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Abstract. This paper provides scalability and use case analysis of a prototype for virtual machine 

based high-resolution display architecture. This architecture has been presented by the authors to 

overcome the reasons due to which other research results in the high-resolution display wall 

domain have still not achieved industrial success. Authors have provided use cases of this 

architecture with common operating systems like Linux and Windows and common software 

applications to demonstrate how a display wall solution can become seamless to the software layer 

while providing scalability, which is limited in the hardware-based display wall solutions that 

dominate the industry. 
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1. Introduction 

The need for high-resolution display walls is trending due to the growth of the imaging 

device resolutions. However, the current solutions that focus on maximizing the overall 

resolution of homogeneous display surfaces remain mostly academic and have not 

conquered commercial success.  Bundulis and Arnicans (2013, 2014) have analyzed the 

leading research results in this domain and tried to tackle the downsides of the existing 

solutions by proposing a new display wall architecture that is based on GPU 

virtualization. 

Even though the demand in the industry exists, several factors prevent such great 

systems as SAGE (Jeong et al., 2006) and Chromium (Humphreys et al., 2002) to be 

utilized from small and medium business throughout to large enterprises: 

 A common misconception that a display wall is always more expensive and 

harder to deploy than a single high-resolution display (4K or 8K) due to the 

additional hardware. For example, Reality Deck (Papadopoulos et al., 2014) – a 

1.5 gigapixel cluster based display surface cost the authors approximately $950 

000 which is around $0.00063 per pixel.  

 The inability to create a large homogenous surface. Solutions like SAGE or 

Reality Deck provide great overall resolutions. However, the display surface is 

still not homogenous – in both cases, it is constructed of independent nodes 

each driving a part of the wall. Thus, it still seems more attractive to simply use 

hardware solutions to obtain a reasonably sized homogenous display wall. 
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 As seen in the survey done by Chung et al. (2014) most of the solutions and 

frameworks are limited to certain graphics APIs like OpenGL, meaning that 

commodity software cannot be visualized without modifications. This again is a 

huge drawback since a display wall should work out-of-the-box and serve as a 

transparent media transport layer for the source of the visualization.  

 All the cluster based approaches suffer from the cost and energy consumption 

factors for each new node added to the display wall. As seen in (Papadopoulos 

et al., 2014) the Reality Deck 1.5 gigapixel wall was driven by 18 high-end 

nodes with 4 GPUs in each meaning the idle power consumption of the whole 

wall to be around 14 kilowatts. Since the content on the display wall can change 

from static to very dynamic, the display wall architecture should be able to 

efficiently scale the power consumption instead of requiring a high idle power 

for static content. This is one of the factors that intuitively proposes 

virtualization as the solution since efficient use of available hardware resources 

was one of the main drivers in the birth of virtualization technologies. 

 For static data, the GPU utilization in cluster-based display wall solutions is 

very poor. The output count of a GPU usually correlates with the overall 

processing power, meaning that GPUs with multiple outputs are usually mean 

for high-end applications that require good 3D performance. If such GPUs are 

used in a cluster for visualizing non-3D data like images videos and graphs the 

idle power consumption and the price of the cards are unattractive. 

 Most of the solutions are scientifically oriented – they are mostly meant for 

distributed rendering of large 3D models and graphs. This leads to the fact that 

the architectures are often inefficient for small-scale implementations. 

 The solutions that are oriented towards sending some kind of model not pixel 

data among the nodes (e.g., OpenGL commands) suffer from poor video 

playback performance, although that, of course, is not the main target in those 

cases. Still, this leads to the fact that none of the solutions is feasible for 

everyday use, where the content can change from static images to video and 3D 

applications. 

 If the software applications that provide the actual visualization content are 

commercial (e.g., CAD tools) then installing them on each node of a clustered 

system will result in high software license expenses. 

 

In summary, researchers have succeeded to create multiple solutions to target 

different domains where high-resolution display surfaces are a must have, but they work 

poorly among different sets of such domains. 

The paper is organized into five chapters. The first chapter is an introduction that 

provides a brief description of the major problems with currently available large-scale 

high-resolution display wall solutions. The second one is a description of a proposed 

display wall architecture and the first actual prototype built by the authors. The third 

chapter contains current results on the scalability of the prototype in a number of 
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displays and resolutions. The fourth chapter is a summary of use cases tried out on the 

prototype, and the fifth chapter contains conclusions and a roadmap for future work. 

