-
lows to take advantages provided by the cloud. For the cloud software architect or devel-
oper it is essential to understand what cloud-ready application is and what requirements
it must meet.

This systematic literature review aims to summarize information available in stud-
ies related to cloud-ready applications architecture development by answering to the
following research questions:

– Question 1. What is a cloud-ready application and how it differs from conventional
applications?

– Question 2. What non-functional requirements are raised for cloud-ready applica-
tions?

– Question 3. What architectures are currently used for cloud-ready application?

Similar research questions were found in works created by Sodhi et al. (2011), Tof-
fetti et al. (2016), Kratzke and Quint (2017). However, they address different aspects of
cloud-ready software development.

Sodhi et al. (2011) discuss their proposed design approaches: cloud-aware and
cloud-agnostic. These designs are used for development of application that will run on
the cloud. They evaluate how application properties like security, portability, scalability
and similar are affected by a choice of each of these approaches. Toffetti et al. (2016)
work is more concentrated on cloud-native application development than on research
questions raised in this study. Kratzke and Quint (2017) released an article where they
exam an origin and meaning of “cloud-native application” (CNA) term together with
CNA properties and engineering traits. The main difference between their study and
ours is that Kratzke and Quint use only one specific term: CNA, while we apply a
broader approach.

This study aims to provide more generic overview on cloud-ready software devel-
opment.

2 Review methodology

This systematic literature review was conducted using guidelines defined by Kitchen-
ham and Chaters (2007).

126 Pozdniakova and Mažeika

2.1 Search strategy

In order to answer the research questions, initial searches for primary studies were done
using digital libraries, conference proceedings and other publicly available resources
defined in Table 1. The search was limited by search engines on the Internet and ac-
cess to digital libraries listed in Table 1. English language was selected for publica-
tion search. No time limits were applied to the publications release dates because re-
search topic is relatively new. Further studies were identified by examining the reference
lists of all included articles, searching relevant websites or looking through conference
recordings.

Table 1. Data sources and search strategy.

Resourse Total hits Excluded Duplication Included Search date

IEEE XPlore 71 63 0 8 2017-01-22
Elsevier ScienceDirect 82 78 0 4 2017-01-22
Springer Digital Library 67 63 0 4 2017-01-23
Thomson Reuters Web of Science 65 57 7 1 2017-01-23
Google Scholar 50 out of 2920 34 6 1 2017-01-22
References – – – 8 2017-01
Internet – – – 9 2017-01

The literature search used the following terms (with synonyms and closely related
words): “cloud-ready” OR “cloud-native” OR “cloud-aware”. The search string was
used to search in resource databases defined in Table 1. The total number of hits is
shown in the same table. Queries for “cloud-native” or “cloud native” terms were pro-
viding the same results. Total amount of proposed articles was not high, for that reason
it was decided not to refine the results by using other search terms like “application”,
“architecture” and etc. This allowed us to minimize a possibility of missing the relevant
studies. Querying Google Scholar provided about 2980 of various resources. Combin-
ing initial search string with terms like “application”, “software”, “architecture”, “de-
sign” and “style” or combination of those did not improve the situation. Amount of sug-
gested studies was too high to evaluate all of them. As a result only first 50 resources
were considered for analysis in this study.

2.2 Study selection

We have followed the study selection process proposed by Meline (2006) which in-
cludes the following steps:

– Step 1: Apply inclusion/exclusion criteria to titles and abstracts.
– Step 2: Eliminate studies that clearly meet one or more exclusion criteria.
– Step 3: Retrieve the full text of the remaining studies.
– Step 4: Evaluate the remaining studies for inclusion and exclusion.

Systematic Literature Review of the Cloud-ready Software Architecture 127

Table 1 shows the number of papers excluded based on headings, abstracts, sum-
maries analysis or due to access restrictions to the resources. We included studies that
contain definitions of cloud-ready applications, define cloud-ready application architec-
tures, development models, experience reports, non-functional requirements, character-
istics, guidelines, principles.

The selected studies cover topics of cloud-ready application architecture, deploy-
ment, redesign of conventional applications to cloud-ready ones, migration of legacy
applications to the cloud. However, studies related to the cloud platform, infrastructure,
service development, security or other non-software engineering topics were excluded.

