
Baltic J. Modern Computing, Vol. 6 (2018), No. 1, 56-91

https://doi.org/10.22364/bjmc.2018.6.1.05

An Approach for iOS Applications’ Testing

Ivans KUĻEŠOVS
1,2

, Juris BORZOVS
1
, Aigars SUSTERS

2
,

Vineta ARNICANE
1
, Guntis ARNICANS

1
,

Kirils KEIDUNS
2
, Janis SKUTELIS

2

1 Faculty of Computing, University of Latvia, Raina bulv. 19, LV-1586, Riga, Latvia
2 SIA ”C.T.Co”, Meistaru 33, Valdlauči, Ķekava district, LV-1076, Latvia

ivans.kulesovs@gmail.com, juris.borzovs@lu.lv,

aigars.susters@gmail.com, vineta.arnicane@lu.lv,

guntis.arnicans@lu.lv, kiril.keidun@ctco.lv,

jaanis.skutelis@gmail.com

Abstract. The mobile conquers the world. The need in a comprehensive and systemized multi-

edge testing approach is rising along with mobile apps becoming even more complex. As a leader

in enterprise market, Apple iOS has been chosen as a target mobile platform for the study. The

authors have investigated aspects that influence functional testing of iOS apps in particular, and

mobile – in general. The study also exposes the security capabilities and risks that often are not

mitigated in favor of time to market rush. Investigation and clustering of mobile UI test

automation tools is performed. The capabilities and limitations of Apple UIAutomation are

discovered. Solutions aimed at overcoming the limitations of out of the box UIAutomation are

united in tTap framework developed by the authors. In conclusion an ideal cross-platform mobile

UI test automation tool is proposed.

Keywords: mobile applications’ testing, iOS, test automation.

1. Introduction

In 1975, the first theoretic foundation of testing by Goodenough and Gerhart (1975) was

published. A year before that the first publication on software testing was published in

Latvia by Barzdin et al. (1974), but an enriched version of it was presented in 1977.

Since those times theory and practice of testing have evolved quite significantly through

emergence of testing activists (Myers (1979/2004), Beizer (1990, 1995), Kaner (1999,

2001), Bach (Kaner et al., 2001), Pettichord (2007), Kaner et al. (2001), Black (2009),

etc.) and under the influence of different software development approaches (waterfall,

rapid application development, agile, etc.). Nowadays, testing has become a crucial part

of the software development process.

The rise of mobile technology has touched upon the lives of everyone. According to

the study by Research and Markets (2014), the mobile cloud market is expected to be

worth US $46,90 billion by 2019, while the research by Markets and Markets (2014)

shows that heterogeneous mobile processing & computing market will be worth US

$61,70 billion by 2020. iOS from Apple is one of the most popular mobile operating

systems. According to Citrix (2015), iOS holds 64%, and according to Good Technology

https://doi.org/10.22364/bjmc.2018.6.1.05
mailto:ivans.kulesovs@gmail.com
mailto:juris.borzovs@lu.lv
mailto:aigars.susters@gmail.com
mailto:vineta.arnicane@lu.lv
mailto:guntis.arnicans@lu.lv
mailto:kiril.keidun@ctco.lv
mailto:jaanis.skutelis@gmail.com

 An Approach for iOS Applications’ Testing 57

(2013), iOS holds even 73% market share of all enterprise mobile devices. According to

the same study by Good Technology (2013), iPads hold 91,4% of enterprise tablets. That

is why iOS has been chosen as a target platform for our research.

With the growth of platform abilities, applications become more complex to satisfy

the increasing user needs (Crittercism, 2014). The increased complexity means that there

are many aspects that should be taken into consideration when testing functional

suitability, performance efficiency, compatibility, reliability, maintainability, and

portability of iOS native business applications.

Enterprise workers are always more interested in information security than private

users. The level of security is one of the factors why iOS has a dominant position in

enterprise market (Eston, 2012), especially in Bring Your Own Device (BYOD) market

space. While the operating system itself provides capabilities for secure application

creation, they often are neglected in favor of time to market rush. That is why testing of

functional security is a hot topic as well.

In order to reduce the time needed for regression testing, to spare more time for

exploratory testing, or just to decrease the costs, tests to be automated. Tests can be

automated at various levels. In terms of return on investments including the maintenance

costs, the following test coverage model is thought to be the right one in the ideal world:

most of the tests are automated at the unit level; the least of the tests are automated at the

UI level; different types of integration tests lay somewhere in between. The session

based/ exploratory manual testing ensures confidence in automated tests. The model is

depicted in Fig. 1.1. (Scott, 2012).

Fig. 1.1. Automated test coverage model per test level. (Scott, 2012)

While according to this model, tests at the UI level have the least coverage, these

automated end-to-end tests are still very important to ensure the general confidence that

the previously developed app functionality, as well as the basic UI interactions are still

58 Kuļešovs et al.

up and running. Automated tests from this level are probably even more important for

mobile apps, because there are many gestures like tap, double tap, swipe, drag, etc. to be

checked.

Several solutions have already been created or adapted for mobile UI test automation,

in particular, for iOS apps. However, they all have their pros and cons, while there is no

study that exposes them to choose and adapt the right one for the environmental context

of a testing organization. There are also no studies that investigate the capabilities and

limitations of OEM Apple UIAutomation tool.

All this increases the need for the multi-edge iOS applications testing approach that

extends the systemized knowledge in the mobile testing field in general. Solutions that

overcome part of the limitations of a native automator like changing the connectivity,

assertions based on image comparison, advanced UI element search, repeatable executor

for checking the wait conditions, simulation of memory warnings, etc. are united under

tTap extension developed by the authors.

2. Inventory of Testing Ideas and Structuring of Testing Terms

2.1. Inventory of Testing Ideas

The authors have performed the inventory of testing ideas (Kuļešovs et al., 2013). It was

inspired by Kalninsh and Borzovs (1981). This activity resulted into the ideas division

among the following eight classes:

• Fundamental ideas.

• How to detect the correctness of the test result?

• How to detect the completeness of the testing?

• How to test (approach, method, technique)?

• What to test (object)?

• Which quality attribute (characteristic) to test?

• When to test (phase)?

• Unclassified.

Three millennial fundamental testing ideas are:

• Errare humanum est – To err is human.

• Aliena vitia in oculis habemus, a tergo nostra sunt - The vices of others we have in

the eyes, in the rear of our own.

• In propria causa nemo judex - No one can be judge in his own cause.

Other testing ideas were identified through analyzing the testing terms from ISTQB

Glossary (ISTQB, 2012). As a result, a map showing the linkage between the testing

terms and their relation to the definite class was generated (see

http://science.df.lu.lv/kaab13). It was produced using the tool that adopts the

term graph building algorithm developed by Arnicans, Romans, and Straujums

(Arnicans et al., 2013), (Arnicans and Straujums, 2012).

