
Baltic J. Modern Computing, Vol. 5 (2017), No. 4, 329-350

http://dx.doi.org/10.22364/bjmc.2017.5.4.01

Normalization of Domain Modeling in Enterprise

Software Development

Saulius GUDAS, Andrius VALATAVICIUS

Vilnius University, Institute of Mathematics and Informatics, Vilnius, Lithuania

Akademijos St. 4, LT-2021 Vilnius, Lithuania

saulius.gudas@mii.vu.lt, andrius.valatavicius@mii.vu.lt

Abstract. Normalization has become traditional in database design theory and practice. One

disadvantage of the model-driven development is that usage of concepts normalization, and

functional dependency in the enterprise software engineering is limited to only one stage of system

development life cycle (SDLC) - the database design stage. The provided research of these

concepts motivate normalization of the entire SDLC. The main part of the paper is devoted to the

normalization of the enterprise modeling stage, which is based on the perceived causality of the

target domain. The concepts of management functional dependency (MFD) and management

transaction (MT) introduced for capturing causal dependencies within the target domain. The first

step is the discovery of MFD of business activities. MT is an initial specification of MFD, which

gives a basis for enterprise model normalization using the detailed frameworks. Enterprise model

normal forms ENF1 – ENF5 defined and illustrated.

Keywords: normalization, domain causality, functional dependency, management transaction,

knowledge-driven transformation, enterprise model, normal forms

1. Introduction

The concept of normalization is known in distinct research and technology areas, for

instance, in statistics, mathematics, domain modeling, process modeling, ontological

domain modeling, automatic knowledge representation, comparison and retrieval, data

modeling (associated with signal processing), service normalization, domain ontology

modeling (normalization of large ontologies), workflow normalization (based on the

Petri Nets). Understanding of normalization in distinct subject domains are divergent,

however, some generic features are observable. Normalization process seeks to

transform the initial system (an empirical model of the subject domain) to the normal

form (a normalized model).

The practical need for normalization within the area of information systems

engineering (ISE) and enterprise software systems engineering need has already emerged

(Fong, 2015), (Eessaar, 2014), (Gudas, 2012, 2015, 2016), (Allard et al., 2010),

(Kecheng et al., 2001), (Date, 1999), (Kent, 1983).

http://dx.doi.org/10.22364/bjmc.2017.5.4.01
mailto:saulius.gudas@mii.vu.lt
mailto:andrius.valatavicius@mii.vu.lt

330 Gudas and Valatavicius

New normalization theories - Normalization Process Theory (NPT), Normalized

Systems Theory (NST) and Norm Analysis method (NA) have emerged in different,

however, co-related areas of organizational management, organizational modeling, and

requirements engineering (Van Nuffel et al., 2009), (Murray et al., 2010), (Mannaert et

al., 2009, 2011), (Eessaar, 2014), (Linden et al., 2012), (De Bruyn et al., 2012), (Tan et

al., 2004), (Chong and Liu, 2000).

One of the key features is that the normalization procedure uses the already

discovered causal dependencies inside the particular subject domain. For instance,

normal forms of database models are based on the concept of functional dependency

(Date, 1999), (Kent, 1983). Normalization in data modeling stage of SDLC is important

to eliminate data anomalies using functional dependencies of attributes. Normalization is

a formalized procedure in the database design theory and practice. Recently in OLAP

systems, new types of data dependencies are discovered - Conditional Functional

Dependencies (CFDs) and Association Rules (ARs) (Allard et al., 2010). However, data

base design is only one of stages of IS development life cycle.

Normalization and modularity analysis are applied to some aspects of the real world

domain modeling, e.g. normalization of the enterprise processes (workflows in

Pankratius et al. (2005) and health care processes (Murray et al., 2010), functional

features (Osis, 2004), and domain ontologies (Rector, 2003), (Özacar et al., 2011). These

approaches are relevant to applying normalization for the domain modeling stage of

SDLC. Normalization of the workflow modeling starts with pre-normalization step when

the workflow is represented as a Petri net. Pre-normalization of source model simplifies

transformations into normal forms (1NF, 2NF, and 3NF). Normalization is based on the

dependencies of components (places or transitions) (Pankratius and Stucky, 2005).

Model-driven domain analysis in the context of software development in (Osis,

2004) is an example of the internal modeling for the software engineering needs.

Functioning Cycle - a closed path of cause-and-effect relations among functional

features is a key construct of domain modeling approach in (Osis, 2004). The purpose of

the normalization process in the area of ontological modeling is the modularization of

the domain related concepts, focused on the creation of the concept structures

(generalization or aggregation hierarchies) and is based on empirical criteria and

experience (Özacar et al., 2011), (Rector, 2003).

The article presents a generalized view to the normalization from the perspective of

the internal modeling paradigm. The internal modeling paradigm is a prerequisite for

discovering causal dependencies within the real world domain (i.e. enterprise). The

transferring of the perceived causal dependencies, which are essential in the particular

real world domain to all the subsequent SDLC stages, starting with enterprise/business

process modeling stage, is the main condition of the knowledge-based development. The

captured domain information (i.e. CIM level model or business process model) can be

transformed using normalization rules, which aimed to the identification of the real

world domain causal dependencies, conceptualization and transferring across the rest

stages of SDLC without loss of essential information. The presented systematic approach

for knowledge-based software engineering framed by the normalized SDLC (Gudas,

2012, 2016).

The goal of paper is to motivate the enterprise modeling normalization procedure and

to define enterprise model normal forms, which are based on the discovered causal

dependencies within the real world domain (i.e. enterprise). Normalization of the

enterprise model (EM) is considered as a knowledge-driven transformation of the

 Normalization of Domain Modeling in Enterprise Software Development 331

already developed business process models into an enterprise management model

(EMM).

The structure of the paper is as follows. In section two the assumptions of the

approach towards normalization of IS development are presented, and the principal

scheme of the IS normalized development life cycle LC is discussed.

Section 3 is the analysis of the normalization and functional dependency

understanding in diverse subject domains. The key concepts of the enterprise internal

modeling approach defined in Section 4: functional dependency, business function,

management functional dependency, management transaction (MT), Detailed Value

Chain Model (DVCM), and Elementary Management Cycle (EMC). Section 5 includes a

description of the normalization steps and definitions of the Enterprise model Normal

Forms (ENF). Finally, conclusions summarize the presented approach towards

normalization of the knowledge-based software development.

2. The premises of the IS development normalization

Our approach towards normalization of domain modeling in the information systems

development is based on the assumptions as follows:

IS development is perceived in the context of the internal modeling paradigm, i.e.

organizational system or enterprise is considered as a white box. The internal modeling

is aimed to the identification of a deep structure and essential patterns of behavior

(laws) of the subject domain (Gudas, 2012), (Dietz, 2006). Analysis of “normalization”

and “functional dependency” concepts is accomplished from the internal modeling

perspective. As of assumption 1, an internal modeling paradigm is applied for IS subject

domain modeling, i.e. for enterprise modeling (Gudas et al., 2016), (Gudas, 2016).

