
Baltic J. Modern Computing, Vol. 6 (2018), No. 1, 45-55

https://doi.org/10.22364/bjmc.2018.6.1.04

Implementation of NoSQL-based Data Warehouses

Ivo ODITIS
1
, Zane BICEVSKA

1
, Janis BICEVSKIS

2
, Girts KARNITIS

2

1 SIA DIVI Grupa, Riga, Lativa
2 University of Latvia, Riga, Latvia

ivo.oditis@di.lv, zane.bicevska@di.lv,

janis.bicevskis@lu.lv, girts.karnitis@lu.lv

Abstract. Data warehouses traditionally are built using relational databases. The main reason for

that - data warehouses mostly are used in enterprises with large-scale data sets stored in relational

data structures of different legacy systems. Though rapidly developing non-relational databases

also are still rather unusual in data processing tasks. This paper discusses the possibilities and

advantages of using document-oriented NoSQL database management systems in data ware-

housing. The paper describes processes and implementation aspects of building data warehouses

using a NoSQL data storages. The research is based on practical experience gained during

implementing of NoSQL data marts in MongoDB.

Keywords: Data warehouses, NoSQL data, non-relational databases, data denormalization.

1. Introduction

The concept of data warehouse generally is platform-independent, and it does not imply

the usage of specific technological means (Bridgwater, 2015). Nevertheless the prevalent

understanding of data warehouse (DW) presumes the usage of relational databases. For

instance the “Data Warehousing Guide” by Oracle Inc. states: “A data warehouse is a

relational database that is designed for query and analysis rather than for transaction

processing.” Typically it is assumed that DWs are relational data storages and they are

processed using means of relational database management systems (RDBMS).

The concept of non-relational (NoSQL) databases refers to a database alternative to

the relational model that arranges data discretely into tables of columns and rows. Four

different kinds of NoSQL databases can be distinguished (Woodey, 2014): document

databases, key-value stores, graph databases, and column-oriented stores. NoSQL data-

bases are commonly associated with more flexible deployment, high read/write

performance as well as scaling to very large data sets.

There is a trend towards increasingly growing market share for NoSQL databases.

Market surveys have shown how the NoSQL increases their market share, mostly at the

expense of MySQL. Although the maturity of the NoSQL market is assessed to be rather

low yet, the Forrester Wave estimated (Han et al., 2003) the current adoption of NoSQL

to be at 20% in 2014 and saw it doubling by 2017.

For the present the NoSQL databases are mostly perceived as high performance data

structures, suitable for look-up and filtering operations, not as wholesome database

management systems applicable for complex data processing activities. But it is just a

https://doi.org/10.22364/bjmc.2018.6.1.04

46 Oditis et al.

matter of time to build reliable business solutions covering the critical and supporting

business functionality. Data warehouse is one of such potential areas, so this paper is

devoted to creating of NoSQL-based DW using document-based NoSQL data stores.

Lately efforts of producers of DBMS systems to satisfy the developer community

and market demands have resulted in the recent real expansion of functionalities that

have brought the two separated worlds considerably close together (Gaspar and Coric,

2017). There can be confidently said that both areas are merging and complementing

each other.

The first chapter describes classical DWs and identifies benefits to be expected if

using NoSQL technologies instead of RDBMS. The second chapter describes how to

create DW using NoSQL data marts and highlights the necessity to use cross-platform

denormalization technology. The third chapter deals with reporting issues in NoSQL-

based DWs. The paper proposes requirements for reporting support in DW, and it is

based on the behavior of classical DWs adding NoSQL-specific features.

2. RDBMS-based vs NoSQL-based DWs

Typically there are several IT systems in an enterprise, every of them covering a

different functional segment (e.g. Accounting, HR, CRM). The need of such enterprise’s

management for more integrated information often leads to the decision to build a DW.