2.2. Software Testing Review on Meta-level

From practical point of view software testing mainly can be expressed by testing

strategy and testing tactics on the meta-level (i.e. on the higher level of abstraction).

Contexts of real testing project and theoretical background and experience of testing

 An Approach for iOS Applications’ Testing 59

team influence the selection of the strategy and/ or tactics and the usage of principles of

testing schools in the current testing project or campaign. A software testing review on

meta-level is depicted in Fig. 2.1.

Fig. 2.1. Software testing review on meta-level.

Static context influences very much the testing vision and testing mission. Static

context depends on the type of the organization (i.e. governmental, outsourcer, start-up,

etc.) and on the type of the software produced (enterprise software, commercial

software, web page, etc.). The options mentioned above are generally static during the

whole product lifecycle. Testing vision denotes the aims that the testing team wants to

achieve by testing. In some cases testing vision can be focused on producing the

software with all high and critical software failures discovered and fixed, and 95% of

medium severity failures identified. In some cases it can be to receive an acceptance

sign-off of the product from the customer. Testing mission denotes actions that testing

team does in order to achieve the testing vision. For example, the team can use only

scripted testing, or it can use the benefits of the exploratory testing as well, to receive an

acceptance sign-off of the product from the customer. Or testers prepare automated tests

before the development to keep the product always deliverable to the customer as test-

driven development suggests. Testing schools are theoretical frameworks that define

testing vision and testing mission based on the static context.

All aspects of testing schools (it can also be the mix of aspects from different

schools) that prevail within the organization and are common for the definite product

type influence the testing strategy of the given software project. Testing strategy

describes a general approach for testing. Testing strategy consists of the specification of

the roles and responsibilities of each person involved in testing, testing levels,

environment requirements, overall testing schedule, testing tools, risks and its

mitigations, testing priorities, testing status reporting, etc.

60 Kuļešovs et al.

Testing oracles that define testing exit-criteria and those that are used as the source

of the derivation of test cases and expected results (i.e. correctness oracles) should be

chosen within the testing strategy definition. The selection of quality characteristics to

be covered by testing process should occur during the definition of testing strategy as

well. Test results completeness oracles can be defined when selecting testing tactics,

because often there are much more details about expected results amount available

during tactics selection process.

Dynamic context depends on the project phase and influences the choice of the

testing tactics that are appropriate for the given time frame, for the definite object under

test, and for the current micro testing goal. Examples of the dynamic context factors are

fulfillment of test entry criteria in time, availability of shared testing resources, the

stabilization and bug fixing phase of the development process, etc. Testing tactics should

be consistent with the testing strategy.

Testing tactics for each object under test are depicted in the test plan. Test plan

consists of organizational and technical aspects. Testing tactic also influences the choice

of the testing approach to be used to fulfill the current micro testing goals. Thus,

technical aspects of the test plan should include the selection of the appropriate testing

approaches, methods, and techniques. Testing artifacts (like test cases, test suites,

traceability matrix, test data, etc.) to be produced by the testing process should be

mentioned in the test plan as well. It is worth noting that some schools do not require

formal and written test plans as a mandatory artifact of testing process.

2.3. Testing Schools

Testing society distinguishes five testing schools (Pettichord, 2009). They are:

• Analytic School;

• Standard School;

• Quality School;

• Context-Driven School;

• Agile School.

The schools are frameworks for categorization of test engineers’ believes about

testing and are their guide on the testing process. Testing schools are not competitive;

they can be used in the collaborative mode as well. They all have exemplar techniques or

paradigms, but they are not limited to them.

During the last decade the agile school starts taking the dominant position. The

paradigm of this school is that testing process proves that system under test or its

particular functionality work as expected, while the focus of other schools is to find the

errors. Test-driven development is one of the agile testing school paradigms, thus

automated acceptance tests are demonstrative exemplar of the school.

2.4. Systematization of Testing Terms: Approach, Method, and Technique

Despite the attempts of standardization of testing terms and ideas by different

authorities, such as ISTQB and IEEE, there is still a little chaos prevailing in the testing

literature, and between the testers themselves on the explicit usage and definition of the

terms.

The connection and clear border between testing approach, testing method, and

testing technique are not defined in the testing theory. For example, Beizer (1995)

 An Approach for iOS Applications’ Testing 61

defines test technique as a systematic method: “A test strategy or test technique is a

systematic method used to select and/or generate tests to be included in a test suite.” In

the same time, he uses test technique and test method as completely equal statements:

“… here I present you with ready-made equivalence class partitioning methods (or

test techniques) …” (Beizer, 1995); “[T]est execution technique: The method used to

perform the actual test execution, either manual or automated” (ISTQB, 2012). Other

authors, such as Kaner et al. (1999, 2001), Pressman (2005), and Sommerville (2007)

have a mix of using words technique, method, approach, and strategy in regard to testing

as well.

The attempts of making a distinction between approach, method, and technique were

already performed by language teaching specialists in 1963, 12 years before the first

theoretic foundation of testing by Goodenough and Gerhart was published. In 1963

Anthony provided “much needed coherence to the conception and representation of

elements that constitute language teaching:” (as cited in Kumaravadivelu (2006))

An approach is “a set of correlative assumptions dealing with the nature of language

and the nature of language teaching and learning. It describes the nature of the subject

matter to be taught. It states a point of view, a philosophy, an article faith…”

A method is “an overall plan for the orderly presentation of language material, no

part of which contradicts, and all of which is based on the selected approach. An

approach is axiomatic, a method is procedural”.

A technique is described as “a particular trick, stratagem, or contrivance used to

accomplish an immediate objective”.

“The arrangement is hierarchical. The organizational key is that techniques carry out

a method which is consistent with an approach.”

In 1982 Richards and Rogers (as cited in Kumaravadivelu (2006)) performed an

attempt to enhance the framework developed by Anthony through dividing language

teaching process into approach, design, and procedure. But, despite rather vague

definition of terms approach, method, and technique, and not considering in any way of

complex connections between them, exactly these terms are in favor of the most current

teacher training manuals. (Hall, 2011)

We suggest systemizing testing approach, testing method, and testing technique in

the same hierarchical way, using the experience and keeping in mind the mistakes of

language teaching specialist. Schematic relation between terms mentioned above is

shown in Fig. 2.2.

Fig. 2.2. Relation between approach, method, and technique.

Testing approach “states a point of view, a philosophy, an article faith” that a test

engineer takes when designing test cases.

Testing method is “an overall plan for the orderly presentation” of testing techniques.

Testing technique is “a particular trick, stratagem, or contrivance” to design a test case.