Various types of resources were analyzed as part of this review. More than half of
the selected primary studies are peer-reviewed journal articles, conference proceedings
or books. Selected Web resources were provided by widely known IT industry prac-
titioners or companies. This variety of resources provides a holistic picture of current
traits in a cloud software development area and helps to minimize a publication bias of
this study. This is considered to be an indication of good quality study.

In order to provide answers to the research questions, the studies are organized
in groups by relevance to the research questions. Table 2 shows which studies were
considered to be relevant to a specific research question (RQ). Some of the studies
might cover several or all of the questions.

Table 2. Studies to research questions mapping

Research question Study

RQ1 Andrikopoulos et al. (2012), Brown and Capern (2014), Fehling et al. (2014),
Inzinger et al. (2014), Kratzke and Peinl (2016), Kratzke and Quint (2017),
Leymann et al. (2016), Ritter and Fehling (2013), Toffeti et al. (2016), Wilder
(2012), Web b, a.

RQ2 Brunner et al. (2016), Fehling et al. (2011, 2014), Hole (2016), Kavis (2014),
Kourtesis et al. (2012), Kratzke and Peinl (2016), Kratzke and Quint (2017),
Leymann et al. (2016), Peinl et al. (2016), Retter and Fehling (2013), Rou-
sev et al. (2016), Sodhi et al. (2011), Stine (2015), Toffetti et al. (2016),
Weinman (2016), Wilder(2012), Zimmermann (2017), Garcia-Gomez et al.
(2012), Casper at al. (2014).

RQ3 Andrikopoulos et al. (2013), Balalaie et al. (2016), Capelli and Scandurra
(2016), Hole (2016), Inzinger (2014), Jambunathan and Kalpana (2016),
Kourtesis et al. (2012), Kratzke and Peinl (2016), Kratzke and Quint (2017),
Leymann et al. (2016), Linthicum (2016), Newman (2015), Peinl et al.
(2016), Sill (2016), Toffetti et al.(2016), Vijaya and Neelanarayanan (2015),
Weinman (2016), Wilder (2012), Ardagna et al. (2012), Lewis and Fowler
(2016), Roberts (2016), Casper et al. (2014), Schaefer(2016), Meshenberg
(2016).

These selected studies were analyzed and evaluated. Results of the analysis are pre-
sented in following subsections.

128 Pozdniakova and Mažeika

3 Analysis of studies

3.1 [RQ1] What is a cloud-ready application and how it differs from
conventional applications?

As it was mentioned in Introduction section, multiple terms are used to define appli-
cations that are designed and developed to run specifically on the cloud. Here are just
few examples of our findings. Andrikopoulos et al. (2012), Toffetti et al. (2016), Wilder
(2012), Kratzke and Peinl (2016), Kratzke and Quint (2017) are using “cloud-native”
term in their works and each of them provides a definition for it. “Cloud-ready” is men-
tioned by Brown and Capern (2014) from IBM, Kavis (2014), and Weinman (2016).
“Cloud-aware” term is met in Open Datacenter Alliance report (Casper et al. (2014))
and Sodhi et al. (2011).

Andrikopoulos et al. (2012) define cloud-native applications as “. . . applications that
are specifically designed and developed on top of a constellation of Cloud services, and
which can fully exploit the characteristics of Cloud computing”. He also defines Cloud-
enabled software as software that was specifically adopted to be suitable for the cloud
(Andrikopoulos et al. (2013)).

Toffetti et al. (2016) in their work make this definition even more universal: “Cloud-
native application . . . is an application that has been specifically designed to run in a
cloud environment”. What is similar to definition provided by Wilder (2012): “A cloud-
native application is architected to take full advantage of cloud platforms.”

Due to lack of common definition in academic literature, Kratzke and Peinl (2016)
aim to define cloud-native application more explicitly: “A cloud-native application is a
distributed, elastic and horizontal scalable system composed of (micro)services which
isolates state in a minimum of statefull components. The application and each self-
contained deployment unit of that application is designed according to cloud-focused
design patterns and operated on a self-service elastic platform”. In later published work
Kratzke and Quint (2017) provides more detailed definition and explanation of the terms
like “self-contained deployment unit” used in this definition.