Internal modeling of enterprise domain focuses on deep properties of the enterprise

management activities, pursue to reveal the content of the causal dependencies and

transactions (functional dependencies, data/knowledge dependencies). "The deep

structure of an information system comprises those properties that manifest the meaning

of the real-world system the information system is intended to model." (Wand, Weber,

1995). The internal modeling of business enterprise considers an enterprise as a goal-

driven complex system (a self-managed system) with predefined meta-structure of

activities, and predefined types of internal transactions, obligatory to manage and control

enterprise (Gudas et al., 2016).

Functional dependency (FD) is a key property of a real world domain from the

internal modeling perspective, i.e. the functional dependencies between elements

(components, entities, attributes, values, etc.) of domain models are conceptualization of

the real world causal dependencies, and reveals deep knowledge of mutual influences,

causal links between elements of the subject domain (Wand, Weber, 1995). For instance,

functional dependencies between attributes of entities in data model capture the meaning

of a real world domain dependency as perceived by the analyst (data base designer).

Empirically some functional dependency could be discovered, captured and identified, or

missed in some particular domain model due to mistake or due to the objectives of

modeling. To systemic result, the functional dependency (FD) concept is required for

discovering and representing of the domain causality.

Generally, normalization means the transformation of the initial (empirical) model of

the domain to the “norm”-defined model (normalized model). Model transformation is

332 Gudas and Valatavicius

supported by: a) knowledge of deep properties (causality) of a domain, b) knowledge of

“norm” (criterions and procedure of normalization).

The transaction is a key concept for discovering of deep properties (causality) of the

subject domain. The transaction is an essential concept in enterprise architecture on

different layers: business strategy layer, business process layer, business

process/enterprise layer, application layer, and software components layer. The content

of transactions on the EA layers is different; it corresponds to the viewpoint (semantics)

of the definite layer. On business management layer in enterprises, there are several

interpretations for transactions; however, in business management frameworks a

transaction (e.g. Action workflow approach, Deming’s PDCA cycle, transactional

workflows) is a closed loop sequence of goal-driven activities (i.e. value oriented

transactions) as in (Medina-Mora et al., 1992), (Deming, 1993), (Porter, 1985),

(Georgakopoulos et al., 1995), (Rummler et al., 2010). On business process layer, the

enterprise transaction in (Dietz, 2006), (Papazoglou, 2003) or the management

transaction (MT) in (Gudas et al., 2016), (Gudas, 2016) is a single indivisible logical

unit of work (however, it is a complex process) comprising a closed loop sequence of

information transformation steps. A primary reason of MT emerging is a management

functional dependency (MFD); it causes collaboration of activities that are needed for

achieving some enterprise goal (Gudas, 2012). MT is a closed loop sequence of goal-

driven information transformations (comprising a management function Fj) focused on

the control of enterprise process Pi (Gudas, 2012, 2016). On application layer, the

transaction is defined a closed loop sequence of information exchange that is treated as a

unit for the purposes of satisfying a request.

The essence of this premise is that a conceptual structure of the transactions in all EA

layers or SDLC stages are the same – transaction is a single indivisible logical unit of

work, transaction is a cyclic process, transaction is a closed loop sequence of steps

(processes, actions, activities, works, transformations, procedures, and other) (Gudas et

al., 2016). The semantics of transaction (and internal elements) correspond to the

viewpoint (semantics) of the definite EA layer or SDLC stage. The conceptual structure

of the generalized transaction corresponds to the conceptual structure of the control

system with the feedback loop (fig.1):

 T (Q) = {(S1,…, Sn), (M1,…, Mn), Rs, Feedback} (1)

Here: T- transaction, a single indivisible logical unit; Q – goal, objective, criteria,

requirement, rule, etc. (depends on the layer or stage); Si - process, activity, information

transformation, application, procedure, and other (depends on the layer or stage); Mj –

flow, message, and other (depends on the layer or stage), Rs – a sequence relationship;

Feedback – a constraint, it is necessary to establish a closed loop of S, and in this way to

create a single unit.

Hub
(Q)

S1

S2

Sj

...

Sn

M1

M2

Mj

Mn

M..

M...
S...

Fig. 1. Topology of the generalized transaction is a wheel graph

 Normalization of Domain Modeling in Enterprise Software Development 333

.

The topology of the generalized transaction is a wheel graph (fig. 1). In the graph

theory, a wheel graph is obtained from a cycle graph Cn-1 by adding a new vertex called

a Hub that is connected to all the vertices of cycle graph Cn (Bondy et al., 2008):

A notable disadvantage of the model-driven development is that usage of concepts

normalization, and functional dependency in the IS engineering (i.e. enterprise software

engineering) is limited to only one stage of SDLC - the database design stage. The

provided research of these two concepts reveals an idea to normalization of the entire IS

development life cycle (SDLC). Based on our analysis, we believe that a transaction is

the appropriate concept for normalized representation of processes on EA layers and

stages of SDLC, which expresses the essential management and control requirements

and restrictions.

The normalized IS development life cycle (SDLC) was introduced in (Gudas, 2012).

A prototype is the two dimensional RUP model with pre-defined standard phases

(Inception, Elaboration, Construction, Transition) on every stage of SDLC. Currently,

normalization in the software development is limited to only to single stage of SDLC -

the database design stage. Theoretically reasonable to consider that the functional

dependencies (i.e. perceived causal dependencies) of the particular real world domain)

ought to be explored on all stages of SDLC, not limited only to the database design.

Enterprise modelling

(Conceptual modelling)

Requirements modelling

(Analysis and specification)

System design

(Architecture design, detailed

design)

System reengineering

Operation and maintenance

Acceptance, installation and

deployment

Coding, integration and testing

Identification

Normalization of IS implementation

procedure

Normalization of IS rearrangement

procrdures (RE-engineering)

Normalization of IS operation and and

maintenance procedures

Normalization of a applications building

procedure

a) normalization of IS architecture models;

b) normalization of IS detailed project

(models)

Development and normalization of IS

project models:

Development and normalization of

requirements model

Development and normalization of

enterprise model

 Identification stage processes,

 normalization of outcomes

 SDLC stages Normalization of SDLC stages

SDLC stages

Knowledge-based IS development life cycle (KB SDLC)

Fig. 2. The principle scheme of the IS normalized development LC

Thus, our premise for defining of the normalized information system development

life cycle (in fig. 2) is assumption as follows: the model-driven development is the

transferring of the functional dependencies (FDs), which is essential in the target

domain, to all the subsequent SDLC stages, starting from the enterprise management

modeling (business process modeling) stage (Gudas, 2012). Also, along with already

known and used data FD the new types of functional dependencies are defined as

follows: Functional dependency of the enterprise management activities - management

334 Gudas and Valatavicius

FD (MFD); Functional dependency of the requirements specification components

(Requirements FD); Functional dependency of the system architecture components

(System architecture components FD); Functional dependency of the data model

components (Data FD); Functional dependency of the software system components

(Applications FD).

The normalized SDLC is a two-dimensional model of the IS engineering process:

NSDLC = (LC stage, Normalization) (1)

Normalization is considered here as a knowledge-based transformation when a

content of every stage of IS DLC is reconstructed using functional management

dependency (MFD) related criterions and by purpose and content of the particular SDLC

stage. A key concept to understand normalization as knowledge transformation process

is a functional management dependency (MFD), which is introduced in the enterprise

management modeling theory (Gudas, 2012, 2016).

