
Baltic J. Modern Computing, Vol. 5 (2017), No. 4, 379-390

http://dx.doi.org/10.22364/bjmc.2017.5.4.04

Virtual Machine Based High-Resolution Display

Wall: Experiments on Proof of Concept

Rudolfs BUNDULIS, Guntis ARNICANS

Faculty of Computing, University of Latvia, Raina bulv. 19, Riga, LV-1586, Riga, Latvia

rudolfs.bundulis@gmail.com, guntis.arnicans@lu.lv

Abstract. This paper provides scalability and use case analysis of a prototype for virtual machine

based high-resolution display architecture. This architecture has been presented by the authors to

overcome the reasons due to which other research results in the high-resolution display wall

domain have still not achieved industrial success. Authors have provided use cases of this

architecture with common operating systems like Linux and Windows and common software

applications to demonstrate how a display wall solution can become seamless to the software layer

while providing scalability, which is limited in the hardware-based display wall solutions that

dominate the industry.

Keywords: large high-resolution display, tiled displays, large-scale visualization, virtual machine

1. Introduction

The need for high-resolution display walls is trending due to the growth of the imaging

device resolutions. However, the current solutions that focus on maximizing the overall

resolution of homogeneous display surfaces remain mostly academic and have not

conquered commercial success. Bundulis and Arnicans (2013, 2014) have analyzed the

leading research results in this domain and tried to tackle the downsides of the existing

solutions by proposing a new display wall architecture that is based on GPU

virtualization.

Even though the demand in the industry exists, several factors prevent such great

systems as SAGE (Jeong et al., 2006) and Chromium (Humphreys et al., 2002) to be

utilized from small and medium business throughout to large enterprises:

 A common misconception that a display wall is always more expensive and

harder to deploy than a single high-resolution display (4K or 8K) due to the

additional hardware. For example, Reality Deck (Papadopoulos et al., 2014) – a

1.5 gigapixel cluster based display surface cost the authors approximately $950

000 which is around $0.00063 per pixel.

 The inability to create a large homogenous surface. Solutions like SAGE or

Reality Deck provide great overall resolutions. However, the display surface is

still not homogenous – in both cases, it is constructed of independent nodes

each driving a part of the wall. Thus, it still seems more attractive to simply use

hardware solutions to obtain a reasonably sized homogenous display wall.

http://dx.doi.org/10.22364/bjmc.2017.5.4.04

380 Bundulis and Arnicans

 As seen in the survey done by Chung et al. (2014) most of the solutions and

frameworks are limited to certain graphics APIs like OpenGL, meaning that

commodity software cannot be visualized without modifications. This again is a

huge drawback since a display wall should work out-of-the-box and serve as a

transparent media transport layer for the source of the visualization.

 All the cluster based approaches suffer from the cost and energy consumption

factors for each new node added to the display wall. As seen in (Papadopoulos

et al., 2014) the Reality Deck 1.5 gigapixel wall was driven by 18 high-end

nodes with 4 GPUs in each meaning the idle power consumption of the whole

wall to be around 14 kilowatts. Since the content on the display wall can change

from static to very dynamic, the display wall architecture should be able to

efficiently scale the power consumption instead of requiring a high idle power

for static content. This is one of the factors that intuitively proposes

virtualization as the solution since efficient use of available hardware resources

was one of the main drivers in the birth of virtualization technologies.

 For static data, the GPU utilization in cluster-based display wall solutions is

very poor. The output count of a GPU usually correlates with the overall

processing power, meaning that GPUs with multiple outputs are usually mean

for high-end applications that require good 3D performance. If such GPUs are

used in a cluster for visualizing non-3D data like images videos and graphs the

idle power consumption and the price of the cards are unattractive.

 Most of the solutions are scientifically oriented – they are mostly meant for

distributed rendering of large 3D models and graphs. This leads to the fact that

the architectures are often inefficient for small-scale implementations.

 The solutions that are oriented towards sending some kind of model not pixel

data among the nodes (e.g., OpenGL commands) suffer from poor video

playback performance, although that, of course, is not the main target in those

cases. Still, this leads to the fact that none of the solutions is feasible for

everyday use, where the content can change from static images to video and 3D

applications.

 If the software applications that provide the actual visualization content are

commercial (e.g., CAD tools) then installing them on each node of a clustered

system will result in high software license expenses.