As the most of applications use RDBMS data storage the decision to base the DW on a

RDBMS data mart seems obvious. Such a decision is compelling if the DW shall

integrate only some RDBMS based data but it is not self-evident in times of more and

more information becoming relevant for the organizations’ decisions (Han et al., 2011).

Roughly speaking the existing RDBMS-based (or classical) DW (Jarke et al., 2003)

technology divides all collected data in two groups:

 There is a data that can be measured (e.g. temperatures, costs, speed). Such

data - in DW terminology called facts - will have no business value if not

used in context of time intervals and/or other describing attributes.

 Only the describing data - in DW terminology called dimensions – gives

meaning to facts. Desirably all the describing data would be related directly

as foreign keys to the facts, called star scheme, but sometimes the available

data requires more sophisticated DW, called snowflake scheme. There are

also other description schemas possible, for instance, the multi-dimensional

Cognos Dynamic Cubes of IBM (Beryoza et al., 2015).

The benefit of the classical DW technology in comparison to any self-made data

integration is the built-in functionality to combine facts with dimensions. Therefore DW

users might not even need to have deep business knowledge do get benefits from it.

Classical DW technology implicitly enforces all describing data to be structured and

cannot really deal with semi-structured and non-structured data. Of cause it will always

be possible to implement a workaround for specific situations but such solutions are not

flexible by definition (Baars and Kemper, 2008). In turn the NoSQL technology claims

to have the ability to handle high volumes of structured, semi-structured, and

unstructured data.

Though, the strong architecture of dimensions and facts dictates some specific

limitations for DW usage, too. For instance, once a DW is created, it is hard to change its

structure, so the exact facts and dimensions should be defined prior to the creating of a

 Implementation of NoSQL-based Data Warehouses 47

DW. Likewise, an initial meaning of data could be practically lost when focusing only

on aggregation of facts.

Today’s users expect DW solutions to act more in the internet-style than to enforce

the user to act within predefined structures. Users may expect the DW is able to pro-vide

answers even if only search texts are entered. As NoSQL technology by nature provides

a good support regarding semi-structured and unstructured data (Kaur and Rani, 2013)

the possibilities should be investigated to combine the text search capabilities of NoSQL

with possibilities to receive similar results as provided from a classical DW. But there

should be taken into account, that NoSQL data storages are not created for numerical

operations on big data sets. Although all the NoSQL storages support several numerical

data formats and allow operations like SUM, AVG and COUNT that support is always

worse than classical DW support for facts (Leavitt, 2010).

Thereby it can be concluded NoSQL data storages are able to support the following:

 Data aggregations in documents from several information systems; for

example a document would contain full order details, including data about

all delivered goods and customer’s information;

 It is possible to create documents including the entire data set from external

information systems; even if it is not initially clear which data will later be

used in data analysis (dimensions and facts are not exactly defined yet);

 It is possible to track the context of data origins if necessary from the

document containing resulting (numeric) values.

There should be noted that the document-oriented approach makes the DW more

transparent and easier-to-build. For instance, if the DW is built for management of

orders’ data, the most natural data object in such DW would be an order (document

XML or JSON format) containing full information about deals (orders, sales, etc.),

customers (name, delivery address, etc.), ordered/ sold goods (with their parameters like

color, size, etc.), quantity, price, taxes. Furthermore, creating such a structure the DW

designer would not have to consider a new dimension in DW for VAT as the respective

field would already be a part of the order’s document and therefore accessible for all

data operations – filtering, grouping, aggregation, etc. The NoSQL approach simplifies

the creating of DW as clear data objects or documents are used in a high conceptual

level, in contradiction to the classical DW which requires transformations between

different relational data models to optimize and to use the data.

Fig. 1. Processing of RDBMS-based DW and NoSQL-based DW

48 Oditis et al.

The figure above illustrates how both types of DW are processed. In the case of

NoSQL based DW not only the process is much simpler but also the created DW

structure and content are more transparent.