3. Normalization and functional dependency in diverse subject

domains

The significance of normalization in the enterprise IS (enterprise software) engineering

is not perceived yet. Understanding of normalization in distinct subject domains

(statistics, mathematics, ontological modeling, data base design, etc.) is divergent, yet it

has some generic features. In relational database theory, “normalization” is closely

related with the concept “functional dependency” (Codd, 1971), (Kent, 1983). A

functional dependency is a key concept in normalization and data integrity constraints

analysis (Rissanen, 1977), (Carlson et al., 1982). However normalization is not well

defined in the context of entire IS development life cycle, except the data base design

stage.

Understanding of normalization and functional dependency concepts is systematized

in this section by summarizing diverse subject domains.

3.1. Normalization

Understanding of normalization and required knowledge for normalization in diverse

subject domains briefly:

- In statistics, one of the definitions of normalization is adjusting values measured on

different scales to a notionally common scale. A subject domain is a real world - values

of attributes of real world processes or objects. Required knowledge: statistics

normalization method, Subject of normalization: measured values (data). Criterions of

transformation: dependencies of values.

- In sociology, normalization involves the construction of an idealized norm of

conduct (Taylor, 2009). A subject domain is a real world: society, social behavior.

Required knowledge: essential properties of the domain objects/processes; and

normalization method. The subject of normalization: a content of behavior (social

processes). Criterions of transformation: dependencies of properties.

 Normalization of Domain Modeling in Enterprise Software Development 335

- In mathematical logic and theoretical computer science, one of the definitions of

normalization consider the transformation of a system to an irreducible term (a normal

form) (Baader, Nipkow, 1999)). Subject domain: an abstract world (abstract content) as

a set of objects and their (essential) properties. Required knowledge: (essential)

properties of objects and a normalization method (rules applied to transform objects).

The subject of normalization: a content of abstract structures (structure of models).

Criterions of transformation: dependencies of properties.

- In data modeling, (typically associated with signal processing) data normalization is

the process of reducing data to its canonical form. Data can be normalized to provide a

limited range of values within a norm. Subject domain: data (various types of data).

Required knowledge: a set of data values and normalization method. The subject of

normalization: relations of data items (structure of model). Criterions of transformation:

dependencies of properties.

- In ontology modeling, normalization of large ontologies (the domain level

ontologies) is considered as a decomposing the ontology into independent disjoint

skeleton taxonomies restricted to be simple trees. Normalization is required to achieve

explicitness and modularity in the domain. The purpose of the normalization of an

ontological model is the modularization of the domain related concepts, focused on the

creation of the concept structures (generalization or aggregation hierarchies) and is based

on empirical criteria and experience (Rector, 2003). Subject domain: real world domain.

Required knowledge: important objects and their properties; normalization method. The

subject of normalization: a content of domain (structure of models). Criterions of

transformation: ontological dependencies of properties.

- In relational database design, normalization is a sequence of data model

transformation steps and is defined by Normal Forms (1NF, 2NF, 3NF, etc.) (Codd,

1971), (Kent, 1983). We draw attention to the reciprocal relationship between the data

model and the real world. Changed functional dependencies (different specifications of

the data model) between the same data (attributes of entities) "generate" other potentially

possible (permissible) physical situations in the real world. Such an interconnection is

important point of normalization - understanding (and revealing) the causal relationships

of the RW domain justifies (determines) the permissible interfaces between the model

elements. Subject domain: data sets (semantic data) and data values. Required

knowledge: functional data dependencies, and normalization method; Subject of

normalization: relationships of attributes (structure of data model). Criterions of

transformation: functional dependencies of attributes.

- In workflow modeling (WFM), normalization is defined by three normal forms of

WFM in (Pankratius, Stucky, 2005). WFM normal forms are defined for workflow

models represented as a Petri net after pre-normalization step. Pre-normalization

simplifies transformations into normal forms. The 1NF is intended to flatten out hidden

sub-workflow specifications to atomic components; it is aimed at the identification of

redundant flow specifications. The second normal form (2NF) is intended to eliminate

multiple occurrences of isomorphic sub-nets with identically labeled components (places

or transitions). The third normal form (3NF) is aimed to eliminate multiple occurrences

of isomorphic sub-nets with semantically identical labels for places or transitions.

Subject domain: real world domain processes and flows. Required knowledge:

dependencies of components (places or transitions), and normalization method. The

subject of normalization: the content of domain (structure of WFM). Criterions of

transformation: dependencies of components.

336 Gudas and Valatavicius

3.2. Functional dependency

Normalization and functional dependency are related concepts, i.e. in data base

design normal forms are defined regarding functional dependencies. Functional

dependency (FD) is a property of a real world, i.e. the functional dependencies between

elements (components, entities, attributes, values, etc.) of subject domain models reveals

causal links between elements in the real world domain (Wand, Weber, 1995).

A summary of a functional dependency (FD) characterization in diverse subject

domains from the perspective of required domain knowledge is as follows:

- In mathematics, two variables x and y are tied by a functional dependence, if for

each value of one of them it is possible to receive by the certain rule one or some values

of another. Subject domain: a set of variables. Required knowledge: a deep

understanding of subject domain entities (objects), their attributes (variables) and

relations;

- In ontological modeling analysis of the existential dependence of composite objects

defines existential dependence (EDG) as follows: composite objects are existentially

dependent objects in the sense of (EDG) since they require the existence of proper parts

(OD_SEF, 2015). Subject domain: a set of composite objects. Required knowledge: a

deep understanding of subject domain entities (composite objects) and relations);

- In enterprise modeling functional dependency of enterprise management activities

(for instance, finance management, human resource management, procurement, etc.) is

the sequence of required essential information interactions between internal components

of definite activity (within management activity steps), that are required for

implementation of that particular enterprise management activity (i.e. enterprise

management function) (Owens, 2013), (Gudas, 2012). Subject domain: a system of

enterprise management activities: enterprise management functions and enterprise

processes. Required knowledge: a deep understanding of causal relationships between

activities, understanding of internal informational dependencies of activities,

understanding of obligatory steps within each activity (enterprise management function

and enterprise process).

- In relational data base design, a functional dependency defines a functional

relationship between attributes. A set of attributes X in relation R is said to functionally

determine another set of attributes Y, also in R, (written X →Y) if, and only if, each X

value is associated with precisely one Y value; R is then said to satisfy the functional

dependency X → Y. Second and third normal forms are defined regarding functional

dependencies. In relational database design, the several equivalent axiomatizations of

FDs are given by Armstrong (Armstrong, 1974). For instance, the one definition of FD is

based on properties of reflexivity (X  X); augmentation (if X  Z then X + Y  Z)

and pseudo transitivity (If X  Y and Y + Z  W then X + Z  W). Subject domain:

real world domain, entities, and their attributes. Required knowledge: a deep

understanding of subject domain entities and essential relations.

Summing up, normalization procedure exploits the deep knowledge of domain: first,

the normalization procedure is based on the functional dependencies of the target

domain, in other words, normalization requires revealing causation within the target

domain. The content of normalization and functional dependency (FD) concepts in the

particular subject domain is determined by knowledge of deep structure and dynamics of

target domain – is based on the perceived causal dependencies (laws of behavior). So,

the deep knowledge of the subject domain is a knowledge of the laws of behavior (e.g.

knowledge of the obligatory technological links, or management and control work

 Normalization of Domain Modeling in Enterprise Software Development 337

sequence) within the domain. Nevertheless, do not forget, that correlation does not imply

causation.