In summary, researchers have succeeded to create multiple solutions to target

different domains where high-resolution display surfaces are a must have, but they work

poorly among different sets of such domains.

The paper is organized into five chapters. The first chapter is an introduction that

provides a brief description of the major problems with currently available large-scale

high-resolution display wall solutions. The second one is a description of a proposed

display wall architecture and the first actual prototype built by the authors. The third

chapter contains current results on the scalability of the prototype in a number of

 Virtual Machine Based High-Resolution Display Wall: Experiments on Proof of Concept 381

displays and resolutions. The fourth chapter is a summary of use cases tried out on the

prototype, and the fifth chapter contains conclusions and a roadmap for future work.

2. Virtual machine-based high-resolution display wall

Bundulis and Arnicans (2014) have proposed to solve the downsides of the existing

display wall solutions with an approach that uses virtualization as an abstraction layer

between the number of displays and resolutions in the display wall and the GPUs

available in the computer system that provides the visual content.

GPU virtualization has become a trending technique in the virtualization

technologies. The leading solution providers like VMware (Dowty, 2009) have

implemented a way to provide the features of the GPU directly to the hosted operating

system. Similar technology is provided for Citrix XenServer by NVIDIA vGPU (WEB,

a) and RemoteFX (WEB, b) for Microsoft Hyper-V. The GPU virtualization technology

has successfully helped to utilize a single GPU in a multi-operating system environment.

This approach can be somewhat applied to the field of display walls too. The

problem with GPU virtualization is the same as with an actual GPU that the operating

system is limited regarding the actual number of video outputs. However, if the

virtualization technology itself presents a purely simulated GPU to the hosted operating

system and implements a partial acceleration (for 3D APIs like OpenGL and Direct 3D)

by using the physically available GPUs, this can solve both problems – remove the

dependencies on the physically available video outputs and increase hardware

utilization.

The authors have proposed a general architecture for a virtualized display wall

concept (Fig. 1). It consists of a tiled monitor wall with each monitor being backed by a

display node (DN #) and a host computer system, which provides the actual content for

the monitor wall.

The host system runs a software stack currently denoted as Framebuffer Manager

and some kind of virtualization platform which in turn hosts the guest operating system

that is running the content that needs to be visualized on the display wall.

The virtualization platform simulates a virtual GPU that can be freely configured

regarding virtual monitors and resolutions to exactly match each desired use case

depending on the amount of data that needs to be visualized.

The virtualization platform interacts with the Framebuffer Manager software stack by

providing notifications about drawing operations on the guest operating system and

access to the video memory contents of the virtual GPU.

The Framebuffer Manager itself performs event-driven management of the

framebuffers and handles (crops/scales) the mapping of image data from the virtual

monitors to the display nodes in the monitor wall. After the logical partitioning of the

image, the Framebuffer Manager uses hardware-based video encoding capabilities in the

host system to encode the image and provide an encoded video stream to each display

node.

382 Bundulis and Arnicans

The proposed architecture removes direct dependencies between the needed monitor

setup and presence of physical GPUs – all of this is taken care by the Framebuffer

Manager and virtualization platform. The Framebuffer Manager takes care of using the

present hardware for video encoding and 3D acceleration support for the virtualization

platform, while the virtualization platform provides unconstrained display and resolution

configuration options.

Bundulis and Arnicans have developed a working prototype of such system

(Bundulis and Arnicans, 2014). The current prototype includes a 5x5 22” monitor wall

and a host system with moderate hardware – Gigabyte Brix Pro mini PC (Fig. 2). The

server has an Intel Core i7 4770R CPU (4 physical cores, 8 virtual cores at 3.2 GHz),

Intel Iris 5200 Pro GPU, 12 GB of RAM and Windows 8.1. It runs VirtualBox as the

virtualization platform with both Windows and Linux guests. VirtualBox simulates a

virtual GPU with 25 display outputs each running at the resolution of 1920x1080. The

arguments for choosing VirtualBox as the virtualization platform is explained further on.