Testing techniques are united under testing methods based on the test case design

formality (for black-box testing approach) or based on other common pronounced

attributes (for white-box testing approach).

62 Kuļešovs et al.

The “organizational key” stays the same as suggested by Anthony – “techniques

carry out a method which is consistent with an approach”.

2.5. Black-box Testing

Black-box is a software testing approach when test engineer designs test cases as if

she does not know anything about the internal structure of the software under test.

Black-box testing approach consists of seven testing methods that are differentiated

based on the source used for test case design process and based on the level of formality

of test case designs. The relation between black-box testing methods and techniques is

shown in Fig. 2.3.

Fig. 2.3. Black-box Approach

2.5.1. White-box Testing

White-box is a software testing approach when test engineer designs test cases based

on the internal structure of the software under test. There are three most known white

box testing methods: control flow testing, data flow testing, and mutation testing. The

relation between the white-box testing methods and techniques is shown in Fig. 2.4.

2.5.2. In-Operational Testing

Classical black-box and white-box testing approaches are mainly used applied during

software development. Nowadays the new in-operational testing approach emerges. It

means that validation occurs during the system run-time. Execution environment testing

(Rauhvarger and Bicevskis, 2008), self-testing (Diebelis and Bicevskis, 2008), runtime

verification of business process execution (Oditis and Bicevskis, 2015a,b) are the

methods united under this approach. These testing methods are part of so called smart

technologies idea that software should behave as a living being and adapt to, optimize in

 An Approach for iOS Applications’ Testing 63

and defend itself again changing environment (Bicevska et al., 2015; Bicevskis et al.,

2016). The relation between the in-operational testing methods and techniques is shown

in Fig. 2.5.

Fig. 2.4. White-box Approach

Fig. 2.5. In-Operational Testing

3. Apple iOS Applications Testing Aspects

3.1. Introduction

According to the different studies (Research and Markets, 2014; Markets and

Markets, 2014; Citrix, 2015; Good Technology, 2013) iOS devices hold the major

market share among the corporate workers.

With the growth of platform abilities applications become more complex

(Crittercism, 2014) to satisfy the increasing user needs. The increased complexity means

that there are many aspects that should be taken into consideration when testing mobile

applications. Mobile workers mostly use native business applications on their devices;

otherwise there would not be such a dominant position of the single operating system.

That is why iOS native applications are the subject of the main interest for this section

and study in general.

Despite the fact that the topic being hot, there are only some academic studies

(Muccini et al., 2012; Dantas et al., 2009; Gao et al., 2014) performed that systemize the

generic aspects that should be taken into consideration when testing the mobile

applications without specifying the platform. Other studies – by Franke et al. (2011,

64 Kuļešovs et al.

2012) that include the clear distinction between the platforms, concentrate on some

narrow topic. On the other side, there are different iOS testing checklists, mind maps,

blogs, etc. available in the internet. This motivates the authors to perform the systematic

literature review of academic literature in the field of mobile testing and perform the

literature review of the available non-academic (or multivocal, as per Ogawa and Malen,

1991) sources in the field of iOS testing (Kulesovs, 2015).

It was decided to concentrate both reviews on aspects of manual testing of such

quality characteristics as functional suitability, performance efficiency, compatibility,

reliability, maintainability, and portability according to ISO (2011). Usability testing is

out of scope (except parts that are closely related to or are on the border line with the

quality characteristics mentioned above).

The following research question was formulated:

RQ: Which aspects (i.e. features and/ or limitations) influence the testing of

functional suitability, performance efficiency, compatibility, reliability, maintainability,

and portability of the iOS native business applications?

The results of both reviews are merged in order to answer the research question.

3.2. Research Methodology

Fig. 3.1. Process of sources selection for SLR and MLR.

The systematic literature review (SLR) of the academic sources was performed in

order to gain the aspects of the mobile applications testing. The multivocal literature

 An Approach for iOS Applications’ Testing 65

review (MLR) was performed in order to gain the exclusive aspects of iOS applications

testing. The idea to perform two types of the review to consolidate the data from

different sources was taken from work by Tom et al (2013). Fig. 3.1 shows the stages of

sources selection for the whole review process applied in this study.

The procedure described by Kitchenham and Charters (2007) was followed in order

to conduct the systematic literature review. The qualitative review approach was applied

in order to include a rigor into the systematic review of multivocal literature as suggested

by Ogawa and Malen (1991). They define the multivocal sources as accessible, but non-

academic writings on the topic.

3.3. Results

3.3.1. Summary of Reviews

Despite the fact that the search criteria for SLR includes studies starting from 2007, the

first selected study by Dantas et al. (2009) was published in 2009, but the most

productive years are 2012 (five studies: Franke et al. (2012a, 2012b), Kim (2012),

Marinho and Resende (2012), and Muccini et al. (2012)) and 2013 (three studies:

Amalfitano et al. (2013), Haller (2013), and Khalid (2013)). Two studies by Franke et al.

(2011) and by Franke and Weise (2011) were published in 2011, and one study by Gao

et al. (2014) was published in 2014. Two studies by Franke et al. (2012a, 2011) are

related to narrow topic of mobile application lifecycle, one study by Khalid (2013) is

related to user complaints about iOS applications, and other nine sources by Dantas et al.

(2009), Franke et al. (2012b), Kim (2012), Marinho and Resende (2012), Muccini et al.

(2012), Amalfitano et al. (2013), Haller (2013), Franke and Weise (2011), and Gao et al.

(2014) are related to the general testing of mobile applications.

Between the sources selected through MLR, seven sources by App Quality Alliance

(2013), Pound (2013), Nearsoft (2013), TestElf (2013), uTest (2013), Neglected

Potential (2013), and Addey (2013) were published in 2013, and one source was

published in 2012 by Land (2012) and one in 2014 by SmartBear (2014). Five sources

by App Quality Alliance (2013), Nearsoft (2013), TestElf (2013), Land (2012),

SmartBear (2014) are blog posts, two sources by App Quality Alliance (2013) and

Addey (2013) are testing checklists, one source by uTest (2013) is a white paper, and

one source by Neglected Potential (2013) is a mind map. All the blog posts describe the

testing only of one or some aspects, while other sources try to cover the whole iOS

testing field.

3.3.2. Aspects of iOS Applications Testing

The aspects that influence the testing of iOS applications gathered through SLR and

MLR are shown in Table 3.1. If a source is referred in the table before the details of an

aspect, it means that aspect is just mentioned in the source without pointing the details

that are related to iOS applications testing.