Generalization of understanding of normalization and functional dependency is

aimed to the deployment of these concepts in the information systems engineering (ISE).

"The deep structure of an information system comprises those properties that manifest

the meaning of the real-world system the information system is intended to model."

(Wand, Weber, 1995).

The approach towards the generalization of the normalization definition in the IS

engineering is based on the premises as follows:

1. Analysis of “normalization” and “functional dependency” concepts should be

accomplished in the context of internal modeling paradigm when a subject domain (i.e.

organizational system or enterprise) is real world domain considered as a white-box. The

target of internal modeling is an identification of a deep structure and essential patterns

of behavior (laws) of the subject domain (Gudas, 2012), (Dietz, 2006).

2. Functional dependency (FD) is a property of a real world, i.e. the functional

dependencies between elements of the ISE models (components, entities, attributes,

values, etc.) reveal (correspond, correlate) causal dependencies between elements of a

subject domain (Wand, Weber, 1995).

For instance, functional dependencies between attributes of entities in data model

capture the meaning of an application domain as perceived by an analyst (data base

designer). In common, functional dependency could be revealed and identified.

However, it could be missed in case of an analyst mistake or due to objectives of

modeling.

3. Generally, normalization is transformation of the initial model (an empirical

model) of the subject domain to the “norm”-defined model (a normalized model), and is

based on two kinds of knowledge: a) Knowledge of deep properties of some subject

domain, b) Knowledge about “norm” development (knowledge about criterions and

procedure of normalization).

4. Normalization in the enterprise domain modeling

Summarizing, the concept of functional dependency expresses the deep properties of the

subject domain being examined. Generalization of the concept “functional dependency”

in the IS engineering is aimed to overcome limitations of subject domain systems

analysis (business process modeling), requirements specification and enterprise software

design methods. Limitations of model-driven development (MDD) are related to the

model transformation gaps between SDLC stages: business modeling, requirements

specifications, and software design models (IS a project model).

4.1. Deep knowledge of the subject domain

Identification of a functional dependency in particular subject domain requires

definite knowledge about internal interactions within that particular domain (the type of

systems). Identification of functional dependency requires revealing the interactions of

the domain elements (objects, processes, entities) and inter-dependencies of their

properties (variables, attributes). Therefore, identification of the functional dependency

in the particular subject domain is a knowledge intensive process; consequently, the

338 Gudas and Valatavicius

internal modeling approach is urgent. For example, normalization of data model could be

considered as the knowledge-driven transformation, because the predefined knowledge

of the data functional dependencies in that subject domain being examined.

Understanding of the functional dependency in the enterprise management modeling

is closely related to the understanding of business management transaction and business

function (Gudas, 2016). We accept the proposition of J. Owen “Processes steps that are

not business functions have no logical foundation or integrity.” and “Business functions

are the core activities of an enterprise. All other activities and data are derived from

business functions” in (Owen, 2013) about the fundamental importance of understanding

business functions.

However, we are focused on the modeling of business functions on the more detailed

level. The aim is revealing of information-data-knowledge transformations within the

management activities. Our approach towards enterprise model normalization is based

on the premises about two kinds of required knowledge: knowledge about the deep

structure of the subject domain, and knowledge about subject domain dynamics based on

the deep causal dependencies.

In the enterprise internal modeling approach (Gudas, 2012), the concept of

management functional dependency (MFD) for capturing causal dependencies of the

business management activities have been introduced. Management Functional

Dependency (MFD) is a primary causal dependency of business activities required by

strategic plans or operational capabilities. MFD is captured by domain analyst and

represented on the enterprise modeling layer as the management transaction (MT). Every

MT should identify two parts of management activity - definite management function (F)

and definite enterprise process (P), and the information interactions (K) between these

two parts of management activity (Gudas, 2012).

4.2. Knowledge of subject domain dynamics

The first step of enterprise management modeling is discovering of MFD within the

problem domain and conceptual representation of MFD by the management transaction

(MT) (see fig. 3). Finally, a problem domain is considered as the Detailed Value Chain

Model (see fig. 3), comprising a system of the management transactions (Gudas, 2012).

The Detailed VCM (DVCM) refines the causal dependencies of business activities and

represents the informational content of each MFD as the management transaction (MT).

The definite MTji = ((Fj x Pi), Ki, Kj) includes the management function Fj and

enterprise process Pi, and feedback control flows Ki and Kj between Fj and Pi. Here Ki

is a flow of state attributes I, Kj – a flow of controls j (see fig. 4).

The next step is exposing the deep knowledge of target domain – an internal structure

of the MTs is obtained. The internal structure of MT by definition is the Elementary

Management Cycle (EMC) (see Fig. 4).

An example of concrete MT: MT ((Order fulfillment) = ((Fj – Order fulfillment

management) x (Pi – Build and ship product), Ki – Orders received, Kj - Product

shipment invoice).

The next step is internal modeling of the identified management transactions. Herein

a deep structure of management transaction MTji is defined as the elementary

management cycle (EMCji). The EMCji includes the enterprise management goal (G),

enterprise process Pi(G), and the management function Fj(G) with a predefined internal

structure as follows: the information transformation steps T(G) = (T1, ..., Tn), the

management information flows K(G) = (KA,..., KV) between the steps T(G), and a set of

 Normalization of Domain Modeling in Enterprise Software Development 339

influences S(G) of the management goal (G) focused on the process Pi(G), steps T(G),

and flows K(G) (Fig.4). The elementary management cycle (EMCji) is defined as

follows:

EMCji = (G, Pi(G), Fj(T(G), K(G), S(G))); (3)

Enterprise Processes {P}

Management Functions {F}

Enterprise
process P1

Enterprise
management
function F1

State
Attributes 1

Enterprise
process

Pm

Control
Attributes 1

Materials /
 energy

Materials /
 energy

Products /
 services

Enterprise
management
function Fn

State
Attributes m

Control
Attributes n

INPUT OUTPUT

Enterprise
management
function F j

Enterprise
process Pi

State
Attributes i

Control
Attributes j

Materials /
 energy

Materials /
 energy

Materials /
 energy

Suppliers Customers

Management

transaction (MT) :

(Fj x Pi)

Fig. 3. Enterprise domain is represented as Detailed Value Chain Model (DVCM);

it includes the captured management transactions (MT)

The concept “management information” comprises all types of information flows

used in management interactions, i.e. it includes data, information, goals, rules,

directives, constraints, etc. The management information flows S show an impact of goal

(G) on the EMC steps T and include the rules and directives for identification (or

modification) of the content of steps T (sub-functions of the management function F),

i.e. the logic of information transformations within the EMC steps (T) is goal-dependent.

Management information (S) directed from goal G to flows K defines the rules and

directives for identifying (or modifying) of the content of flows K.