The authors have developed a Framebuffer Manager implementation that runs

alongside VirtualBox on the host operating system and collects the image data from the

Fig. 1. A general schematic of the proposed display wall architecture

 Virtual Machine Based High-Resolution Display Wall: Experiments on Proof of Concept 383

framebuffers of the simulated GPU, encodes them into an H.264 stream using the Intel

Iris 5200 Pro GPU and then sends the stream over a gigabit Ethernet to the monitor wall.

Currently, no cropping capabilities have been implemented in the Framebuffer

Manager, so the configuration of the virtual GPU is limited to a maximum of 25

displays, and each virtual monitor is always run at the resolution of 1920x1080 since that

is the native resolution of each node in the monitor wall.

 The monitor wall itself consists of 25 22” DELL displays, each of which is driven

by a Raspberry Pi model B (Fig. 3). The Raspberry Pi devices were chosen to implement

the role of the display node because of the low cost, efficient power usage and ability to

decode a 1920x1080 H.264 at acceptable frame rates for live streaming. Carlos and

Garcia (2014) have also demonstrated a successful application of Raspberry Pi

embedded systems in a small tiled video streaming solution proving the capabilities of

the device in such domain. The Raspberry Pi units are poorest regarding scalability in

this prototype since they support H.264 decoding only up to the resolution of 1920x1080

meaning using displays with higher resolution is not possible in the current prototype.

However, since the embedded systems are developing vastly, the authors do not see this

as a significant issue. NVIDIA has already released Jetson K1 embedded system that can

drive a 4K monitor (WEB, d).

Further on in this paper, we are going to describe the current measurements of

Fig. 3. LAN inter-connected Raspberry Pi devices at the back of the display

wall (Bundulis and Arnicans, 2014)

Fig. 2. Display wall server - Gigabyte Brix Pro mini PC

384 Bundulis and Arnicans

scalability with this prototype and comparison regarding performance and cost against

SAGE and the Reality Deck.

3. Virtualization platform

3.1. GPU virtualization

Most of the leading major commercial and noncommercial virtualization platforms

support an implementation of GPU virtualization. However, they all have limitations on

the maximum number of screens and resolutions. If we look at the maximum resolution

for a homogeneous display surface:

 NVIDIA vGPU (WEB, a) that is used in Citrix XenServer allows 4 displays

each at the resolution of 4096x2160 each on an NVIDIA TESLA M6card,

which totals to a maximum of 35 megapixels.

 RemoteFX (WEB, b) on Microsoft’s Hyper-V allows 8 displays at the

resolution of 1280x1024 each, which totals up to a maximum of 10 megapixels

(RemoteFX allows only 4 displays at the resolution 1920x1080 each but that

totals up to 9 megapixels).

 VMware vSGA (WEB, d) allows up to 2 displays at the resolution of 1920x1200

each, which totals up to a maximum of 4 megapixels.

 Oracle VirtualBox (WEB, e) allows configuration of a single virtual GPU with

no limits on the number of displays and resolutions as long as the framebuffers

can fit into the maximum allowed video memory.

The authors decided to use Oracle VirtualBox because it had the greatest overall

resolution in megapixels among the compared virtualization platforms and no hard

limitations on the configuration of output count and resolution as long as the needed

memory for the framebuffers fit into 256MB (Table 1). The actual number of displays

varies depending on the virtualized OS. According to VirtualBox development team,

each framebuffer takes up width × height × bytes per pixel + memory for maintenance

data. That gives 1920 × 1080 × 4 + (4096 + 1,048,576) = 9,347,072 bytes for one

framebuffer.

For Linux/X11 based operating systems, this allows 28 displays at the resolution of

1920x1080 and 60 megapixels in total. For Windows the size of the framebuffer depends

on whether XPDM or WDDM drivers are used - XPDM requires an extra off-screen

framebuffer and WDDM requires two extra off-screen framebuffers. The details are

given in subsections 3.2 and 3.3.

 The next step for the authors was to find out if and how the maximum number of

theoretically possible video outputs would be perceived by each corresponding type of

the guest operating system.

 Virtual Machine Based High-Resolution Display Wall: Experiments on Proof of Concept 385

Another aspect that needed to be verified if the total display surface size can be

increased by using smaller number of displays with resolutions exceeding 1920x1080

but are multiples of this resolution – for instance 3840x2160 (2x2 1920x1080),

3840x3240 (2x3 1920x1080), 5760x3240 (3x3 1920x1080), etc. In case of such

resolutions, the framebuffer manager component of the architecture would perform split

of a single virtual display among multiple tiles on the physical display wall. Since in the

case of VirtualBox the formula includes some bookkeeping memory for reach

framebuffer. It is possible that with such configuration the overall display resolution can

be increased even more.