There are three types of iOS devices: iPad, iPhone, and iPod mentioned in App

Quality Alliance (2013), uTest (2013), Neglected Potential (2013), and Addey (2013)

that have different screen size, resolution and pixel ratio, processing efficiency, memory,

and storage capacity, as per Dantas et al. (2009), Kim (2012), Marinho and Resende

(2012), Muccini et al. (2012), Haller (2013), Khalid (2013), Franke and Weise (2011),

66 Kuļešovs et al.

Table 3.1 Aspects of iOS Applications Testing

Environment

Hardware

Devices iPad, iPhone, iPod

Apple Watch.

Screen size, resolution & pixel ratio, pro-cesssing
efficiency, memory, storage capacity

Simulator

External

Accessories

Headphones, keyboard; wired/ wireless.

Operating System

OS Variety OS upgrade.

Restrictions and

Privacy Settings

Safari, Camera, Siri, IAP (in-app purchase), Location Services,

Contacts, Calendars, Photos, Social Networking, Microphone,

Motion Activities, Cellular Data Use, Background App Refresh.

Resources

Limitations Lack of storage, amount of memory, running out of battery,

processing capabilities.

Consumption Memory consumption, battery consumption.

Connectivity

Network Types WiFi, Cellular networks, Bluetooth, Airplane mode.

Network

Conditions

Strong/ no/ poor connection; connection loss.

Ask for connection.

Internalization

Region Formats Date format, hour format.

Date/ Time

Settings

Switching between time zones, system time too fast/ too slow.

Application Lifecycle

Installing and Launching

Background

Crash

Low-Memory Warnings

Interruptions Call/ SMS , push notifications, system alerts, GPS signal,

audio/ video.

Application Update

Inside the Application

Keyboard Extended keyboard.

Data Import/ Export Email; Bluetooth/ network (peer to peer).

Logging/ Analytics

In-App Purchases

Web View

UI/ UX

Gestures

Smooth Animation

Pull to Refresh

Orientation Portrait, landscape.

Half Pixels

Localization Native characters and special symbols.

Accessibility VoiceOver, accessibility zoom, etc.

 An Approach for iOS Applications’ Testing 67

Gao et al. (2014), uTest (2013), Neglected Potential (2013), and Addey (2013). It is

claimed in Dantas et al. (2009) that functionalities, usability issues in the interface

design, and user behavior “to be tested in emulator”, while other sources Kim (2012),

Haller (2013), Khalid (2013), Franke and Weise (2011), and SmartBear (2014) state that

almost everything should be tested on the real device to get the reliable test results.

There are also different types of the external accessories, both wired and wireless

(Franke et al., 2012b), (Amalfitano et al., 2013) like headphones (Franke et al., 2012b),

(Amalfitano et al., 2013), (Addey, 2013) and keyboard (Franke et al., 2012b),

(Amalfitano et al., 2013) that can be connected to the device.

It is claimed in many sources like in Kim (2012), Muccini et al. (2012), Haller

(2013), Gao et al. (2014), uTest (2013), Neglected Potential (2013), and Addey (2013)

that the variety of operating systems (OS) is an important testing aspect, while OS

upgrade is mentioned explicitly only in Haller (2013). It is possible to set the restrictions

on the usage of different hardware or OEM software completely or for the specific

application within the iOS (App Quality Alliance, 2013), (TestElf, 2013), (Neglected

Potential, 2013).

Mobile devices have limited power, processing, and memory resource (Dantas et al.,

2009), (Franke et al., 2012a, b), (Marinho and Resende, 2012), (Muccini et al., 2012),

(Haller, 2013), (Khalid, 2013). Thus resources consumption efficiency plays an

important role in application success (Dantas et al., 2009), (Franke et al., 2012b),

(Marinho and Resende, 2012), (Muccini et al., 2012), (Khalid, 2013), (App Quality

Alliance, 2013). Applications should also be checked on different networks, i.e. strong

WiFi connection, cellular network (LTE, 3G, EDGE), and in Airplane mode (Dantas et

al., 2009), (Franke et al., 2012b), (Muccini et al., 2012), (Gao et al., 2014), (Nearsoft,

2013), (TestElf, 2013), (Neglected Potential, 2013), (Addey, 2013). Different network

conditions (e.g. slow connection, packets loss, etc.) should be taken into consideration as

well (Neglected Potential, 2013). Different regional settings, like data and time formats

(Neglected Potential, 2013), (Addey, 2013), as well as time zones (Addey, 2013) are also

the subject of interest.

iOS application lifecycle consists of several phases, and there are specific conditions

that can uniquely influence application’s behavior while being in the definite phase. An

application can be just installed and launched for the first time (Marinho and Resende,

2012), (App Quality Alliance, 2013), (Addey, 2013), work in foreground, stay in

background (Franke et al., 2012a,b, 2011), (App Quality Alliance, 2013), (Neglected

Potential, 2013), receive memory warnings (Franke et al., 2012a,b, 2011), (Franke and

Weise, 2011), (Addey, 2013), be interrupted by a call or SMS (Amalfitano et al., 2013),

(App Quality Alliance, 2013), system alert (Amalfitano et al., 2013), push notification

(App Quality Alliance, 2013), (Neglected Potential, 2013), GPS signal (Amalfitano et

al., 2013), or audio/ video from another application (App Quality Alliance, 2013),

(Neglected Potential, 2013), (Addey, 2013). It can even crash (Haller, 2013), (Khalid,

2013), (uTest, 2013), (Neglected Potential, 2013). Or it can also be updated to the next

version (Haller, 2013), (Neglected Potential, 2013), (Addey, 2013).

TestElf (2013) warns about the need to check an extended (Asian) on-screen

keyboard, while Dantas et al. (2009) mentions on-screen keyboard as a generic aspect

that should be taken into consideration. According to App Quality Alliance (2013) and

Neglected Potential (2013) data can be shared via email or Bluetooth, or another network

between the applications. According to Neglected Potential (2013) and Addey (2013) it

is necessary to check application’s logging and analytics features. Testing of In-App

68 Kuļešovs et al.

Purchase component is mentioned in Neglected Potential (2013). Testing of Web View

component is mentioned both in Gao et al. (2014) and Neglected Potential (2013).

An application can be manipulated with a variety of gestures (Gao et al., 2014),

(Neglected Potential, 2013). When animated transitions occur, they must run smoothly

(Khalid, 2013), (Neglected Potential, 2013) irrespectively of the task executed in

parallel. Testing for half pixels glitches and testing of Pull to Refresh feature are

mentioned in Neglected Potential (2013). The necessity of checking the application both

in portrait and landscape is noticed in Dantas et al. (2009), Franke et al. (2012b),

Neglected Potential (2013), and Addey (2013). The importance of localization testing is

mentioned in Haller (2013) and Addey (2013). App Quality Alliance (2013) identifies

the need for testing of native characters and special symbols. It should also be checked

that application works as designed when accessibility features of OS are enabled (Pound,

2013), (uTest, 2013), (Neglected Potential, 2013), (Addey, 2013), (Land, 2012).