2. Virtual machine-based high-resolution display wall 

Bundulis and Arnicans (2014) have proposed to solve the downsides of the existing 

display wall solutions with an approach that uses virtualization as an abstraction layer 

between the number of displays and resolutions in the display wall and the GPUs 

available in the computer system that provides the visual content. 

GPU virtualization has become a trending technique in the virtualization 

technologies. The leading solution providers like VMware (Dowty, 2009) have 

implemented a way to provide the features of the GPU directly to the hosted operating 

system. Similar technology is provided for Citrix XenServer by NVIDIA vGPU (WEB, 

a) and RemoteFX (WEB, b) for Microsoft Hyper-V. The GPU virtualization technology 

has successfully helped to utilize a single GPU in a multi-operating system environment.  

This approach can be somewhat applied to the field of display walls too. The 

problem with GPU virtualization is the same as with an actual GPU that the operating 

system is limited regarding the actual number of video outputs. However, if the 

virtualization technology itself presents a purely simulated GPU to the hosted operating 

system and implements a partial acceleration (for 3D APIs like OpenGL and Direct 3D) 

by using the physically available GPUs, this can solve both problems – remove the 

dependencies on the physically available video outputs and increase hardware 

utilization. 

The authors have proposed a general architecture for a virtualized display wall 

concept (Fig. 1). It consists of a tiled monitor wall with each monitor being backed by a 

display node (DN #) and a host computer system, which provides the actual content for 

the monitor wall.  

The host system runs a software stack currently denoted as Framebuffer Manager 

and some kind of virtualization platform which in turn hosts the guest operating system 

that is running the content that needs to be visualized on the display wall. 

The virtualization platform simulates a virtual GPU that can be freely configured 

regarding virtual monitors and resolutions to exactly match each desired use case 

depending on the amount of data that needs to be visualized. 

The virtualization platform interacts with the Framebuffer Manager software stack by 

providing notifications about drawing operations on the guest operating system and 

access to the video memory contents of the virtual GPU. 

The Framebuffer Manager itself performs event-driven management of the 

framebuffers and handles (crops/scales) the mapping of image data from the virtual 

monitors to the display nodes in the monitor wall. After the logical partitioning of the 

image, the Framebuffer Manager uses hardware-based video encoding capabilities in the 

host system to encode the image and provide an encoded video stream to each display 

node. 
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The proposed architecture removes direct dependencies between the needed monitor 

setup and presence of physical GPUs – all of this is taken care by the Framebuffer 

Manager and virtualization platform. The Framebuffer Manager takes care of using the 

present hardware for video encoding and 3D acceleration support for the virtualization 

platform, while the virtualization platform provides unconstrained display and resolution 

configuration options. 

Bundulis and Arnicans have developed a working prototype of such system 

(Bundulis and Arnicans, 2014). The current prototype includes a 5x5 22” monitor wall 

and a host system with moderate hardware – Gigabyte Brix Pro mini PC (Fig. 2). The 

server has an Intel Core i7 4770R CPU (4 physical cores, 8 virtual cores at 3.2 GHz), 

Intel Iris 5200 Pro GPU, 12 GB of RAM and Windows 8.1. It runs VirtualBox as the 

virtualization platform with both Windows and Linux guests. VirtualBox simulates a 

virtual GPU with 25 display outputs each running at the resolution of 1920x1080. The 

arguments for choosing VirtualBox as the virtualization platform is explained further on. 

The authors have developed a Framebuffer Manager implementation that runs 

alongside VirtualBox on the host operating system and collects the image data from the 

 
 

Fig. 1. A general schematic of the proposed display wall architecture 
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framebuffers of the simulated GPU, encodes them into an H.264 stream using the Intel 

Iris 5200 Pro GPU and then sends the stream over a gigabit Ethernet to the monitor wall.  

Currently, no cropping capabilities have been implemented in the Framebuffer 

Manager, so the configuration of the virtual GPU is limited to a maximum of 25 

displays, and each virtual monitor is always run at the resolution of 1920x1080 since that 

is the native resolution of each node in the monitor wall. 