Table 1. Summary of virtualization platforms

Vendor Maximum resolution for

a homogenous surface

Comments

NVIDIA

vGPU

35 megapixels (4 displays at

4096x2160)

The mentioned results are based on

the NVIDIA TESLA M6 card,

other cards provide lower or

equivalent capabilities

RemoteFX

(Microsoft

Hyper-V)

10 megapixels

(8 displays at 1280x1024)

Windows Server 2012 R2 host

operating system and Windows

8/8.1 guest operating system

VMWare

vSGA

4 megapixels

(2 displays at 1920x1200)

Only Windows guest operating

systems

Oracle

VirtualBox

256/(bytes per pixel *

framebuffers per screen +

some small amount of memory

for bookkeeping data)

This would give 64

megapixels with standard

32bit colour depth for guest

OS that require only a single

frame buffer per screen

(Linux/X11, Windows with

XDPM diver model).

Windows with WDDM driver

model requires an extra off-

screen framebuffer.

Theoretically, the resolution should

be capped by the total memory

required for the display

framebuffers, which cannot exceed

the total memory of the virtualized

GPU (256MB).

386 Bundulis and Arnicans

3.2. Virtualized displays in Linux/X11

The authors had calculated that running a Linux/X11 based guest operating system

should support up to 28 displays at the resolution of 1920x1080. Since the actual display

wall prototype only has 25 displays the limit was checked only as far as if X11 can

enumerate and detect all the displays. Authors used Xubuntu 14.04 Linux distributive and

the ARandR display configuration tool to verify the detected monitors and resolutions.

As the authors concluded VirtualBox was able to start Xubuntu 14.04 with up to 30

displays at the resolution of 1920x1080 that theoretically exceeds the calculated limit,

with greater values the guest operating system froze during the load process, but the

authors could not verify if it was due to lack of the amount of video memory in

VirtualBox (however it is the most probable cause).

In terms of resolutions on a single display Linux/X11 was able to resize each display

to a resolution up to 5760x2160 (3x2 1920x1080) or 3840x3240 (2x3 1920x1080) thus

giving 6 1920x1080 tiles per virtual display. The next logical value of 5760x3240 (3x3

1920x1080) did not work.

The authors discovered that they were able to force up to 29 virtual displays in such

mode totaling up to 360 megapixels of total resolution (this conflicts with the memory

limits, but X11 could perform some internal memory swapping algorithms to actually

require less memory or some of the displays could have been mirrored, since the

prototype wall has only 25 displays and does not support scaling at this point the authors

were unable to verify layout/mirror problems with this configuration). This result will be

checked by validating the actual video streams in the future.

3.3. Virtualized displays in Windows 7

The authors were able to launch, perform layout and validate the video streams on the

actual display wall prototype with up to 16 displays using XPDM drivers.

With 17 displays the default Windows display manager failed to allow the layout of

the 17th display, it was placed over the existing ones, and thus the displayed video was a

mirrored part of the existing screen (this again could be due to the insufficient amount of

video memory in VirtualBox).

The authors did not continue increasing the display count since all added displays

resulted in a mirrored video output.

The results were better with using higher resolutions on a smaller amount of displays.

Windows allowed one display at the resolutions of 11520x5400 (6x5 1920x1080),

9600x6480 (5x6 1920x1080) and 9600x5400 (5x5 1920x1080) that would allow using

the whole physical 5x5 display wall when splitting support is added to the framebuffer

manager.

Authors also verified that they can run two displays each at the resolution of

7680x4320 (4x4 1920x1080) and 5760x5400 (3x5 1920x1080). Adding additional

displays seemed to limit the available resolutions to such that the summary resolution

did not increase. Thus by using the splitting approach with two virtual displays each at

7680x4320 would give a total of 66 megapixels divided among 32 physical displays

each at the resolution of 1920x1080.

Thus Windows 7 validated the assumption that using a single virtualized display with

a higher resolution that is being split in the Framebuffer Manager allows achieving a

higher overall resolution than using multiple virtual displays with lower resolutions.