Of course the usage of NoSQL-based approach in building of DW significantly

increases the data volume to be stored and leads to data duplication. So obviously, such a

solution would not be applicable to big volumes of data. In contrast, small and medium-

sized enterprises, especially regarding the nowadays available data processing capacity,

may have positive results.

3. Data extraction for NoSQL-based DW

Another often mentioned benefit of NoSQL is the high flexibility in the development

process (Fehling et al., 2011).

Building classical DW a lot of work must be invested in defining of dimensions and

their hierarchy; adding of new dimensions is also quite labor intensive. During the

creating of a NoSQL DW the action takes place at the level of business objects, the level

of abstraction is much higher, and hence the building of the DW is faster.

NoSQL DW is created in several stages: physical models of used information

systems -> conceptual models of used information systems (i.e. master data model)-> a

common conceptual model -> aggregates or data objects (of different types) ->

documents (each aggregate is a document of one type) -> data transformation process.

Denormalization allows linking of objects from several information systems in the

conceptual (business objects) level. It offers a unified view to all data of an enterprise.

But it also raises problems: how to identify the same objects in different information

systems unambiguously and how to refresh data? Usually data objects are identified

(with unique IDs) in all information systems used within an enterprise; if not, the

classical data mining methods must be used – classification, feature vectors, etc. (AnHai

et al., 2012).

Data refreshing can raise several problems:

1. each row from the relational database may be included in very many

documents of the NoSQL data base; hence the potential changes could

affect very large part of the data;

2. changes in multiple rows (in one or many tables) may lead to repeated

changes in the same document several times;

3. the denormalized documents should contain unique identifiers (primary

keys) of all initial data records, otherwise problems with identification of

changeable documents may arise.

It leads to the conclusion that technically much easier is to delete all documents and

to denormalize the data from the scratch again, or to apply a little optimization (it can

improve performance but not necessarily does it) and to replace all changed documents

with new ones.

The NoSQL technology has the perspective to allow agile development approaches if

there are methodology and tools supporting the denormalization and synchronization for

the respective NoSQL-based data mart.

It’s obvious that it makes no sense to rebuild the relational data structures when

creating the NoSQL based data mart. A process of denormalization will be necessary,

and the denormalization should be as easy to handle as possible (Shin and Sanders,

2006).

 Implementation of NoSQL-based Data Warehouses 49

Denormalization of relational data and transforming of it to document-oriented data

base is a topical and for the present insufficiently solved problem. The solutions are

either trivial (table-> collection of documents) or individually programmed processing

routine for each specific. The authors have done practical investigations in this direction

using a prototype for a cross-platform denormalization tool. The tool’s prototype is able

to analyze data structures and relations of several standard RDBMS (MS, Oracle,

MySQL, etc.) by analyzing the according meta-data of the RDBMS. The prototype

allows the user to set up denormalized data structures without programming simply by

browsing data trees or drilling-down the according data. There was also a possibility to

export the selected data as XML or JSON documents (Karnitis and Arnicans, 2015).

The lessons learned can be summarized as follows:

 It is a quite trivial task to create and export denormalized data structures

when the data is related 1:N. Good working algorithm is spreading over all

links from the root data until the denormalized document contains data from

all tables. If any table is accessible via several ways, the shortest will be

automatically used to gather the necessary data.

 Self-referencing data cannot mechanically be denormalized since it would

produce endless referenced document chains. It is recommended either to

flat the source data by preparing an according view or to denormalize the

references only in one direction (e.g., in a hierarchy store only the respective

superior or only the inferiors).

 As less hierarchical levels during denormalization are created as more

convenient the data will be for reporting.

 Aggregation of numerical data is the biggest challenge in the data mart

design process. A considerable intellectual effort has to be spent to find the

best structures as such data cannot be stored redundant in the data mart.

Since the denormalization process does not only export the data in denormalized

form but also stores the meta-data describing the export it is obvious to use that

description for generating of structures in the NoSQL data mart.