Cloud-native definition provided in Kratzke and Peinl (2016) is more in alignment
with current industry trends, like microservices and containers, which will be discussed
in Subsection 3.3. Definitions provided in Andrikopoulos et al. (2012), Toffetti et al.
(2016) and (2012) are more universal and technology agnostic. Authors of (Leymann
et al. (2016)) argues, that term “cloud-native” should be applicable to applications de-
veloped using containers or microservices.

Even though there are many definitions of cloud-ready applications found in liter-
ature and authors do not agree on some implementation details (i.e. mandatory use of
(micro)services and statefulness of components), there are a few common traits. First,
a cloud-ready application is running on the cloud, which is a distributed system. And
architects, designing applications that will run on the cloud compute, will face simi-
lar problems that are common for all distributed systems (even not cloud-ready, con-
ventional, ones). Second, cloud-ready applications must be elastic. Herbst et al. (2013)
provide definition of what elasticity in cloud computing means: “Elasticity is the degree
to which a system is able to adapt to workload changes by provisioning and deprovi-
sioning resources in an autonomic manner, such that at each point in time the available

Systematic Literature Review of the Cloud-ready Software Architecture 129

resources match the current demand as closely as possible”. Most of conventional ap-
plications were not design to run in environment that automatically scale as a number
of transactions increases, not all conventional applications were designed to be elastic.

The Figure 1 provides a good illustration of how traditional applications develop-
ment ties up cloud elasticity and economy of scale. Similar example was used by Retter
and Fehling (2013) in their presentation from the 9th annual SATURN conference.

t

L
o
a
d

L
o
a
d

t

L
o
a
d

t t

L
o
a
d

Application

Infrastructure Actual

 need

a) b)

c) d)

Fig. 1. Cloud platform and application elasticity levels of a conventional application running a)
on a physical infrastructure, b) on a virtual infrastructure, c) on the cloud infrastructure, and d) a
cloud-ready application running on the cloud infrastructure.

Other studies listed in Table 2 did not contain explicit definitions of the cloud-ready
applications. Instead of definitions, these studies defined how applications should be
developed to run on the cloud platform and what characteristics it should have. This
overlaps with our second research question. Our findings in this area will be discussed
in subsection 3.2.

Open Data Center Alliance team (see Casper et al., 2014) proposes the way to assess
the level of cloud maturity of an application. It uses 3 maturity levels. Level 0 evaluates
application capability to run on virtualized platform. Level 1 is given to loosely coupled
applications. Applications that can run on any cloud platform, are stateless and robust
to failures of dependent services have second level of maturity. The highest level of
maturity is achieved when an application can elastically scale in respond to the load
and can be migrated between cloud service providers without interruption.

130 Pozdniakova and Mažeika

Automation and elasticity can be treated as essential characteristics of a cloud-ready
application (and which distinguish it from conventional applications), however these are
not the only properties that makes an application cloud-ready.

3.2 [RQ2] What are non-functional requirements raised for cloud-ready
applications?

An overview of existing cloud-ready applications definitions is provided in subsection
3.1. In this section we discuss what non-functional requirements are raised for cloud-
ready applications. It turned out, that different non-functional requirements and their
quantity are raised in various papers. The most common ones are scalability, elastic-
ity, automated deployment, vendor lock-in avoidance (Brunner et al. (2016), Sodhi et
al. (2011), Toffeti et al. (2016), Inzinger (2014), Kavis (2014), Carcia-Gomez et al.
(2012), Fehling et al. (2014) and others). Among other requirements were loose cou-
pling, statelessness, fault-tolerance. Even though, analyzed studies were raising a need
for vendor lock-in avoidance and unobstructed migration between cloud providers, this
was not reflected in any of cloud-ready application explicit definitions that were dis-
covered and previously presented in subsection 3.1. It is worth mentioning that these
requirements were commonly provided in a form of guidelines or principles for the
cloud-ready applications development.

A lot of work in cloud-ready applications development area is done by team from
Institute of Architecture of Application Systems (IAAS) of University of Stuttgart. An-
drikopoulos et al. (2012) evaluate the effect of design decisions on the consistency,
availability and partitioning (CAP) properties of cloud-ready applications. Fehhling et
al. (2011, 2014) works discuss various cloud computing application patterns, challenges
of deploying these patterns in the cloud and proposes possible solutions to overcome
these challenges. They also define IDEAL properties for a cloud-native application.
IDEAL is an acronym, where “I” stands for an isolated state, “D” is for distributed, “E”
– elastic, “A” – automated, “L” – loosely coupled. Figure 2 summarizes cloud-ready
application characteristics defined in the above mentions IAAS team studies.