Enterprise management function Fj(G)

Interpretation

IN(G)
Realization of

decisions RE(G)

Decision Making

DM(G)

Data Processing

DP(G)

Management

goal (G)

Enterprise Process Pi(G)
(Production, Performance)

A – Process

state attributesV – functional controls

B – systematized

 raw data

C – processed data

D – management decision

Inputs
(Materials, Energy)

Outputs
(Products, Services)

S(V)

S(DA)S(SP)

S(IN)S(RE)

S(P)

S(B)

S(C)

S(D)

S(A)

Fig. 4. The internal structure of management transaction

 (Fj x Pi) is the Elementary Management Cycle (EMCji)

340 Gudas and Valatavicius

Herein a deep structure of management transaction MTji is adopted for needs of IS

engineering, and is defined in Fig. 4 as the Elementary Management Cycle (EMCji) - the

internal steps of EMC are limited to four, and the semantics is defined concretely

(Gudas et al., 2005), (Gudas, 2012).

Four types of management information transformation steps identified in EMC: IN –

interpretation (data gathering and systematization), DP – data processing, DM – decision

making, RE – realization of decisions (controls), impact to process Pi. Management

information flows between steps are classified as follows: A – state attributes of

Enterprise Process Pi(G), B – systematized data, C – processed data, D – management

decisions, V – functional controls for Enterprise Process Pi(G):

EMC = (G, P(G), F(IN(G), DP(G), DM(G), RE(G), A(G), B(G), C(G),D(G), V(G),

S(G))) (3)

The Elementary Management Cycle (EMC) is considered as the typical unit of

enterprise management from the information point of view. Interactions between the

enterprise process Pi and steps (IN, DP, DM, and RE) of the enterprise management

function Fj are an illustration of the concept "management functional dependency”

(MFD).

Management Functional Dependency (MFD) is primary in the sense that MFD is a

reason (cause) of some particular management transaction. Enterprise management

functional dependency (MFD), is identified at the top level of domain modeling as

management transaction (MT) (see fig. 3) and is defined here in detail as EMC (see Fig.

4). From the viewpoint of IS, engineering needs the set of the internal steps of

management transaction MTji is limited here to five semantically different FDs as

presented in the Fig. 4 (Gudas, 2012). In our case MFD consists of a consistent series of

functional dependencies (FD) that are conceptualized as EMC elements:

MFD = {FD1, FD2, FD3, FD4, FD5} (4)

Here:

FD1 = (A → IN(G) → B) – interpretation step IN is conceptualization of functional

dependency of A – attributes of the enterprise process (technological process) state, and

B – output attributes of interpretation;

FD2 = (B → DA(G) → C) – data processing step DA is conceptualization of

functional dependency of B, and C – data processing step output (IN output B is the DP

input C);

FD3 = (C → SP(G) → D) – decision making step DM is conceptualization of

functional dependency of C, and D – decision making output (DP output C is the DM

input D);

FD4 = (D → RE(G) → V) – decision implementation step RE is conceptualization of

functional dependency of D, and V - decision implementation output (DM output D is

the RE input V);

FD5 = (V → P(G) → A) – enterprise process (technological process) implementation

step is a conceptualization of the functional dependency of V, and A – enterprise process

state attributes (RE output V is the controlling impact on the enterprise (technological)

process).

Thus, in our case enterprise management functional dependency (MFD) consists of

functional dependencies FD1, FD2, FD3, FD4 and FD5 which make a closed loop:

MFD = {FD1 = (Si → IN(G) → Sj); FD2 = (Sj → DA(G) → Sn); FD3 = (Sn →

SP(G) → Sm); FD4 = (Sm → RE(G) → Sk); FD5 = (Sk → P(G) → Si)} (5)

 Normalization of Domain Modeling in Enterprise Software Development 341

The MFD concept is used when some subject domain is perceived as a set of self-

managed goal-driven activities, which are conceptualized as management transactions

(see fig. 3). The presented example of MFD(Order fulfillment) revealed the perceived

causal dependencies between real world activities which should be created (organized)

and managed within the manufacturing enterprise:

MFD(Order fulfillment) = (FD1 = (A(Orders received) IN(Complete order) 

B(Verified orders), FD2 = (B(Verified orders)  DP(Submit order)  C(Credit

requests), FD3 = (C(Credit requests)  DM(Check credit)  D(Approved orders),

FD4= (D(Approved orders)  RE(Scheduled orders)  V(Scheduled orders), FD5 =

(V(Scheduled orders)  Pi (Build and ship product)  (A (A(Orders received))))

(6)

Notice, that MT(Order fulfillment) in the text above is a conceptualization of the

perceived domain causality MFD(Order fulfillment).

5. Normalization of enterprise model

An enterprise model is a set of business process models acquired by analysts and experts

in the initial SDLC stage of conceptual domain modeling. Traditionally business process

models (BPMs) are constructed by few analysts in the context of black-box approach

(external modeling paradigm) as systems of (input, process, output) components.

Commonly, business process modelers use BPMN, ARIS or some other BPM language

and the following elements: activities (processes) related using information and material

flows and, at times, by pointing out their relationships with events or organizational sub-

units. The, therefore, content of different BPMs could be overlapping to some extent,

also could be some gaps of connectivity between BPMs. That is way initially emerged a

set of business process models and, in sum, enterprise model is an empirical model (a set

of empirical business process models).

5.1. Normalization steps

Normalization of EM is a sequence of transformations of an empirical enterprise

model (EM) to get an enterprise management model (EMM). In our approach

normalization procedure of EM is knowledge-driven transformation, which is based on

the two predefined knowledge structures: a management transaction (MT) and an

elementary management cycle (EMC). The main normalization steps of enterprise

modeling are depicted in figure 5.

Definition. Normalization of the enterprise model (EM) is a knowledge-driven

transformation of the acquired empirical information (perceived domain knowledge or

already developed business process models) into an enterprise management model

(EMM). EM normalization procedure is based on the internal modeling of the

management functional dependencies (MFDs) perceived within enterprise domain.

The aim of enterprise modeling normal forms is to ensure the domain causality

representation by the enterprise model (regardless of the business process modeling

notation). We notice that BPMN was not selected for conceptual representation because

it is not convenient for depicting cyclical processes (e.g. such as MT and EMC).

 Can be two primary sources of the domain knowledge (empirical information): a

perceived domain composition by observation, or already formed before empirical

enterprise/business process models (fig. 5).

342 Gudas and Valatavicius

Empirical Enterprise Model

(EM)

Business process
model (A)

Business process
model (B)

Business process
model (...)

Business process
model (N)

Enterprise Model normalization

1. Clustering of gathered domain information:

 identification of management transactions MT by

extracting the pairs of the management functions F and

enterprise processes P (ENF1)

2. Detailed specification of all identified management

transactions MT = ((F x P), K) (ENF2)

3. Internal modeling of the management transactions:

decomposing of each MT according to the definition of

the elementary management cycle (EMC)

(ENF3)

4. Verification of the specified EMCs and elimination of

the detected gaps within EMC specifications.

Outcome is the Enterprise Management Model (EMM) in

ENF4.

EM in ENF1

EM in ENF2

EM in ENF3

EMM is ENF4

Real World:

A target

domain

Fig. 5. Normalization of the enterprise modeling

The normalization steps of enterprise model are as follows (Fig. 5):

1. Transformation of empirical information (the perceived elements of the target

domain or elements of already formed before empirical enterprise models) into pre-

normalized form (ENF1, and ENF2), defined as Detailed Value Chain model (DVCM)

in our approach (steps 1 and 2 in Fig. 5):

Clustering of the gathered empirical domain information by dividing the elements

“activities” into two types “enterprise management function F”, and “enterprise process

P”, and extracting pairs (F x P) of F and P. In this way the management transactions MT

start identifying.