3.4. Conclusions

To conclude, straight functional testing of mobile apps cannot differ from testing of

web or desktop applications. The difference mainly occurs in the aspects related to the

environmental multeity.

Variety of operation systems, hardware, operating system versions (often completely

rebuilt from scratch) and modifications, screen sizes, screen resolutions and densities,

browsers and their versions, makes mobile as a separate universe. This makes test team

to select the most covering representatives from the universe to perform testing on. In

many cases there are more representatives to be selected for cross-platform mobile app

testing then it is needed for desktop or web application testing.

Mobile apps usually combine desktop and web applications behavior because they

need to be available both online and offline. They also have more lifecycle states to

verify in comparison to desktop or web applications can have. Online nature of many

mobile apps implies checking their behavior under various network conditions.

Quite limited storage, battery, and processing power resources of the mobile devices

leads to the additional checks to be performed when testing mobile apps under resources

shortage conditions. There are also additional checks to be performed in order to verify

that available resources are used efficiently by the app.

The single smaller touch screen interaction mechanism of mobile devices forces to

check the functional usability of mobile app screens. Improper positioning of UI

elements on the screen and unexpected gesture interference can lead to inability to use

the in-app features. The examples could be: elements position is linked to on-screen

keyboard position while only the default keyboard position is taken into consideration

during the design; in-app near the screen border swipes interfere with system near the

screen border swipes that open various system popovers instead. The smaller screen size

and interaction capabilities of mobile device extract mobile web app testing into separate

topic in comparison to the standard web application testing.

 An Approach for iOS Applications’ Testing 69

4. Apple iOS Applications Functional Security Testing

4.1. Introduction

While iOS offers the variety of security enhancement features to be used within the apps,

they are often neglected in favor of time to market rush. The security basics that should

be tested by test specialist are: using of secure network protocols, encryption of data

base, and denying the access to application data when device is locked with passcode.

One of the advanced functional security testing items is a checking of the development

settings file (plist) entries in production app version. (Kulešovs, 2017)

4.2. Usage of Secure Network Protocols

Usage of secure network protocols (HTTPS – HTTP over SSL or HTTP over TLS, etc.)

can be ensured by intercepting the network traffic with the apps like Charles
1
, Fiddler

2
,

etc. It is also possible to see the encrypted content exchange as a plain data between the

mobile app and the backend with such kind of tools, i.e. to perform manual integration

testing.

4.3. Data Base Encryption

This is quite a basic, but very important task for test specialist to ensure that data base is

encrypted in productive app version, because it is often kept unencrypted for testing

purposes during development. It is possible to download the application data base

directly through Xcode
3
, or using such third party apps like iFunBox

4
 or

iPhoneExplorer
5
. Then it is verified if encrypted or not by opening data base by any

SQLite data base viewer. This also allows verifying some functional corner cases or data

base corruption cases, because data base can be changed and uploaded back to iPad

using the same stack of tools.

4.4. Locking the Application Data

iOS allows locking the access to application data on the device locked with passcode.

However, this should be managed by app itself. That is why this feature should be often

rechecked, because data to lock should be explicitly defined. During new functionality

development this part is often forgotten. In-memory decryption could be another

possible requirement for the high-risk apps, otherwise, currently used data is being kept

in unencrypted way in Cache folder. Even if there is a code block that tries to remove all

unencrypted data after usage, there is a chance that it will be left unencrypted upon app

crash or app removing from memory if another app needs more memory during its

execution.

1
 http://www.charlesproxy.com/

2
 http://www.telerik.com/fiddler

3
 https://developer.apple.com/xcode/

4
 http://www.i-funbox.com/

5
 https://www.macroplant.com/iexplorer/

http://www.charlesproxy.com/
http://www.telerik.com/fiddler
https://developer.apple.com/xcode/
http://www.i-funbox.com/
https://www.macroplant.com/iexplorer/

70 Kuļešovs et al.

4.5. Advanced Functional Security Testing

One of the advanced functional security testing items is a checking of the existence of

development settings file entries (NSUserDefaults) in production app version. The

development settings entries could be: skipping login, using unencrypted database,

choosing the advanced subscription, usage of a feature that should be bought using in-

app purchase, unhiding the features currently under development, advanced debugging,

and all other staff that needs some extensive interaction with app to be achieved. There

are different cases how attackers can learn about those development features:

• Development and test settings files could be left together with production settings

file, but not used (see Fig. 4.1).

• Entry points for development and test settings are left accessible within run-time of

production version.

Fig. 4.1. Example of the development and test settings files in production build.

 This means that the first action item should be the adjusting of build process to leave

only production settings file for the production build. The second action item should be,

respectively, profiling the application code to disable the entry points for development

and test settings for production build.

If not, then app settings file could be accessed using the apps mentioned before

(Xcode, iFunBox, iPhoneExplorer), modified, i.e. appropriate development or test

settings could be added, file could be uploaded back to iPad, and attacker could enjoy

the benefits.

If the first action item is a self-explanatory, then to understand the severity of the

second action item some more information on how to break the app without accessing

the development and test settings files should be given.

 An Approach for iOS Applications’ Testing 71

It is possible to get the run-time properties of the app on the jail-broken device using

such apps available on Cydia App Store like Cycript
6
, iNalyzer

7
, etc. These properties

are shown in key-value format, even if they are not set from the current settings file.

Then attacker just adds the desired settings and their values into the settings file and

uploads it back to iPad to enjoy the benefits.

4.5.1. Discussion and Implications

While application security in most cases is tested by the security specialists, it is cheaper

to verify that security mechanisms provided by OS vendor are used as much as possible

(if the nature of the app needs it, of course) before giving the app to them. The

suggestions given above allow decreasing the panic when app is checked for security

when it is already in or close to production. From the authors’ experience, it is often the

case when product owners rush to release the app, while outsourced security specialist

overloaded schedule does not allow performing the check before the target date.

5. Mobile Applications UI Test Automation

5.1. Introduction

As already mentioned in the introductory part of the thesis, in order to reduce the time

needed for the regression testing and to make more time available for the exploratory

testing or just to decrease the costs tests tend to be automated.

Tests could be automated in the various levels. In terms of return on investments

including the maintenance costs the test coverage model depicted in Fig. 1 is thought to

be the right one in the ideal world: the most of the tests are automated on the unit level;

the least of the tests are automated on the UI level; different types of the integration tests

lay somewhere in between. The session based/ exploratory manual testing ensures

confidence in automated tests. (Scott, 2012)

While according to this model the tests on UI level have the least coverage, these

automated end to end tests are still very important to give the general confidence that

previously developed app functionality, as well as basic UI interactions are still up and

running. Automated tests from this level are probably even more important for the

mobile apps because there are many gestures like tap, double tap, swipe, drag, etc. to be

checked.