Wilder (2012) defines eleven properties of cloud-native applications like loose-
coupling, horizontal and automatic scale, fault-tolerance, resiliency (upgrades, migra-
tion and faults should happen without downtime). He proposes 13 patterns that enable
these properties in cloud-ready applications.

O’Reilly’s report written by Stine (2015) provides a set of characteristics that cloud-
native applications should have, such as fault-tolerance, state and fault isolations, hori-
zontal scalability, automatic recovery, statelessness.

Kratzke and Peinl (2016) in their cloud-native application reference model for en-
terprise architects, called ClouNS, raise an importance of vendor lock-in avoidance in
cloud-ready application design. A systematic mapping study prepared by Kratzke and
Qiuin (2017) provides a cloud-native application principles, like need of automation
platforms, software defined infrastructure, migration and interoperability between the
clouds.

The conducted review of RQ2 studies listed in Table 2 showed out, that the basic
cloud-ready application design principles or properties, such as horizontal scalability,
loose coupling, isolation of state, need for elasticity, distribution and automation haven’t

Systematic Literature Review of the Cloud-ready Software Architecture 131

Cloud provided capabilities

Components

Loose
coupling

Performance

Scalability

Elasticity

Automation

Application

functions shall

be divided into

multiple smaller

components to

become more

flexible

True flexibility

is achieved, if

components are

loosely coupled

Cloud elasticity

helps to achieve

scalability on

demand

State isolation

simplifies

repeatable

deployments

Loose coupling

simplifies:

• Scaling

• Failure handling

• Update

management

Distribution of

components and

increased load

requires

performance

Performance in-

crease can be

addressed by

scalability

Isolation of

state improves

scalability

Elasticity

requires

automation for

resources

provisioning

Automation

needs resources

monitoring and

analysis

Standard and

repeatable

components

benefit from

automation

Fig. 2. Cloud-ready application characteristics.

changed since defined by Fehling et al. in 2011 or Wilder in 2012. However, since then
cloud computing technologies has evolved and new architectural styles were developed.
In next section we will walk through architectural styles and recently developed archi-
tectures for cloud-ready applications.

3.3 [RQ3] What architectures are currently used for cloud-ready application?

It turned out that there were no articles released till 2016 which would explicitly define
cloud-ready application architecture. However there were multiple articles that were
discussing architectural approaches for development of cloud-ready applications (Sodhi
et al. (2011)), principles (Andrikopoulos et al. (2012)), patterns (Wilder (2012), Fehling
et al. (2011, 2014)). Later works in this area were more related to conventional appli-
cation migration to the cloud (Andrikopoulos et al. (2013)) or development methods or
frameworks (Inzinger et al. (2014), Ardagna et al. (2012)).

Major part of selected studies that are relevant to cloud-ready application architec-
ture were released in 2016. Most of these articles are mentioning microservice archi-
tecture as architecture for cloud-ready applications. Solutions like Docker or Rocket
containers together with Docker Swarm, Mesos or Kubernetes automated container
management currently act as enablers of this architectural style (Peinl et al. (2016)).

The microservice architectural style was proposed in 2014. It is relatively new and,
as result, various interpretations of what this architectural style means are met in lit-
erature (Balalaie et al. (2016), Lewis and Fowler (2016), Nadareishvili et al. (2016),
Linthicum (2016)). A lot of work in microservice architecture area is done by Thought-
Works team. Members of this team, Lewis and Fowler, give the following definition of
this style: ”...the microservice architectural style is an approach to developing a single
application as a suite of small services, each running in its own process and commu-
nicating with lightweight mechanisms, often an HTTP resource API. These services
are built around business capabilities and independently deployable by fully automated

132 Pozdniakova and Mažeika

deployment machinery. There is a bare minimum of centralized management of these
services, which may be written in different programming languages and use different
data storage technologies”.