 Virtual Machine Based High-Resolution Display Wall: Experiments on Proof of Concept 387

4. Example use cases

The authors of the prototype have determined the possible scalability limits regarding

monitors and total display resolution. The next step is to measure the actual performance

in different use cases – static content, dynamic content, and 3D accelerated content. The

prototype in its current state does not have a centralized statistics mechanism for

measuring FPS and bitrate on each monitor, but the authors did perform a subjective

evaluation of some use cases that demonstrate the capabilities of the prototype.

Authors successfully launched Xubuntu 14.04 with 25 monitors at 1920x1080 each,

thus creating a homogenous surface of 52 megapixels. In comparison, the Reality Deck

uses a high-end Exxact Corporation GPU server station with four high-end ATI Radeon

V9800 GPUs to drive an 88-megapixel surface. Although smaller in total resolution due

to the lack of available video memory in VirtualBox, the developed virtualized display

wall prototype has the benefits of lower cost and power consumption.

Fig. 4 demonstrates Xubuntu 14.04 running common applications with static content

like Google Maps and SVG based graphs in Firefox and a PDF viewer. All these

applications seemed to work without issues regarding the high display area.

With more dynamic content, like video playback with VLC, authors noticed frame

rate decrease because of the encoding speed limits on the Intel Iris Pro 5200. However,

the authors plan to overcome this issue by stacking up multiple GPUs that provide

hardware accelerated H.264 encoding in the next prototype.

Since Windows 7 does not provide a way to lay out more than 16 displays with the

built-in tools authors had to use a subset of the monitor wall to evaluate Windows 7

Fig. 4. Xubuntu 14.04 running common applications: A) Desktop icons; B) Google Maps in

Firefox; C) SVG based graphs (Graphical Ontology Editor · OWLGrEd) in Firefox; D) PDF

document in PDF viewer

388 Bundulis and Arnicans

Fig. 5. Windows 7 running video surveillance software

 performance. Windows 7 with 16 monitors at 1920x1080 each (total display area of 33

megapixels) was able to run video surveillance software that could be one of the possible

use cases for this architecture (Fig. 5).

5. Conclusions

This paper aimed to prove the efficiency/scalability of the virtualized display wall

architecture presented by Bundulis and Arnicans (2014) and address the

cost/complexity/power usage and software compatibility issues present in other display

wall systems.

The authors have constructed a prototype system that is driven by middle range

hardware but is still able to create homogenous display surfaces up to 52 megapixels

with a single GPU in comparison to 88 megapixels achieved by Reality Deck which uses

expensive high-end hardware and drives the displays through physical digital video

outputs. Thus for a reasonably sized display wall, the virtualization approach is very

beneficial since it reduces the cost/power consumption and complexity.

Authors successfully used common (Google Chrome, PDF viewer) and domain-

specific (video surveillance) software applications thus demonstrating that this approach

does not force software developers to write display wall aware software – everything

that works on a desktop PC works the same way in the virtualized display wall. This

makes the virtualized display architecture transparent in contrast to some of the other

display wall/distributed rendering solutions (e.g., Chromium) that force using graphics

APIs like OpenGL.

The current prototype still lacks full 3D acceleration virtualization and centralized

statistics measurement system, but these are the next steps in the roadmap of further

development of the prototype.

 Virtual Machine Based High-Resolution Display Wall: Experiments on Proof of Concept 389

The architecture has also opened an interesting opportunity for video games – most

of the 3D accelerated video games run on a single monitor, and the newest trend of using

multiple screens for gaming are achieved by different technologies from the GPU

vendors in their drivers. In this article, the authors demonstrated that the virtualized

display wall architecture can simulate a single large monitor with ultra-high resolution

(9600x5400 pixels with Windows 7). Since the proposed architecture should be able to

split a single virtual screen among physical tiles on the actual monitor wall, together

with the 3D acceleration support this feature could provide a seamless way for ultra-high

resolution gaming.

Although the current prototype was able to handle static data fine authors concluded

that the current prototype is not able to handle dynamic content like video playback so in

future authors plan to build a second prototype using more powerful hardware to see

how that increases the performance of dynamic content. Authors plan to stack multiple

GPUs with hardware accelerated H.264 encoding support instead of using a single GPU

as in the current prototype.