A closed loop within all identified management transactions MT is specified, i.e. the

bi-directional information flows between enterprise management functions F and a

corresponding enterprise processes P is identified. At this moment an initial enterprise

model in two steps is transformed and depicted as a Detailed Value Chain Model

(Gudas, 2012).

2. Development of the internal model of management transactions MT. The structure

of the internal model of MT depends on the problem being addressed; it is defined here

as an Elementary Management Cycle (EMC) (see step 3 in Fig. 5):

Decomposition of management transactions MT by the definition of EMC into a

definite set of lower level components. Thus, each MT specified on the lower level is a

closed loop of EMC steps and connecting information flows, which are influenced by

management goal (see fig. 4).

3. Revision of results (step 4 in Fig. 5): correction of the detected gaps within EMCs

and overlapping of different EMCs. Finally, a normalized enterprise model – enterprise

management model (EMM) is obtained as a set of verified EMCs.

 Normalization of Domain Modeling in Enterprise Software Development 343

5.2. Definitions of the Enterprise model Normal Forms (ENF)

Definition: An enterprise model (or business process model) is in the first normal

form (ENF1) if all management transactions are identified (i.e. the pairs of management

functions (F) and enterprise processes (P) are identified).

The captured domain information (see fig. 5) is overlooked and clustered according

to the definition of the management transaction MT. All elements denoting “domain

activities” (i.e. processes) are divided into the two types (Fig. 3): P – the enterprise

processes (material transformations) and F - the enterprise management functions

(information/data/knowledge transformations). The pairs of interacting enterprise activities

(F x P) are recognized and depicted in the model. This results in ENF1 of the enterprise model.
This is the first step of reconstruction of the empirical EM into the Detailed VCM

(fig. 3), which by definition meets the second normal form (ENF2) of the enterprise

model.

Definition: An enterprise model (or business process model) is in the second normal

form (ENF2) if all management transactions {(F x P)} between enterprise processes (P)

and enterprise management functions (F) are specified, i.e. essential management

functional dependencies (MFDs) are conceptualized.

Activity i
(Pi)

Activity v
(Pv)

Activity 1
(F1)

Activity j (Fj)
Activity k

(Fk)

Activity 3
(P3)

Activity 4
(P4)

Activity 2
 (F2)

MFD1 MFD2
MFDj

MFDk

MFD – a management functional dependency is a real world causality
MT – a management transaction is representation of the perceived MFD

MT13 MT24
MTji MTkv

...

...

Fig. 6. An abstract enterprise model after clustering meets ENF1 – the pairs of two types of

interacting enterprise activities (F x P) have been recognized in the target domain

This is a final step of transformation of the empirical (clustered) EM into a Detailed

Value Chain Model - essential MFD are perceived in the target domain and represented

as management transactions {(F x P)} (Fig. 3).

Ending normalization in the ENF2 you have to finish specification of all identified

MT by naming a feedback loop information flows between activity types F and P of

management transactions {(F x P)} as depicted in fig. 3. I do not provide a detailed

specific example of the limited scope of the article.

344 Gudas and Valatavicius

Activity i
(Pi)

Activity 1
(F1)

Activity j (Fj)

Activity 3
(P3)

Activity 4
(P4)

Activity 2
 (F2)

MFD1 MFD2
MFDj

MFD – a management functional dependency is a real world causality
MT – a management transaction is representation of the perceived MFD

MT13 MT24
MTji

...

...

Flow 13
Flow 31

flow23

flow32
flow24

flow42
flow-ji

flow-ij

...

...

Fig. 7. Illustration of ENF2: all identified management transactions (MTs) specified as

the closed loop systems MT13, MT23, MT24,.., MTji,…MTkv.

An example of enterprise model in ENF2 is presented in fig.7. All identified in ENF1

management transactions are specified as a closed loop interaction of F and P: MT13= ((P3, F1),

Flow31, Flow13); MT23= ((P3, F2), Flow32, Flow23); MT24= ((P4, F2), Flow42, Flow24); MTji=

(Pi, Fj), Flow-ij, Flow-ji),…

Let us say that concrete example of MT13 is MT(Order fulfillment) defined in the

text above.

Definition: An enterprise model (or business process model) is in the third normal

form (ENF3) if a deep structure of all management transactions MT is specified as the

Elementary Management Cycle (EMC).

The internal structure of each management transaction MTji = {(Fj x Pi), Ki, Kj} is

specified as EMC: components of management transactions (activities and flows) are

classified into types by expertly attributing them to a corresponding EMC step (IN, DP,

DM or RE) and corresponding type of EMC flow (A, B, C, D). Consequently,

management transactions MTji are normalized according to EMC structure (see Fig. 4).

An example of ENF3 of management transaction MT13 (see Fig. 7) of the abstract

target domain is presented in Fig. 8. The internal elements of the Activity1 (F1) have

been found and identified as follows: a goal of management G1, activities Activity11

(F11), Activity 12 (F12), Activity13 (F13), and Activity14 (F14), and new flows Flow-b,

Flow-c, Flow-d, Flow-e, as well identified impacts S (A) of goal G1 to internal elements

of EMC13.

Let us say that concrete example of MT13 is MT(Order fulfillment) defined in the text

above. The internal structure of MT13 can be determined correctly if the structure of the

MFD (Order fulfillment) is already known. Suppose the analyst do not have a prior

knowledge of MFD (Order fulfillment) and did not notice within target domain the

business activity Check credit and flow Credit requests, so the internal model of MT13

on this stage of normalization got incomplete:

EMC(Order fulfillment) = (G1(Quality of service); P3(Build and ship product);

F1(Order fulfillment management)= (IN(Complete orders), DP(Submit orders),

 Normalization of Domain Modeling in Enterprise Software Development 345

RE(Schedule orders); A(Orders received), B(Verified orders), D(Approved orders),

E(Product shipment invoice); S(G1)).

By this method, an internal structure of all management transactions MT13, MT23,

MT24,..,MTji,…MTkv must be captured and specified as the elementary management

cycles (EMC) to obtain ENF3 of the initial enterprise model.

Definition: An enterprise model (or business process model) is in the fourth normal

form (ENF4) if verification and revision of enterprise management functions structure

are performed and all gaps or overlapping of EMCs are eliminated.

Enterprise models (in ENF3) are analyzed and corrected: EMC “gaps” are identified,

which stands for identification of certain cases of mismatch to the theoretical EMC

structure. Carrying out an additional analysis of the enterprise domain, missing elements

of the definite EMC (enterprise management function) are uploaded to model (fig. 9).

Afterward, taking the hierarchical structure of the enterprise management model into

consideration (considering that components of EMC are complex and comprise

hierarchical structures), the normalization procedure can be applied to the EMC steps

(IN, DP, DM, RE).

The abstract management transaction (corresponding to MFD1 in the Fig. 7) is

specified as the EMC1 = (IN, DP, DM, RE, G, P) in the Fig. 8. This is an example of

enterprise model in the ENF3, but some gaps in this particular management transaction

model (a part of Enterprise management model) remains in this step of normalization

procedure (see Fig. 8) because of the incompleteness of the initial empirical EM

provided in the Fig. 6.