This architectural style is commonly compared to Service Oriented Architecture
(SOA) (Sill (2016), Leymann et al. (2016)), as some of SOA key principles like loose
coupling, autonomy, reusability, composability, statelessness are common with the mi-
croservice architecture (MSA) (Erl (2005), Newman (2015)). However there are sev-
eral key deferences. SOA is concentrating on enterprise needs and services, while MSA
concentrates on development of one application. MSA components can be treated as a
smaller scale service, that serves a specific function that is required by application.

The services in SOA are governed by these (but not only by these) key principles:
abstraction and adherence to a service contract (Erl (2005)). According to Newman
(2015), microservice development principles are against abstraction: it should be con-
crete and perform a specific function. Also there are no limitations in choosing a com-
munication methods between the microservices, an application development team needs
to agree on what method to use.

The analyzed articles (Balalaie et al. (2016), Jambunathan and Kalpana (2016),
Toffeti et al. (2016), Brunner et al. (2016), Kratzke and Quint (2017) and etc.) and
practitioners use cases (see Schaefer (2016), Meshenberg (2016)) showed that com-
monly MSA is proposed as an alternative to monolithic application architecture. MSA
solves a set of problems like fault-tolerance, speed-of-development, horizontal scala-
bility, but also brings operational and organizational complexity. The development and
operational complexity of the microservice architecture makes it more suitable for large
scale application deployments or for delivery of Software as a Service (Leymann et al.
(2016)).

Microservices can be scaled if and only if their associated load requires it (Stine
(2015)), as result, microservice architecture enables more granular application elastic-
ity, similar to one presented in Figure 1 d), which would be more difficult to achieve
running an application on virtual machines.

Also, another approach for cloud application development that was found, is “server-
less” (Weinman (2016)). “Serverless” architecture application is developed as a custom
code that runs in ephemeral containers (see Roberts (2016)) and performs a specific
functions. Amazon uses term “serverless” to define applications developed using this
approach, as customer does not need to procure virtual machines instances to run a
code. The applications are invoked by various triggers to serve a specific function.

Even though this approach has obvious drawbacks, “serverless” solution that runs
on public cloud might be more cost effective solution than running containers or virtual
machines.

4 Summary

We have discussed what a cloud-ready application is, how it differs from conventional
applications and what architectural approaches could be used to develop applications for
the cloud. There are several terms used to define such applications. The most commonly
used are “cloud-native” or “cloud-ready”. “Cloud-native” term became ambiguous in

Systematic Literature Review of the Cloud-ready Software Architecture 133

past years. Even though it is used to define applications that developed to run on the
cloud, it also defines specific way of development, which is based on containers or
microservices.

A cloud-ready application is developed as distributed system that uses loosely cou-
pled components, is designed to be horizontally scalable and run on an automated and
elastic platform. Ideally, it should be possible to migrate these applications between var-
ious cloud platforms without service interruptions. The highest cloud-ready application
maturity level is achieved, when all of mentioned above characteristics are met. Elas-
ticity and automation are essential cloud-ready application characteristics which make
it different from conventional applications.

In 2014 the microservice architectural style was proposed. The microservice ar-
chitecture and development principles like loose coupling, autonomy, vertical scalabil-
ity, isolation of state and use of automated platform enables development of mature
cloud-ready applications. No wonder that this architectural style is often followed by
“cloud-native application” term. Another application development approach that cur-
rently more common for applications running on public or hybrid cloud (but also can
be used on private cloud) is “serverless”. This approach uses function-as-a-service ser-
vices, which allow to execute applications only when those need to perform a specific
function with a short lifespan. This allows to optimize usage of infrastructure resources
and increase elasticity, together with economy of scale. Microservice and the cloud-
ready application design principles are applicable to the “serveless” architectural ap-
proach. Microservice characteristics and operations complexity make it more attractive
for development of large scale applications and SaaS. “Serverless” seems more uni-
versal, as it can be incorporated with conventional applications to fulfill any specific
function, that previously required procurement of virtual machine instance. Several
analyzed studies showed that microservice and “serverless” architectural approaches
are not mandatory for a cloud-ready application, however they enable development of
cloud-ready applications with higher maturity level.