Any DW requires a solution to synchronize the data in the data mart with the data

available in the data sources. The DW implementation has to find a compromise between

user requirements regarding data actuality and the technical limitations of involved

technology. All considerations relevant for implementing of DW synchronization in a

classical DW environment will be relevant also for NoSQL-based DW:

 DW designers will have to decide on the necessary frequency of the DW

update;

 they will investigate the possibilities to do data updates limited for time

periods versus a complete reload of all data;

 in case of partial data refreshing, the changed data must be identified.

In particular the last two considerations may significantly influence the refreshing of

data in a NoSQL DW:

 it should be identified which NoSQL documents are affected by data

changes;

 the affected documents or their parts should be replaced by updated ones

with denormalized data.

At present, the existing tools do not offer functionality of data synchronization for

NoSQL-based DWs. The existing data denormalization tools just transform the result of

each data request to a simple NoSQL document. When building NoSQL DW, also

50 Oditis et al.

complex documents should be built, the content of which exceeds a content of one flat,

relational data table; for instance a document about customers may contain all kind of

relevant information – name, several addresses, signatories, account numbers, etc.

4. Reporting for NoSQL-based DW

One of the big strength of classical DW technology is the flexibility regarding the re-

porting (Chen et al., 2000). Starting from very simple solutions like simply using

EXCEL as front-end and ending up with high sophisticated reporting tools the market

offers a huge spectrum of solutions. Anybody will be able to find a solution solving the

requirements of his organization and the search for the best fit in most cases will be more

economical than a technical task.

When investigating opinions about the disadvantages of NoSQL technology the lack

of reporting support is always located in top positions (Han et al., 2011). The authors’

initial experience when searching for reporting tools fully matched such opinions.

Although different tools are offered for NoSQL DW browsing, they lack the data

analysis functionality (grouping and aggregation).

It makes sense to formulate some requirements regarding the data to be stored in a

data mart helping to simplify the requirements regarding a universal DW browsing tool.

 Not without reasons classical DW technology offers functionality for hiding

the technical naming of data objects from end users. Applying this approach

for the NoSQL data storage means that the data base fields should carry

names understandable for end users and that all involved fields must be

identifiable without an additional context.

 It is also evident that it is not worth to bring technological data only used in

context of the source system from the source to the data mart. E.g. it is

senseless to map the numerical identifier of a typical classifier (a table

consisting of a numerical identifier and a describing field) to the data mart

since the appropriate solution for NoSQL is to add the describing field

directly to the described object.

 As mentioned earlier, numerical data can cause problems if the

denormalization leads to multiple storage of the same information. In cases

where we cannot avoid the redundant storage of numerical data as result of

denormalization we should ensure that such data can be interpreted as text.

On the other hand there should be ensured that the numerical data stored in

the data mart is covering the user requirements fully in the sense that the

reporting tool should not be forced to do mathematical operations (e.g. if the

source system provides price and amount but not resulting revenue we

should store revenue as a third field in the data mart and not leave the

respective calculation to the reporting tool).

When defining requirements regarding a universal browser for NoSQL based DW

(hereafter – UB) it is worth to remind about successful concepts used for classical DW

(Chaudhuri and Dayal, 1997). A user setting up a OLAP-based report in EXCEL will

operate with two panes – one containing the meta-data (in case of OLAP dimensions and

facts) and one with the report containing the data. The meta-data part allows to select the

dimension/fact to be included in the report and also indicates status information (e.g. if a

filter is applied).

 Implementation of NoSQL-based Data Warehouses 51

A UB should use an analogue approach: the NoSQL based DW provides the meta-

data to the UB and the user is able to select/deselect the data objects to be included in the

report and is also provided with additional information how to use the meta-data.