 The monitor wall itself consists of 25 22” DELL displays, each of which is driven 

by a Raspberry Pi model B (Fig. 3). The Raspberry Pi devices were chosen to implement 

the role of the display node because of the low cost, efficient power usage and ability to 

decode a 1920x1080 H.264 at acceptable frame rates for live streaming. Carlos and 

Garcia (2014) have also demonstrated a successful application of Raspberry Pi 

embedded systems in a small tiled video streaming solution proving the capabilities of 

the device in such domain. The Raspberry Pi units are poorest regarding scalability in 

this prototype since they support H.264 decoding only up to the resolution of 1920x1080 

meaning using displays with higher resolution is not possible in the current prototype. 

However, since the embedded systems are developing vastly, the authors do not see this 

as a significant issue. NVIDIA has already released Jetson K1 embedded system that can 

drive a 4K monitor (WEB, d). 

Further on in this paper, we are going to describe the current measurements of 

 
 

Fig. 3. LAN inter-connected Raspberry Pi devices at the back of the display 

wall (Bundulis and Arnicans, 2014) 

 

 
 
Fig. 2. Display wall server - Gigabyte Brix Pro mini PC 
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scalability with this prototype and comparison regarding performance and cost against 

SAGE and the Reality Deck. 

3. Virtualization platform 

3.1. GPU virtualization 

Most of the leading major commercial and noncommercial virtualization platforms 

support an implementation of GPU virtualization. However, they all have limitations on 

the maximum number of screens and resolutions. If we look at the maximum resolution 

for a homogeneous display surface: 

 NVIDIA vGPU (WEB, a) that is used in Citrix XenServer allows 4 displays 

each at the resolution of 4096x2160 each on an NVIDIA TESLA M6card, 

which totals to a maximum of 35 megapixels. 

 RemoteFX (WEB, b) on Microsoft’s Hyper-V allows 8 displays at the 

resolution of 1280x1024 each, which totals up to a maximum of 10 megapixels 

(RemoteFX allows only 4 displays at the resolution 1920x1080 each but that 

totals up to 9 megapixels). 

 VMware vSGA (WEB, d) allows up to 2 displays at the resolution of 1920x1200 

each, which totals up to a maximum of 4 megapixels. 

 Oracle VirtualBox (WEB, e) allows configuration of a single virtual GPU with 

no limits on the number of displays and resolutions as long as the framebuffers 

can fit into the maximum allowed video memory.  

 

The authors decided to use Oracle VirtualBox because it had the greatest overall 

resolution in megapixels among the compared virtualization platforms and no hard 

limitations on the configuration of output count and resolution as long as the needed 

memory for the framebuffers fit into 256MB (Table 1). The actual number of displays 

varies depending on the virtualized OS. According to VirtualBox development team, 

each framebuffer takes up width × height × bytes per pixel + memory for maintenance 

data. That gives 1920 × 1080 × 4 + (4096 + 1,048,576) = 9,347,072 bytes for one 

framebuffer.  

For Linux/X11 based operating systems, this allows 28 displays at the resolution of 

1920x1080 and 60 megapixels in total. For Windows the size of the framebuffer depends 

on whether XPDM or WDDM drivers are used - XPDM requires an extra off-screen 

framebuffer and WDDM requires two extra off-screen framebuffers. The details are 

given in subsections 3.2 and 3.3. 

 The next step for the authors was to find out if and how the maximum number of 

theoretically possible video outputs would be perceived by each corresponding type of 

the guest operating system. 
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Another aspect that needed to be verified if the total display surface size can be 

increased by using smaller number of displays with resolutions exceeding 1920x1080 

but are multiples of this resolution – for instance 3840x2160 (2x2 1920x1080), 

3840x3240 (2x3 1920x1080), 5760x3240 (3x3 1920x1080), etc. In case of such 

resolutions, the framebuffer manager component of the architecture would perform split 

of a single virtual display among multiple tiles on the physical display wall. Since in the 

case of VirtualBox the formula includes some bookkeeping memory for reach 

framebuffer. It is possible that with such configuration the overall display resolution can 

be increased even more. 