5.2. Solutions for Automated UI Testing of Mobile Apps

There are several solutions already created/ adapted for mobile UI test automation, in

particular, for iOS apps. The solutions could be divided into several groups based on the

origin, cross-platformance, and the way of executing the automated commands.

The first big clusters are OEM automation tools vs. the third party automation tools.

OEM automation tools come together with the mobile OS manufacturer IDE. All other

mobile automation tools are the 3rd party solutions. The most of the solutions use API-

6
 http://www.cycript.org/

7
 https://appsec-labs.com/inalyzer/

http://www.cycript.org/
https://appsec-labs.com/inalyzer/

72 Kuļešovs et al.

based approach for recognizing the object on the screen, while there are some solutions

that use image-based approach for the same purpose. API-based solutions can be divided

into two more groups: wrappers above the native automation tools vs. others that have

the prerequisite to incorporate the custom library into the app source code. Some of the

solutions offer to run the tests in cloud. While almost each solution nowadays can run

tests both on device and on simulator on premises, only some solutions support running

the tests on the real devices in cloud.

5.2.1. OEM Automation Tools

5.2.1.1. Apple UIAutomation and XCTest

UIAutomation tests are written in JavaScript. The framework consists of the most basic

functions for all UI elements available in iOS. (Apple Developer, 2012) The access to

some device functions like sending app to background, changing the volume, setting the

location, etc. is also available. If some custom UI View is used inside the app it can be

accessed as UIAElement class – the superclass for all user interface elements in the

context of the UIAutomation.

Starting from XCode 7 Apple added the possibility of writing the UI automated tests

on Swift language and to run them on XCTest framework (it is a unit test style

framework for Swift/ Objective-C code) inside Xcode IDE itself. In terms of the

functional scope of API both UIAutomation and XCTest frameworks are on the same

level.

Being the frameworks with the powerful set of basic functions, one of the issues for

both of them is that the commonly used test notations from these basic functions are

quite wordy. Several extensions have been created for JavaScript based UIAutomation in

order to enable the ability to write the tests using the less repetitive higher level

commands in a style more common for the testers. Each extension follows the notation

style convenient for the creator. Both most popular extensions are distributed under MIT

license. There are no extensions available for XCTest UI testing framework yet.

Tuneup JS

The main achievement of TuneupJS
8
 is the creation of the unit test like test runner

and providing the extensive set of assertions. The extension has the image comparator

inside that is based on ImageMagic
9
 tool. It also consists from the set of the commands

that combine several UIAutomation basic commands into one higher level command

making the notation shorter.

mechanic.js

mechanic.js
10

 is a CSS-style selector engine for UIAutomation. It also allows

accessing UIAElements and executing the commands with a shorter notation.

8
 http://www.tuneupjs.org/

9
 http://www.imagemagick.org/

10
 http://www.cozykozy.com/mechanicjs/

http://www.tuneupjs.org/
http://www.imagemagick.org/
http://www.cozykozy.com/mechanicjs/

 An Approach for iOS Applications’ Testing 73

5.2.1.1. Google Testing Support Library

Google Testing Support Library consists of three main parts
11

:

• AndroidJUnitRunner: JUnit 4-compatible test runner for Android.

• Espresso: UI testing framework; suitable for functional UI testing within an app.

• UI Automator: UI testing framework; suitable for cross-app functional UI testing

across system and installed apps.

UI Automator functionality on Android is similar to UIAutomation functionality on

iOS, while Espresso could be described as white-box UI test automation tool. Testing

Support Library Tests are written in Java.

5.2.1.2. Microsoft Coded UI Tests

Coded UI Tests is an analogue for UI test automation for Windows apps
12

. This tool

supports almost all Windows-based platforms, not only mobile ones. It could be even

used for web apps UI test automation. The tests are written in C#.

5.2.2. 3
rd

 Party Solutions and Summary

The market players with characteristics they posses are summarized in Table 5.1., Table

5.2, and Table 5.3. All of the solutions have record/ play capabilities. That is why this

option is excluded from the comparison tables. Each solution also supports the CI setup.

Table 5.1. OEM Solutions for Mobile UI Test Automation

Name Scripting

Languages

Native/

Hybrid

Web Cloud

Support

Apple UI

Automation/

XCTest

JavaScript,

Swift

X +/-

(need to wrap the

website into native app)

-

Google Testing

Support Library

Java X +/-

(need to wrap the

website into native app)

-

Microsoft Coded

UI Tests

C#, VB.Net X X -

11

 http://developer.android.com/tools/testing-support-library/index.html
12

 https://msdn.microsoft.com/en-us/library/dd380742.aspx

http://developer.android.com/tools/testing-support-library/index.html
https://msdn.microsoft.com/en-us/library/dd380742.aspx

74 Kuļešovs et al.

Table 5.2. Cross-platform Solutions for Mobile UI Test Automation – Clustering

Name

Wrap

per

API-

based

Image-

based

3rd Party

Library in

Use (If Not

Own)

3rd Party

Library

Integration into

Source Code (for

iOS)

Appium13 X X Implements

Selenium

WebDriver

Xamarin Test Cloud14 X Calabash X

Tosca Mobile+15 X Modified

MonkeyTal

k, Sikuli

X

Telerik Test Studio

Mobile16

 X X

DeviceAnywhere17 X X

Ranorex18 X X

SeeTest19 X X

Sikuli20 X X

EggPlant21 X X

The difference between them all lays in the progression described below:

• OEM automation tools are the most robust one between the API-based tools. They

come with a sufficient set of functions to build the commonly used test patterns, but in

case of Apple UIAutomation the scripting is too wordy. They also are limited to the one

platform.

 • Wrappers are cross-platform solutions. Appium tool is the only wrapper so far. The

vendors of the several other tools have adopted their cloud testing labs (with real

devices) to run Appium tests. Wrappers add some additional weak points per platform,

per script language, per environment. It means that if something does not work then the

13

 http://appium.io/
14

 https://developer.xamarin.com/guides/testcloud/introduction-to-test-cloud/
15

 http://www.tricentis.com/tricentis-tosca-testsuite/tosca-mobile-plus/
16

 http://docs.telerik.com/teststudio/test-studio-mobile/overview
17

 http://www.keynote.com/solutions/testing/mobile-testing
18

 http://www.ranorex.com/test-automation-tools.html
19

 https://docs.experitest.com/display/public/SA/Manually+Instrumenting

+iOS+Applications
20

 http://www.sikuli.org/testing.html
21

 http://docs.testplant.com/ePF/using/epf-getting-started-ios-gateway.htm

http://appium.io/
https://developer.xamarin.com/guides/testcloud/introduction-to-test-cloud/
http://www.tricentis.com/tricentis-tosca-testsuite/tosca-mobile-plus/
http://docs.telerik.com/teststudio/test-studio-mobile/overview
http://www.keynote.com/solutions/testing/mobile-testing
http://www.ranorex.com/test-automation-tools.html
https://docs.experitest.com/display/public/SA/Manually+Instrumenting+iOS+Applications
https://docs.experitest.com/display/public/SA/Manually+Instrumenting+iOS+Applications
http://www.sikuli.org/testing.html
http://docs.testplant.com/ePF/using/epf-getting-started-ios-gateway.htm

 An Approach for iOS Applications’ Testing 75

issue could be related exactly with the code that does wrapping, while the same

command would work in the OEM automation tool.