References

Andrikopoulos, V., Binz, T., Leymann, F., and Strauch, S. (2013). How to adapt applications
for the Cloud environment: Challenges and solutions in migrating applications to the Cloud.
Computing, 95(6):493–535.

Andrikopoulos, V., Strauch, S., Fehling, C., and Leymann, F. (2012). CAP-Oriented Design for
Cloud-Native Applications. In Proceedings of the 2nd International Conference on Cloud
Computing and Service Science, CLOSER 2012, 18-21 April 2012, Porto, Portugal, pages
365–374. SciTePress.

Ardagna, D. et al., (2012). MODAClouds: A model-driven approach for the design and execution
of applications on multiple clouds. In Proceedings – 2012 4th International Workshop on
Modeling in Software Engineering, MiSE 2012, pages 50–56.

Balalaie, A., Heydarnoori, A., and Jamshidi, P. (2016). Microservices Architecture Enables De-
vOps: Migration to a Cloud-Native Architecture. IEEE Software, 33(3):42–52.

Brown, K. and Capern, M. (2014). Top 9 rules for cloud applications. IBM Middleware Technical
Journal for Developers, (17.2).

134 Pozdniakova and Mažeika

Brunner, S., Blochlinger, M., Toffetti, G., Spillner, J., and Bohnert, T. M. (2016). Experimental
Evaluation of the Cloud-Native Application Design. In Proceedings – 2015 IEEE/ACM 8th
International Conference on Utility and Cloud Computing, UCC 2015, pages 488–493.

Capelli, S. and Scandurra, P. (2016). A framework for early design and prototyping of service-
oriented applications with design patterns. Computer Languages, Systems and Structures,
46:140–166.

Casper, D., Bette, C., and Louie, K. (2014). Best Practices: Architecting Cloud-Aware
Applications. Available at: https://www.opendatacenteralliance.org//docs/

architecting_cloud_aware_applications.pdf [Accessed January 25, 2017].
Erl, T. (2005). Service-oriented architecture: concepts, technology, and design. Prentice Hall

Professional Technical Reference.
Fehling, C., Leymann, F., Mietzner, R., and Schupeck, W. (2011). Universität Stuttgart A Col-

lection of Patterns for Cloud Types, Cloud Service Models, and Cloud-based Application
Architectures Institute of Architecture of Application Systems Daimler AG. Technical re-
port, Institute of Architecture of Application Systems.

Fehling, C., Leymann, F., Retter, R., Schupeck, W., and Arbitter, P. (2014). Cloud Computing
Patterns. Springer Vienna, Vienna.

Garcia-Gomez, S. et al., 2012. 4CaaSt: Comprehensive Management of Cloud Services through
a PaaS. 2012 IEEE 10th International Symposium on Parallel and Distributed Processing
with Applications, pages 494–499.

Herbst, N. R., Kounev, S., and Reussner, R. (2013). Elasticity in Cloud Computing: What It Is,
and What It Is Not. In Presented as part of the 10th International Conference on Autonomic
Computing, pages 23–27, San Jose, CA. USENIX.

Hole, K. J. (2016). Toward an Anti-fragile e-Government System. In Simula SpringerBriefs on
Computing, volume 1, pages 57–65. Springer International Publishing, Cham.

Inzinger, C., Nastic, S., Sehic, S., Vogler, M., Li, F., and Dustdar, S. (2014). MADCAT: A
methodology for architecture and deployment of cloud application topologies. In Proceed-
ings – IEEE 8th International Symposium on Service Oriented System Engineering, SOSE
2014, pages 13–22.

Jambunathan, B. and Kalpana, Y. (2016). Multi Cloud Deployment with Containers. Interna-
tional Journal of Engineering and Technology, 8(1):421–428.

Kavis, M. J. (2014). Architecting The Cloud. John Wiley & Sons, Inc., Hoboken, NJ, USA.
Kitchenham, B. (2007). Performing Systematic Literature Reviews in Software Engineering.

Technical report.
Kourtesis, D., Bratanis, K., Bibikas, D., and Paraskakis, I. (2012). Software co-development in

the era of cloud application platforms and ecosystems: The case of CAST. In IFIP Advances
in Information and Communication Technology, volume 380 AICT, pages 196–204.