 

Table 1. Summary of virtualization platforms 

Vendor Maximum resolution for  

a homogenous surface 

Comments 

NVIDIA 

vGPU 

35 megapixels (4 displays at 

4096x2160) 

The mentioned results are based on 

the NVIDIA TESLA M6 card, 

other cards provide lower or 

equivalent capabilities 

RemoteFX 

(Microsoft 

Hyper-V) 

10 megapixels  

(8 displays at 1280x1024) 

Windows Server 2012 R2 host 

operating system and Windows 

8/8.1 guest operating system 

VMWare 

vSGA 

4 megapixels 

(2 displays at 1920x1200) 

Only Windows guest operating 

systems 

Oracle 

VirtualBox 

256/(bytes per pixel * 

framebuffers per screen + 

some small amount of memory 

for bookkeeping data) 

 

This would give 64 

megapixels with standard 

32bit colour depth for guest 

OS that require only a single 

frame buffer per screen 

(Linux/X11, Windows with 

XDPM diver model). 

Windows with WDDM driver 

model requires an extra off-

screen framebuffer. 

 

Theoretically, the resolution should 

be capped by the total memory 

required for the display   

framebuffers, which cannot exceed 

the total memory of the virtualized 

GPU (256MB).  
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3.2. Virtualized displays in Linux/X11 

The authors had calculated that running a Linux/X11 based guest operating system 

should support up to 28 displays at the resolution of 1920x1080. Since the actual display 

wall prototype only has 25 displays the limit was checked only as far as if X11 can 

enumerate and detect all the displays. Authors used Xubuntu 14.04 Linux distributive and 

the ARandR display configuration tool to verify the detected monitors and resolutions. 

As the authors concluded VirtualBox was able to start Xubuntu 14.04 with up to 30 

displays at the resolution of 1920x1080 that theoretically exceeds the calculated limit, 

with greater values the guest operating system froze during the load process, but the 

authors could not verify if it was due to lack of the amount of video memory in 

VirtualBox (however it is the most probable cause). 

In terms of resolutions on a single display Linux/X11 was able to resize each display 

to a resolution up to 5760x2160 (3x2 1920x1080)  or  3840x3240 (2x3 1920x1080) thus 

giving 6 1920x1080 tiles per virtual display. The next logical value of 5760x3240 (3x3 

1920x1080) did not work.  

The authors discovered that they were able to force up to 29 virtual displays in such 

mode totaling up to 360 megapixels of total resolution (this conflicts with the memory 

limits, but X11 could perform some internal memory swapping algorithms to actually 

require less memory or some of the displays could have been mirrored, since the 

prototype wall has only 25 displays and does not support scaling at this point the authors 

were unable to verify layout/mirror problems with this configuration). This result will be 

checked by validating the actual video streams in the future. 

3.3. Virtualized displays in Windows 7 

The authors were able to launch, perform layout and validate the video streams on the 

actual display wall prototype with up to 16 displays using XPDM drivers. 

With 17 displays the default Windows display manager failed to allow the layout of 

the 17th display, it was placed over the existing ones, and thus the displayed video was a 

mirrored part of the existing screen (this again could be due to the insufficient amount of 

video memory in VirtualBox).  

The authors did not continue increasing the display count since all added displays 

resulted in a mirrored video output.  

The results were better with using higher resolutions on a smaller amount of displays. 

Windows allowed one display at the resolutions of 11520x5400 (6x5 1920x1080), 

9600x6480 (5x6 1920x1080) and 9600x5400 (5x5 1920x1080) that would allow using 

the whole physical 5x5 display wall when splitting support is added to the framebuffer 

manager.  

Authors also verified that they can run two displays each at the resolution of 

7680x4320 (4x4 1920x1080) and 5760x5400 (3x5 1920x1080). Adding additional 

displays seemed to limit the available resolutions to such that the summary resolution 

did not increase. Thus by using the splitting approach with two virtual displays each at 

7680x4320 would give a total of 66 megapixels divided among 32 physical displays 

each at the resolution of 1920x1080. 