The user should be enabled to save the selected meta-data and the UB should provide

functionality to manage such selections. During the implementation of the prototype we

learned that these meta-data requirements in a NoSQL based environment are far more

challenging than they are for RDBMS (Sen and Sinha, 2005). Every RDBMS provides

some kind of functionality to operate with meta-data but NoSQL by nature is much more

flexible. Even in one collection of NoSQL data mart every single document (the

analogue to a RDBMS record) can be structured differently, so it is advisable to put

uniform documents in one collection. Otherwise, problems with meta-data may occur,

especially regarding document descriptions, filtering and aggregation functions.

We would also expect that the UB would support the same basic operations a

classical DW based reporting tool does – setting up filters and apply sorting. Of course

such features depend on the data types supported by the NoSQL data storage. We should

be able to set up sorting orders independent from the applied order regarding data

representation. The information, whether it is possible to aggregate the data as Count,

Min, Max or Avg, or it is to be used only as text, should be assigned to every numerical

field. The filter, sort and aggregation settings should be stored as a part of the “views”.

All the previously mentioned features will be available in more or less any reporting

tool supporting classical DW but there is one feature we would expect for UB that we

are not used to meet in the classical DW environment – the Google-like search. We

would expect to have an input field allowing to enter any text and such a filter is applied

on all texts stored in the NoSQL data mart.

Generally there are several possibilities regarding the data presentation; we

investigated three types – tree, JSON, nested tables. The tree representation is quite

helpful in some specific cases– especially to explore a single NoSQL document –, but it

is not transparent enough to serve as the presentation layer for a DW product. The same

is true for JSON representation – it is helpful for development and when investigating

details of single records but is also not useable for management purposes. In result we

expect nested tables to be the mandatory representation form for a UB (Table 1.).

Table 1.

Firstname Lastname Address DateOfBirth Education years

John Smith Riga, LV 12

+ hobby

+ education

Peter Brown London, UK 15.03.2960 14

+hobby

- education

School From To Years

Oxford

University

2010 2013 3

Some school 1999 2010 11

sum 14

52 Oditis et al.

Basically nested table data representation seems to be also a feasible solution to

present M:N related data – especially since the nesting can be continued also on lower

data hierarchy level. But too deep nesting will confuse the user more than it would help

him.

Since a DW must be able to deal with aggregated numerical values the UB must be

able to group the data. Using our favorite nested table data representation we would

expect the UB to group the data on level of every nested table representing the

aggregations under the according raw data of the column.

It is worthwhile to outline some opportunities provided by the use of NoSQL. One

record in a NoSQL database is a whole document that can contain one or several

uniform sets of data. E.g., Table 1 represents the case that a person has attended two

educational institutions. In this case two types of requests could be reasonable:

 Find all persons who have attended the Oxford University and show all

educational institutions they have attended (Peter Brown has exactly two);

 Find all persons who have attended the Oxford University and show only

those educational institutions which correspond to the searching condition

(Peter Brown has attended only one such educational institution).

Various interpretations can also be applied regarding aggregation. E.g., Table 1

contains the total education period of the persons which can be calculated and

represented both as an additional column referencing the whole underlying document or

referencing the individual educational institutions.

Thereby, on the one hand, a UB of NoSQL may offer additional filtering and data

analysis possibilities, on the other hand, it creates new challenges for UB developers to

develop specific user interfaces because until now this type of functionality was not

available in the classic DW.

Source code 1. Meta-data example

{

....

"columns": {

"_id": { "type": "integer" },

"number": { "type": "string" },

"supplier": { "type": "string"},

"total": {

"type": "real", "aggr": {"sum","avg","min","max”}

},

"warehouse": { "type": "string" },

"state": { "type": "string" },

"items": {

"type": "array",

"subtype": "document",

"childs": {

"_id": { "type": "integer" },

"part_code": { "type": "string" },

"quantity": {

"type": "integer", "aggr": {"sum","avg","min","max”}

},

"price": { "type": "decimal" },

"row_total": { "type": "decimal" },

"state": { "type": "string" }

}

}

}

}

 Implementation of NoSQL-based Data Warehouses 53

5. NoSQL meta-data implementation

To ensure an effective data analysis, it is necessary to create a description of the

documents stored in the NoSQL database (a meta-model). The model should describe

the data structure, the explanatory data of the data values, as well as the information

about the possibilities of data analysis (whose values are summable, usable in the

calculation of average values, etc.)