Table 5.3. Cross-platform Solutions for Mobile UI Test Automation – Characteristics

Name Device

Support

Cloud

Support

Scripting

Languages

Native/

Hybrid

Web Costs

Appium13 X +/-

(Simulator

only)

Java, Ruby,

Python, PHP,

JavaScript, C#

X X

(comes

with

wrapper)

Free/

pay

for

cloud

Xamarin

Test

Cloud14

X X (can run

Appium)

C#, Ruby X +/-

(need to

wrap the

website

into native

app)

Paid

Tosca

Mobile+15

X X

(private

cloud with

deviceConn

ect123 by

MobileLabs

)

Through IDE,

VB, C#,

VBScript

X X

(comes

with

wrapper)

Paid

Telerik

Test Studio

Mobile16

X X Through IDE,

C#

+/-

(hybrid

are not

supported)

 Paid

Device

Anywhere17

X X (can run

Appium)

Through IDE,

Java

X Paid

Ranorex18 X X Through IDE,

C#, VB.Net

X Paid

SeeTest19 X X (can run

Appium)

Through IDE,

C#, Java, Perl,

Python, Ruby

X Paid

Sikuli20 iOS -

simulator

only

- Java, Python,

Ruby,

JavaScript

X X Free

EggPlant21 X X SenseTalk,

Java, C#,

Ruby

X X Paid

The solutions that need the 3rd party library integration into the source code have the

same pros and cons as wrappers do. But there are two additional weak points:

• The code of the app under tests is changed in comparison to the release version. It

increases the probability of app working differently when it is built for the automated

testing purposes. Of course, the same applies for all automation solutions, because they

all interfere into the app under test in some way. But there is more trust that this

interference is properly handled when the OEM solution is used.

76 Kuļešovs et al.

• It is not possible to access the system modal windows/ popovers and device

functions from these libraries. Test framework can access them only by calling the

methods of OEM automation API.

Image based tools can simplify the recognition of UI object in a short term, however,

having them as the only solution has the following cons:

• Early automation is hardly possible – with agile software development approach it

is very possible that image slices are not yet available, while functionality is already

there.

• UI can vary not only per platform, but also per device type (phone vs. tablet). In

case of image based tools it will increase the test creation and maintenance costs.

• Adjusting/ refreshing UI up to new OS guidelines most probably will trigger more

test maintenance effort than it would be needed for API-based solutions.

To conclude, tests written using the tools that are using image pattern recognition of

the UI object are quite fragile in comparison to API-based solution, while having the

image comparison for assertion in some cases is the only way to go for UI level tests.

More detailed overview of the solutions can be discovered in Kulešovs (2017).

6. tTap Extension for Apple UIAutomation

6.1. Apple UIAutomation Capabilities and Limitations

Before choosing UIAutomation as a target test automation tool more deep analysis of its

capabilities and limitations was performed. The identified functional blocks were

divided into several levels: application level, OS level, device level, device/ OS level

combined, and framework level. (Kulesovs et al., 2015)

6.1.1. Application Level

On application level UIAutomation is capable to interact with all native UI elements, as

well as interact with custom developed UI elements that either extend or customize the

native UI elements or are totally custom designed UI elements that extend the top UI

elements – UIView or UIViewController.

The tool also supports all native gestures, however the native pinch to zoom gesture

does not work on simulator starting already from iOS 7. The support of custom gestures

is quite limited. Custom gestures can be simulated only if they can be performed with a

single drag between two points. It also is not possible to simulate the complex drag

gesture between more than two points. So, if it is needed to simulate the drawing of a

curve, this could be achieved only by performing a large set of drag gestures, finishing

each of them as if the finger was taken out from the device screen. Even if result will

look mostly the same (the circle is drawn), this is achieved with completely different

internal logic.

It is possible to change the app settings (stored in setting property list file) during the

test run. However, if it is needed to change the setting before the test run (e.g. the setting

that is applied when the application starts), then the setting should be adjusting during

the build process or app to be restarted after setting is changed during the first run.

Restarting the app is possible only by stopping the current test run and by starting

another one.

 An Approach for iOS Applications’ Testing 77

There is an option to simulate memory warnings when app runs on the simulator.

However this function is not accessed in UIAutomation out of the box.

UIAutomation understands UIWebView structure, so it is possible to interact with

the web content. However, web apps to be built in into the native app to test them using

UIAutomation. The tool is not supposed to run the default Safari browser (and any other

built-in app), that is why there is a very basic custom web browser app with a single web

view is created by the community to test the web apps on iOS. The issue is that if web

app has complex JavaScript inside then web view should also implement much more

functionality than a single default web view.

6.1.2. OS Level

On OS level the tool is able to send the app to background for a definite amount of time.

However, it is not possible to switch between the apps, even if they both are custom

built. Switching between apps could be useful, for example, if there is an intention to

check how Open In works for the app under test. It is not possible to manipulate with

push notifications as well.

6.1.3. Device Level

On device level it is possible to perform the orientation change of the device. This is

very important feature for mobile UI tests. There is also an ability to simulate the

pressing of device buttons to change volume, lock and unlock the device (without the

passcode), simulate as if it is being shaken.

6.1.4. Device/ OS Level

On the combined device/ OS level the tool allows to manipulate with the location

services, i.e. to set the latitude, longitude, altitude, course, moving speed, etc. However,

the tool is missing the support of switching on/ off the WiFi connection, as well as the

ability to change the connectivity speed. The tool is also missing the ability to

manipulate with the restrictions, privacy settings, and region formats. Simulating the

interruptions like receiving the phone call or SMS is also not possible.

Often there is also a need to add and/ or remove the images from Photo app and

contacts from Contacts app to create different preconditions for test execution or to

perform the cleanup before or after the test. It is not possible to perform such actions out

of the box. However, there is a possibility to execute the tasks on the host Mac machine

that from which tests are executed.

6.1.5. Framework Level

On framework level UIAutomation is missing unit test style notations test runner. It also

is not able to search for the element within the whole element tree. It searches only

within the first level children out of the box. There is a set of functions to check some

basic conditions like if element is present, however there are no out of the box wait

statements, as well as more complex conditions are needed to check if the tool can

interact with the element.