Acknowledgements

The research was developed under the University of Latvia contract no. AAP2016/B032

“Innovative information technologies”.

References

Bundulis, R., Arnicans, G. (2014). Concept of virtual machine based high resolution display wall.

In Information, Electronic and Electrical Engineering (AIEEE), 2014 IEEE 2nd Workshop

on Advances in, IEEE, 1-6.

Bundulis, R., Arnicans, G. (2013). Architectural and technological issues in the field of multiple

monitor display technologies. In: Caplinskas, A., Dzemyda, G., Lupeikiene, A., Vasilecas,

O. (Eds.), Databases and Information Systems VII: Selected Papers from the Tenth

International Baltic Conference, DB and IS 2012, Vol. 249, IOS Press, 317-329.

Carlos, V. R., Garcia, R. G. (2014). Implementation of a low cost video wall using Raspberry Pi

devices. Master's thesis, Universitat Politècnica de Catalunya.

Chung, H., Andrews, C., North, C. (2014). A survey of software frameworks for cluster-based

large high-resolution displays. IEEE transactions on visualization and computer graphics,

20(8), 1158-1177.

Dowty, M., Sugerman, J. (2009). GPU virtualization on VMware's hosted I/O architecture. ACM

SIGOPS Operating Systems Review, 43(3), 73-82.

Humphreys, G., Houston, M., Ng, R., Frank, R., Ahern, S., Kirchner, P. D., Klosowski, J. T.

(2002). Chromium: a stream-processing framework for interactive rendering on clusters.

ACM transactions on graphics (TOG), 21(3), 693-702.

Jeong, B., Renambot, L., Jagodic, R., Singh, R., Aguilera, J., Johnson, A., Leigh, J. (2006). High-

performance dynamic graphics streaming for scalable adaptive graphics environment. In SC

2006 Conference, Proceedings of the ACM/IEEE, IEEE.

Papadopoulos, C., Petkov, K., Kaufman, A. E., Mueller, K. (2015). The Reality Deck--an

Immersive Gigapixel Display. IEEE computer graphics and applications, 35(1), 33-45.

WEB (a). NVIDIA. NVIDIA GRID Virtual GPU Technology.
http://images.nvidia.com/content/grid/pdf/GRID-vGPU-User-

Guide.pdf.

WEB (b). Microsoft. RemoteFX vGPU Improvements in Windows Server 2012 R2.
https://cloudblogs.microsoft.com/enterprisemobility/2013/12/04

/remotefx-vgpu-improvements-in-windows-server-2012-r2/.

http://images.nvidia.com/content/grid/pdf/GRID-vGPU-User-Guide.pdf
http://images.nvidia.com/content/grid/pdf/GRID-vGPU-User-Guide.pdf
https://cloudblogs.microsoft.com/enterprisemobility/2013/12/04/remotefx-vgpu-improvements-in-windows-server-2012-r2/
https://cloudblogs.microsoft.com/enterprisemobility/2013/12/04/remotefx-vgpu-improvements-in-windows-server-2012-r2/

390 Bundulis and Arnicans

WEB (c). VMware. Deploying hardware-accelerated graphics with VMware Horizon 7. technical

white paper, http://www.vmware.com/files/pdf/techpaper/vmware-

horizon-view-graphics-acceleration-deployment.pdf. 2017.

WEB (d). NVIDIA. NVIDIA Jetson TK1 Development Kit: Bringing GPU-accelerated computing

to Embedded Systems. Technical Brief.
http://developer.download.nvidia.com/embedded/jetson/TK1/docs/

Jetson_platform_brief_May2014.pdf. 2014.

WEB (e). Oracle, VirtualBox. https://www.virtualbox.org/ .

Received December 15, 2017, accepted December 15, 2017

http://www.vmware.com/files/pdf/techpaper/vmware-horizon-view-graphics-acceleration-deployment.pdf
http://www.vmware.com/files/pdf/techpaper/vmware-horizon-view-graphics-acceleration-deployment.pdf
http://developer.download.nvidia.com/embedded/jetson/TK1/docs/Jetson_platform_brief_May2014.pdf
http://developer.download.nvidia.com/embedded/jetson/TK1/docs/Jetson_platform_brief_May2014.pdf
https://www.virtualbox.org/