This meta-model (source code 1) could also be used to transfer data from relational

to non-relation data base. Referring to this model it is possible to describe how the fields

are selected and replaced in the resulting document.

The authors propose to build a document’s meta-model as a JSON document which

structure corresponds to the data warehouse document extended with the meta-

information: the data type of the vertex, and the available operations.

Source code 2. Meta-data example with data source information

The type in the example denotes types of the values, and the aggr denotes the possible

aggregations of types. The element types array and document are distinct. The first one

allows you to define an element that contains a list of other elements, the document

describes an element that is a structure.

By using this definition of documents, it is possible to obtain the data inquires for

data loading during the ETL process (source code 2). In the simplest case, assuming that

single-level elements of a document can be filled from a single data source, the data

loading statement should be added to the defining level of the document.

{

...

"ExtractInfo": {

"Request": "select pwID _id,, whName as [warehouse]

from waybills order by pwID",

}

"columns": {

"_id": { "type": "integer" },

...

"warehouse": { "type": "string" },

"items": {

"type": "array",

"subtype": "document",

"ExtractInfo": {

"Request": "select pwpID as [_id], prtCode as

[part_code], ... from partWaybillParts_vwFull where

pwID = @parentId order by pwpID",

}

"childs": {

"_id": { "type": "integer" },

"part_code": { "type": "string" },

...

}

}

}

}

54 Oditis et al.

Thus, if using such a meta-model, it is possible to provide both the information

necessary for the analysis and the description of data transfer. Since the same description

is used in both cases, it also ensures the integrity of the data warehouse.

This model further illustrates the simplicity of implementing the proposed data

warehouse solution. The information necessary for the transfer and analysis of a

particular data type is collected in one simple structured JSON document. If the data

warehouse must be structurally changed or transaction data is changed, the structure of

the data warehouse description should be changed, and the data loading may be repeated

according to the new description.

6. Conclusions

Usage of NoSQL to build document-based DWs is only possible thanks to the modern

technologies offering more and more power and available dataspace. Even a few years

ago such solutions would not be financially affordable, today they are available for

middle-sized and small enterprises.

Based on experiences gained during development and use of prototypes the authors

believe that the future of NoSQL based DW is promising:

 DW may be easier to build when using NoSQL data storage because fewer

components are necessary and the resulting data structures are less complex;

 NoSQL based DW have the potential to unify benefits of classical DW

technology with the simple-to-use of the Internet times including the

Google-style search;

 NoSQL based DW have the potential to provide new features for data

analyses impossible by classical DW systems, and the initial data context

may be accessible for analysis purposes;

 Benefits when using NoSQL technologies may be expected if a substantial

part of the data collected in the data mart is semi-structured or non-

structured and if we do not face too specific requirements regarding the

facts necessary in the DW.

Acknowledgments

The research leading to these results has received funding from the research project

"Competence Centre of Information and Communication Technologies" of EU

Structural funds, contract No. 1.2.1.1/16/A/007 signed between IT Competence Centre

and Central Finance and Contracting Agency, Research No. 1.10 “Non-relational data

warehouse development technology ".

References

AnHai, D., Halevy, A., Ives, Z. (2012). Principles of data integration. Elsevier.