Thus Windows 7 validated the assumption that using a single virtualized display with 

a higher resolution that is being split in the Framebuffer Manager allows achieving a 

higher overall resolution than using multiple virtual displays with lower resolutions. 
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4. Example use cases 

The authors of the prototype have determined the possible scalability limits regarding 

monitors and total display resolution. The next step is to measure the actual performance 

in different use cases – static content, dynamic content, and 3D accelerated content. The 

prototype in its current state does not have a centralized statistics mechanism for 

measuring FPS and bitrate on each monitor, but the authors did perform a subjective 

evaluation of some use cases that demonstrate the capabilities of the prototype. 

Authors successfully launched Xubuntu 14.04 with 25 monitors at 1920x1080 each, 

thus creating a homogenous surface of 52 megapixels. In comparison, the Reality Deck 

uses a high-end Exxact Corporation GPU server station with four high-end ATI Radeon 

V9800 GPUs to drive an 88-megapixel surface. Although smaller in total resolution due 

to the lack of available video memory in VirtualBox, the developed virtualized display 

wall prototype has the benefits of lower cost and power consumption. 

Fig. 4 demonstrates Xubuntu 14.04 running common applications with static content 

like Google Maps and SVG based graphs in Firefox and a PDF viewer. All these 

applications seemed to work without issues regarding the high display area.  

With more dynamic content, like video playback with VLC, authors noticed frame 

rate decrease because of the encoding speed limits on the Intel Iris Pro 5200. However, 

the authors plan to overcome this issue by stacking up multiple GPUs that provide 

hardware accelerated H.264 encoding in the next prototype. 

Since Windows 7 does not provide a way to lay out more than 16 displays with the 

built-in tools authors had to use a subset of the monitor wall to evaluate Windows 7 

 
 

Fig. 4. Xubuntu 14.04 running common applications: A) Desktop icons; B) Google Maps in 

Firefox; C) SVG based graphs (Graphical Ontology Editor · OWLGrEd) in Firefox; D) PDF 

document in PDF viewer 
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Fig. 5. Windows 7 running video surveillance software 

 performance. Windows 7 with 16 monitors at 1920x1080 each (total display area of 33 

megapixels) was able to run video surveillance software that could be one of the possible 

use cases for this architecture (Fig. 5). 

5. Conclusions 

This paper aimed to prove the efficiency/scalability of the virtualized display wall 

architecture presented by Bundulis and Arnicans (2014) and address the 

cost/complexity/power usage and software compatibility issues present in other display 

wall systems.  

The authors have constructed a prototype system that is driven by middle range 

hardware but is still able to create homogenous display surfaces up to 52 megapixels 

with a single GPU in comparison to 88 megapixels achieved by Reality Deck which uses 

expensive high-end hardware and drives the displays through physical digital video 

outputs. Thus for a reasonably sized display wall, the virtualization approach is very 

beneficial since it reduces the cost/power consumption and complexity.  

Authors successfully used common (Google Chrome, PDF viewer) and domain-

specific (video surveillance) software applications thus demonstrating that this approach 

does not force software developers to write display wall aware software – everything 

that works on a desktop PC works the same way in the virtualized display wall. This 

makes the virtualized display architecture transparent in contrast to some of the other 

display wall/distributed rendering solutions (e.g., Chromium) that force using graphics 

APIs like OpenGL. 

The current prototype still lacks full 3D acceleration virtualization and centralized 

statistics measurement system, but these are the next steps in the roadmap of further 

development of the prototype. 
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The architecture has also opened an interesting opportunity for video games – most 

of the 3D accelerated video games run on a single monitor, and the newest trend of using 

multiple screens for gaming are achieved by different technologies from the GPU 

vendors in their drivers. In this article, the authors demonstrated that the virtualized 

display wall architecture can simulate a single large monitor with ultra-high resolution 

(9600x5400 pixels with Windows 7). Since the proposed architecture should be able to 

split a single virtual screen among physical tiles on the actual monitor wall, together 

with the 3D acceleration support this feature could provide a seamless way for ultra-high 

resolution gaming. 

Although the current prototype was able to handle static data fine authors concluded 

that the current prototype is not able to handle dynamic content like video playback so in 

future authors plan to build a second prototype using more powerful hardware to see 

how that increases the performance of dynamic content. Authors plan to stack multiple 

GPUs with hardware accelerated H.264 encoding support instead of using a single GPU 

as in the current prototype. 
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