Kratzke, N. and Peinl, R. (2016). ClouNS-a Cloud-Native Application Reference Model for
Enterprise Architects. In Proceedings – IEEE International Enterprise Distributed Object
Computing Workshop, EDOCW, volume 2016-Septe, pages 198–207. IEEE.

Kratzke, N. and Quint, P.-C. (2017). Understanding cloud-native applications after 10 years of
cloud computing – A systematic mapping study. Journal of Systems and Software, 126:1–16.

Lewis, J. and Fowler, M. (2016). Microservices Guide. Available at: http://martinfowler.
com/microservices/#what [Accessed November 27, 2016].

Leymann, F., Fehling, C., Wagner, S., and Wettinger, J. (2016). Native Cloud Applications:
Why Virtual Machines, Images and Containers Miss the Point ! In Proceedings of the 6th
International Conference on Cloud Computing and Service Science (CLOSER 2016), pages
7–15. SciTePress.

Linthicum, D. S. (2016). Practical Use of Microservices in Moving Workloads to the Cloud.
IEEE Cloud Computing, 3(5):6–9.

Systematic Literature Review of the Cloud-ready Software Architecture 135

Meline, T. (2006). Selecting Studies for Systematic Review: Inclusion and Exclusion Criteria.
Contemporary Issues in Communication Science and Disorders, 33:21–27.

Meshenberg, R. (2016). GOTO 2016. Microservices at Netflix Scale: Principles, Tradeoffs &
Lessons Learned. Available at: https://www.youtube.com/watch?v=57UK46qfBLY [Ac-
cessed January 29, 2017].

Nadareishvili, I. et al., 2016. Microservice architecture: Aligning principles, practices, and cul-
ture O’Reilly Media, Inc.

Newman, S. (2015). Building Microservices. O’Reilly Media, Inc, 1st edition.
Peinl, R., Holzschuher, F., and Pfitzer, F. (2016). Docker Cluster Management for the Cloud –

Survey Results and Own Solution. Journal of Grid Computing, 14(2):265–282.
Retter, R. and Fehling, C. (2013). Applying Architectural Patterns for the Cloud: Lessons Learned

During Pattern Mining and Application.
Roberts, M. (2016). Serverless Architectures. Available at: http://martinfowler.com/

articles/serverless.html [Accessed January 29, 2017].
Roussev, V., Ahmed, I., Barreto, A., McCulley, S., and Shanmughan, V. (2016). Cloud foren-

sics–Tool development studies & future outlook. Digital Investigation, 18:79–95.
Schaefer, R. (2016). GOTO 2016. From Monolith to Microservices at Zalando. Available at:

https://www.youtube.com/watch?v=gEeHZwjwehs [Accessed January 30, 2017].
Sill, A. (2016). The Design and Architecture of Microservices. IEEE Cloud Computing, 3(5):76–

80.
Sodhi, B. and Prabhakar, T. V. (2011). Application architecture considerations for cloud plat-

forms. In 2011 Third International Conference on Communication Systems and Networks
(COMSNETS 2011), pages 1–4. IEEE.

Stine, M. (2015). Migrating to Cloud-Native Application Architectures. Technical report, Se-
bastopol.

Toffetti, G., Brunner, S., Blöchlinger, M., Spillner, J., and Bohnert, T. M. (2016). Self-managing
cloud-native applications: Design, implementation, and experience. Future Generation Com-
puter Systems.

Vijaya, A. and Neelanarayanan, V. (2015). Framework for platform agnostic enterprise appli-
cation development supporting multiple clouds. In Procedia Computer Science, volume 50,
pages 73–80.

Weinman, J. (2016). Migrating to - or away from - the Public Cloud. IEEE Cloud Computing,
3(2):6–10.

Wilder, B. (2012). Cloud Architeture Patterns. O’Reilly Media, Inc., first edit edition.
Zimmermann, O. (2017). Architectural refactoring for the cloud: a decision-centric view on cloud

migration. Computing, 99(2):129–145.
Web (a). Cloud-Native Applications: VMware. Available at: https://www.youtube.com/

watch?v=gEeHZwjwehs [Accessed January 30, 2017].
Web (b). Cloud-Native. Available at: https://pivotal.io/cloud-native [Accessed Jan-

uary 25, 2017].

Received February 1, 2017 , revised March 13, 2017, accepted March 14, 2017