Baars, H., Kemper, H.G (2008). Management Support with Structured and Unstructured Data - An

Integrated Business Intelligence Framework, Information Systems Management, Vol. 25,

Issue 2, 2008, pp. 132-148, DOI:10.1080/10580530801941058

 Implementation of NoSQL-based Data Warehouses 55

Beryoza, D., Campbell, M.A., Cardorelle, C., Creasey, T., Cushing, D., Da Silva V., David, S.,

Hagleitner, A., Henderson, I., Howell, D., Kozine, I., Prieto, P., Thompson, P., Vazquez, J.,

Zhang, Y. (2015). IBM Cognos Dynamic Cubes, IBM Redbooks, ISBN: 9780738440835

Bridgwater, A. (2015). How the IT universe moves to software-defined data warehouse life, and

everything, ComputerWeekly.com, CW Developer Network Computer Magazine,

http://www.computerweekly.com/blogs/cwdn/2015/04/how-the-it-universe-moves-to-

software-defined-data-warehouses.html

Chaudhuri, S., Dayal, U. (1997). An overview of data warehousing and OLAP technology, ACM

SIGMOD Record, Vol. 26 Issue 1, March 1997, pp. 65-74, DOI: 10.1145/248603.248616

Chen, L., Soliman, K.S., Mao, E., Frollick, M.N. (2000). Measuring user satisfaction with data

warehouses: an exploratory study, Information & Management, Vol. 37, Issue 3, April 1,

2000, pp. 103–110, DOI: 10.1016/S0378-7206(99)00042-7

Fehling, C., Leymann, F., Schumm, D., Konrad, R., Mietzner, R., Pauly, M. (2011). Flexible

Process-Based Applications in Hybrid Clouds, 2011 IEEE International Conference on

Cloud Computing (CLOUD), July 4-9,2011, pp. 81 – 88, ISBN: 978-1-4577-0836-7, DOI:

10.1109/CLOUD.2011.37

Gaspar, D., Coric, I. (2017). Bridging Relational and NoSQL Databases, IGI Global, ISBN:

9781522533863, p. 270

Han, J., Haihong, E., Le., G., Du, J. (2011). Survey on NoSQL database, the 6th International

Conference on Pervasive Computing and Applications (ICPCA), Oct. 26-28, 2011, IEEE,

pp. 363-366, ISBN: 978-1-4577-0209-9, DOI: 10.1109/ICPCA.2011.6106531

Jarke, M., Lenzerini, M., Vassiliou, Y., Vassiliadis, P. (2003). Fundamentals of Data Warehouses,

2nd edition, Springer Verlag, ISBN: 3-540-42089-4

Karnitis, G., Arnicans, G. (2015). Migration of Relational Database to Document-Oriented

Database: Structure Denormalization and Data Transformation. Computational Intelligence,

Communication Systems and Networks (CICSyN), 2015 7th International Conference on.

IEEE, 2015

Kaur, K., Rani, R. (2013). Modeling and querying data in NoSQL databases, 2013 IEEE In-

ternational Conference on Big Data, Oct. 6-9, 2013, pp. 1-7, DOI:

10.1109/BigData.2013.6691765

Leavitt, N. (2010). Will NoSQL Databases Live Up to Their Promise?, Computer, Vol. 43, Issue

2, IEEE, pp. 12-14, ISSN : 0018-9162, DOI: 10.1109/MC.2010.58

Sen, A., Sinha, A.P. (2005). A comparison of data warehousing methodologies, Communications

of the ACM - The disappearing computer, Vol. 48 Issue 3, March 2005, pp. 79-84, DOI:

10.1145/1047671.1047673

Shin, S.K., Sanders, G.L. (2006). Denormalization strategies for data retrieval from data

warehouses, Decision Support Systems, Vol. 42, Issue 1, Elsevier, October 2006, pp. 267–

282, DOI: 10.1016/j.dss.2004.12.004

Woodey, A. (2014). Forrester Ranks the NoSQL Database Vendors, Datanami,

http://www.datanami.com/2014/10/03/forrester-ranks-nosql-database-vendors/

Received February 1, 2018, revised March 22, 2018, accepted March 27, 2018