Activity 13
(F)

Activity 11
(F)

Activity 14
(F)

Activity 12
(F)

Activity 3
(P3)

Management transaction MT13 is specified as EMC13

Goal of
management

G1 The gap

Flow 31

Flow-b

Flow-cFlow-d

Flow-e

Flow 13

S(A)

S(A)

S(A)

S(A)

S(A)

S(A)

S(A)

S(A)

S(A)

S(A)

...

Activity 1 (F1)

Fig. 8. An example of ENF3.: the management transaction MT13

have been specified as the EMC13

The internal model EMC13 of management transaction MT13 in fig. 9 have been

verified and corrected than the gaps are eliminated (new activities Activity, X and

Activity Z, have been added), and identifiers are assigned to newly added flows (Flow-e,

Flow-w, S(A), …, S(A)).

346 Gudas and Valatavicius

Activity 13
(F13)

Activity 11
(F11)

Activity 14
(F14)

Activity 12
(F12)

Activity 3
(P3)

MT13 is specified in detail as EMC13

Goal of
management

G1

Flow 31

Flow-b

Flow-c
Flow-d

Flow-e

Flow 13

S(A)

S(A)

S(A)

S(A)

S(A)

S(A)

S(A)

S(A)

S(A)

S(A)

Activity X
(Fx)

Activity Z
(Fz)

Flow-w
S(A)

S(A)

Activity 1 (F1)

Fig. 9. An example of ENF4: the internal model EMC13 of management transaction MT13 have

been verified and corrected.

Let us say that concrete example of MT13 is MT(Order fulfillment. The internal

structure of MT13 can be determined correctly if the structure of the MFD (Order

fulfillment) is already known. There were corrections made, and now MT13(Order

fulfillment) internal model is in ENF4:

EMC(Order fulfillment) = (G1(Quality of service); P3(Build and ship product);

F1(Order fulfillment management)= (IN(Complete orders), DP(Submit orders),

DM(Check credit), RE(Schedule orders); A(Orders received), B(Verified orders),

C(Credit requests), D(Approved orders), E(Product shipment invoice); S(G1).)

All internal models EMC of all specified before management transactions MT have

to be verified and corrected to obtain ENF4 of the enterprise model.

Definition: An enterprise model (or business process model) is in the fifth normal

form (ENF5) if it is in normal form ENF4, and normalization of procedural components

of the elementary management cycles (EMCs) is fulfilled to the normal form ENF4.

According to the definition, the procedural elements (transformations IN, DP, DM,

RE, see fig. 4) of EMCs have to be decomposed, in this way, the lower level EMCs of

each transformation (IN, DP, DM, RE) are created. Next, normalization procedure

should be carried out for each lower level EMC. This corresponds to the application of

ENF3 and ENF4 procedures to normalize these (lower level) business process models of

the transformations (IN, DP, DM, and RE).

Summarizing, normalization of the domain model applying normal forms (ENF1 –

ENF5) is considered as knowledge-driven model transformation, which is based on the

concepts of MFD and MT. Two domain knowledge structures - Detailed Value Chain

Model (DVCM) and Elementary management cycle (EMC) are used for capturing and

specification of domain knowledge. The principle scheme of the enterprise model

normalization provided in figure 10. In our approach MT is defined in detail as EMC

framework; however, there may be a different MT detailing.

 Normalization of Domain Modeling in Enterprise Software Development 347

Attributes Attributes

Attributes Attributes

Attributes

Attributes

Attributes

Attributes
Attributes

Decision step

model

Data

processing step

model

Enterprise

management

goals model

Model of

solution

implementation

step

Interpretation

step model

Managed process

identifier

Enterprise management function (EMF1) model

(normalization criterion is the elementary management

cycle (EMC) structure)

Knowledge-based enterprise management model – normalized enterprise

model

(normalization criterion – managed process structure)

Enterprise model

DFD notation

Enterprise model

BPMN notation

Enterprise model

[…] notation

Empirical enterprise

models (EM)

Knowledge-based

enterprise model

transformation (EM

normalization)
Attributes Attributes

Attributes Attributes

Attributes

Attributes

Attributes

Attributes
Attributes

Decision step

model

Data

processing step

model

Enterprise

management

goals model

Model of

decision

implementation

step

Interpretation

step model

Managed process

identifier

Enterprise management function (EMF2) model

(normalization criterion is the elementary management

cycle (EMC) structure)

Attributes Attributes

Attributes Attributes

Attributes

Attributes

Attributes

Attributes
Attributes

Decision step

model

Data

processing step

model

Enterprise

management

goals model

Model of

decision

implementation

step

Interpretation

step model

Managed process

identifier

Enterprise management function (EMFn) model

(normalization criterion is the elementary management

cycle (EMC) structure)

Fig. 10. The principle scheme of the enterprise model normalization.

In this way, each enterprise management function F is described as EMC and

expertly revised until a theoretically correct managed process (F x P) is achieved by

identifying missed enterprise management components. These new (missed in empirical

models) components identified by analysis of the enterprise domain or by additionally

questioning the expert.

6. Conclusions

One disadvantage of the model-driven development is that usage of concepts

normalization, and functional dependency in the IS engineering (i.e. enterprise software

engineering) is limited to only one stage of SDLC - the database design stage. The

provided research of these two concepts reveals an idea to normalization of the entire IS

development life cycle (SDLC). Normalization and management functional dependency

are key concepts for enhancement of the model driven development methods and

technologies towards knowledge-based engineering. The purpose of the normalized IS

development life cycle is given background for systematic, knowledge-based software

engineering, which is based on the deep knowledge of subject domain (enterprise).

The presented approach of enterprise model normalization is a possible way for

normalizing the first stages of SDLC – enterprise/business process modeling. Enterprise

model normalization is a knowledge-driven transformation of the acquired set of

348 Gudas and Valatavicius

business process models (BPM) into an enterprise management model (EMM).

Enterprise model normalization based on the discovering of management functional

dependencies within the problem domain, and conceptualization using MT, DVCM and

EMC frameworks. Presented definitions of enterprise model normal forms (ENF1 –

ENF5) are described briefly using the example of an abstract subject domain.

The knowledge-based software development should maintain the transferring of the

real world functional dependencies across SDLC stages, starting with the enterprise

modeling (business process modeling) stage. Based on our analysis, we believe that the

management transaction expresses the essential managerial and control requirements,

and restrictions, consequently is the appropriate concept for creating normalization

procedures of SDLC stages.

Discovery and transferring of domain causal dependencies using such concepts as the

management functional dependency, the management transaction, and normalization

forms the basis for enhancement of model-driven software engineering.

Acknowledgements

This research inspired by the seminars of the Software Engineering Department of

the Vilnius University Institute of Mathematics and Informatics. I would like to express

my gratitude to the colleagues for the attention and remarks that allowed the

development of the ideas in this paper.

References

Allard, P., Ferré, S., Ridoux, O. (2010) Discovering Functional Dependencies and Association

Rules by Navigating in a Lattice of OLAP views. In: Kryszkiewicz M., Obiedkov S. (Ed.),

Conference on Concept Lattices and Their Applications (CLA), 199– 210.

Armstrong, W.W. (1974) Dependency structures of data base relationships. Information

Processing 74, North-Holland Pub. Co., Amsterdam, 580– 583.

Baader, F. Nipkow, T. (1999). Term rewriting and all that. Cambridge University Press.

Bondy, A., Murty, U.S.R. (2008) Graph theory, Springer.

De Bruyn P., Van Nuffel D., Verelst J., Mannaert H. (2012) Towards Applying Normalized

Systems Theory Implications to Enterprise Process Reference Models. In: Albani A., Aveiro

D., Barjis J. (eds) Advances in Enterprise Engineering VI. EEWC 2012. Lecture Notes in

Business Information Processing, vol 110. Springer, Berlin, Heidelberg.

Carlson, C.R., Arora A.K., Carlson M.M. (1982) The application of functional dependency theory

to relational databases. The Computer Journal, Vol. 25, No. 1, 68– 73.

Chong, S., Liu, K. (2000) A Semiotic Approach for Modeling and Designing Agent-Based

Information Systems Based on Roles and Norms. In: Proceedings of AOIS-2000 at CAiSE*00,

iCue Publishing, Berlin, 552– 567.

Codd, E.F. (1971) Further normalization of the data base relational model. In: Courant Computer

Science Symposia 6’: Data Base Systems, Prentice-Hall, Englewood Cliffs, N.J.

Date, C.J. (1999) An Introduction to Database Systems (8th ed.), Addison-Wesley.

Deming, W.E. (1993) The new economics for industry, government and education. MIT

Press, Boston.

Dietz, J.L. (2006). The deep structure of business processes, Communications of the ACM, 49(5),

58– 64.

 Normalization of Domain Modeling in Enterprise Software Development 349

Eessaar, E. (2014) On Applying Normalized Systems Theory to the Business Architectures of

Information Systems, Baltic Journal of Modern Computing, Vol. 2, No. 3, 132– 149.

Fong, J. (2015) Information Systems Reengineering, Integration and Normalization, Springer.

Georgakopoulos, D., Hornick, M. Sheth A. (1995) An Overview of Workflow Management: From

Process Modeling to Workflow Automation Infrastructure. Distributed and Parallel Databases

3, Kluwer Academic Publishers, Boston, 119– 153.

Gudas S., Lopata A. (2016) Towards internal modeling of the information systems application

domain. Informatica, 2016, Volume 27, Issue 1, 1– 29.

Gudas S. (2016) Information Systems Engineering and Knowledge-Based Enterprise Modelling:

Towards Foundations of Theory. Springer Proceedings in Business and Economics, Editors:

Androniki Kavoura et al. Strategic Innovative Marketing, Springer, 481- 497.

Gudas S. (2015) Normalization of Domain Modelling in Information Systems Development. In:

7th International Workshop „Data Analysis Methods for Software Systems“, Druskininkai,

Lithuania, December 3-5, Vilnius, 20 -21.

Gudas, S. (2012) Foundations of the Information Systems‘ Engineering Theory (Lithuanian),

Vilnius University, Vilnius.

Gudas, S., Skersys, T., Lopata, A. (2005) Approach to Enterprise Modeling for Information

Systems engineering, Informatica, 2005, 16(2), 175– 192.

Kent, W. (1983) A Simple Guide to Five Normal Forms in Relational Database Theory,

Communications of the ACM 26(2), 120– 125.

van der Linden, D., Mannaert, H., De Bruyn, P. (2012) Towards the Explicitation of Hidden

Dependencies in the Module Interface. In: ICONS 2012: The Seventh International Conference

on Systems, 73– 78.

Kecheng, L., Sun, L., Dix, A., Narasipuram, M. (2001). Norm Based Agency for Designing

Collaborative Information Systems, Information Systems Journal, 11, 229– 247.

Mannaert, H., Verelst J., (2009) Normalized Systems. Re-creating Information Technology Based

 on Laws for Software Evolvability, Koppa.
Mannaert, H., Verelst, J., Ven, K. (2011). Towards evolvable software architectures based on

systems theoretic stability. Software: Practice and Experience 42(1), 89–116.

Medina-Mora, R., Winograd, T., Flores, R., Flores, F. (1992). The action workflow approach to

workflow management technology. In: CSCW 92 Proceedings, 281– 288.

Murray, E., Treweek, S. Pope, C., et al. (2010) Normalization process theory: a framework for

developing, evaluating and implementing complex interventions, BMC Medicine 8(63).
http://www.biomedcentral.com/1741-7015/8/63

Osis, J. (2004). Software development with topological model in the framework of MDA. In:

Proceedings of the 9th CaiSE/IFIP8.1/EUNO International Workshop on Evaluation of

Modeling Methods in Systems Analysis and Design (EMMSAD’2004) in connection with the

CaiSE’2004, 1, Riga, Latvia: RTU, 211 – 220.

Owens, J. (2013) The function model the foundation for all business models. Orbus Software,

2013. http://www.orbussoftware.com

Özacar, T., Öztürk, Ö., Ünalır M. O. (2011) ANEMONE: An environment for modular ontology

development. Data & Knowledge Engineering 70(6), 504-526.

Pankratius, V., Stucky, W. (2005) A Formal Foundation for Workflow Composition, Workflow

View Definition, and Workflow Normalization based on Petri Nets. In: Hartmann S.,

Stumptner M. (Ed.) The Second Asia-Pacific Conference on Conceptual Modeling

(APCCM2005), University of Newcastle, Newcastle, Australia. Conferences in Research and

Practice in Information Technology, 43, 79 – 88.

Papazoglou M. P. (2003) Web Services and Business Transactions (2003). In World Wide Web:

Internet and Web Information Systems, 6, Kluwer Academic Publishers, 49–91.

Porter, M.E. (1985) Competitive Advantage. The Free Press. New York.

Rector A. (2003) Modularisation of Domain Ontologies Implemented in Description Logics and

related formalisms including OWL. Proceedings of international conference on knowledge

capture K-CAP’03, ACM press, New York, NY, USA, October 23–25, 2003, Sanibel Island,

Florida, USA, 121– 128.

http://www.biomedcentral.com/1741-7015/8/63

350 Gudas and Valatavicius

Rissanen, J. (1977) Independent Components of Relations. ACM Transactions on Database

Systems, 2(4), 317– 325.

Rummler G.A. Ramias A.J., Rummler, R. (2010) White Space revisited: creating value through

process, John Wiley & Sons Inc.

Tan, S. Liu, K. (2004) A Semiotic Approach to Organisational Modeling Using Norm Analysis.

In: 6th International Conference on Enterprise Information Systems, Porto, Portugal, 2004, 1-

15.

Taylor D. (2009) Normativity and Normalization, Foucault Studies, No 7, 45– 63.

Van Nuffel, D., Mannaert, H., De Backer, C.,Verelst, J. (2009) Deriving normalized systems

elements from business process models. In: Proceedings of the Fourth International

Conference on Software Engineering Advances (ICSEA 2009), K. Boness, J.M. Fernandes,

J.G. Hall, R.J. Machado, and R. Oberhauser, Eds. Los Alamitos, USA: IEEE Computer

Society, September 2009, 27–32.

Wand, Y., Weber, R. (1995) On the deep structure of information systems. Information Systems

Journal, 5(3), 203– 223.

Wand, Y., Storey, V.C., Weber, R. (1999) An Ontological Analysis of the Relationship Construct

in Conceptual Modeling, ACM Transactions on Database Systems, Vol. 24, No. 4, 494–528.

Received October 6, 2017, accepted October 16, 2017