78 Kuļešovs et al.

The tool is capable to take a screenshots while the test being executed. But there is no

built in comparison inside it. Typing on the keyboard also fails from time to time when

characters from the different keyboards are being typed in (e.g. letters and numbers and/

or special symbols, letters in capital and in narrative).

6.1.6. Summary

To summarize, Apple UIAutomation can perform the most of the basic functions that

can be executed on the iOS device. However, there are still several limitations in terms

of functionality and framework usability. The described capabilities and limitations of

the tool are aggregated in Table 6.1 and Table 6.2.

Table 6.1. The Capabilities of Out of the Box Apple UIAutomation Capabilities

Application

Interact with all built-in UI elements

Interact with custom developed UI elements

Support for all built-in gestures

Web-views

Changing app settings

OS

Sending app to background/ foreground

Device

Simulating device buttons pressing (i.e. volume, etc.)

Orientation change

OS/ Device

Manipulation with location services

Table 6.2. The Limitations of Out of the Box Apple UIAutomation Limitations

Application

Support for custom developed gestures

Support for complex dragging gesture (more than two points)

Low-memory warnings

OS

Switching between apps

Open app from push notification

Device

-

OS/ Device

Switching on/ off WiFi connection

Changing the connectivity speed

Restrictions and Privacy Settings

Region Formats

Interruptions

Add/ remove images from Photos app

Add/ remove contacts from Contacts app

Framework

Unit test style notation

 An Approach for iOS Applications’ Testing 79

Limited assertions capabilities

Searching within the whole UI elements tree

Image comparison

Wait conditions

Robustness of keyboard typing

Limited logging/ debugging capabilities

6.2. Choosing the Right Tool for the Environmental Context

To choose the tool to automate UI tests with, we have done the following:

• Investigated each solution from Table 5.1 and Table 5.2.

• Took into account the weak points set of each solution described in section 5.

• Took into account the particular environmental options within our company.

The environmental context can be described as:

• There is no need for cross-platform support in our case, because the majority of the

apps we produce are iOS native apps (while we already are creating them using the

cross-platform Xamarin
22

 tool taking into account the possible future requests). It is so,

because this is what enterprise clients currently need, as shown by the statistics.

• We want to limit the investigation time of searching which of the components has

failed if something does not work.

• We want to decrease the probability of something does not work after the

consecutive update of the tool and/ or native automator.

The image-comparison based tools are quite powerful solutions, but due to the very

agile nature of mobile apps development, at least in our company, when UI and UX can

change dramatically in a couple of weeks we have excluded this option due to the

probable maintenance effort.

The arguments above led to choosing native Apple UIAutomation as a target solution

to automate UI tests. When choosing the tool we have acknowledged the limited

debugging capabilities of UIAutomation due to the own, non standard JavaScript

environment where tests are executed. When we were considering the options, Apple

XCTest was not available yet.

6.3. The Rise of tTap

6.3.1. Introduction

When doing the first proofs of concepts in UIAutomation we took a look at both of the

extensions mentioned in section 5.2.1.1. We decided to take Tuneup JS as a core

extension, because CSS-style of mechanic.js did not seem convenient for us with Java

background. We have also made a study of what is missing in the original UIAutomaiton

framework (see section 6.1). During the extensive test automation process it appeared

that we need the different sets of commands in comparison to Tuneup JS to make the test

automation process more convenient. That is why we started to cut, rewrite, and extend

22

 http://xamarin.com/

http://xamarin.com/

80 Kuļešovs et al.

Tuneup JS extension that resulted into new extension creation that we call tTap
23

 – target

tap.

The main reason for this title is that almost all actions within the extension are

executed in absolute coordinates of the device while still operating on the UIAElements

(UIView and UIViewController) level. The device (or simulator) is called target in

UIAutomation context. The decision to work in absolute coordinates was made to

overcome several issues that we will describe in a course of this section. It is worth

mentioning that tTap extension is distributed under MIT license
24

.

6.3.2. Solution Details

The goal of tTap is to overcome the limitations of the original UIAutomation aggregated

in Table 6.2. The details on overcoming each limitation are described below.

Overcoming of limitations on the application level, OS level, and device level is

achieved through triggering the execution of AppleScripts to manipulate the built-in

OSX application that can interact with an iOS device on the host machine (the machine

to which iOS device is connected during the test execution). On framework level the

limitations are overcome through triggering the execution of shell scripts to perform, for

example, image comparison, etc. New JavaScript functions are written to extend and

enhance the existing framework as well.

6.3.3. Application Level

The end to end support for custom developed gestures could not be achieved at all. The

only option is to integrate the custom library inside the application under test that will

call the same method execution as if custom gesture is performed. However, this is a big

overhead, because normally there should be the way to use the same functionality using

the simple tap, long press, or swipe gesture. The support for complex dragging gesture

(more than two points) can also be achieved through the custom library integration into

the application under test. But, again, there should be very strong argument for doing so.

It is possible to simulate low-memory warnings when app runs on simulator. This

could be achieved through calling the respective function from the simulator menu (see

Fig. 6.1.). To do this in automatic way tTap contains function that runs AppleScript that

“clicks” this menu item using the hotkeys.

6.3.4. OS Level

It is not possible to switch between the apps from UIAutomation framework. The issue

is that even if another app is opened by calling it through URL schema, UIAutomation

does not see it. It can be attached only to one application during the test run.

Quite often apps perform some internal navigation when they are opened from push

notification. In general, it is possible to manipulate with alerts from UIAutomation.

However to make such test repeatable is very hard, because the notification is sent

through Apple Push Notification Network in real time. That is why the time when the

notification arrives to the device is unpredictable.

23

 https://github.com/ivans-kulesovs/tTap
24

 http://opensource.org/licenses/MIT

https://github.com/ivans-kulesovs/tTap
http://opensource.org/licenses/MIT

 An Approach for iOS Applications’ Testing 81

Fig. 6.1. Triggering low-memory warning on the simulator.25

6.3.5. Device/ OS Level

There is no way to switch on/ off WiFi connection or any other connection through

UIAutomation. However, it is possible to share the WiFi connection from Mac machine

and use it on iOS device where tests are executed. In such case, the shared WiFi could be

switched on/ off by using one of the tools from Apple Developer toolset called

LinkConditioner (see Fig. 6.2). There is also an option to simulate the connection speed

of different connection types like EDGE, 3G, etc., as well as to simulate the bad network

conditions or to create custom network conditions (see Fig. 6.3).

AppleScript to manipulate the LinkConditioner tool from UIAutomation is a part of

tTap framework. The AppleScript contains the functions to run/ close LinkConditioner,

to select the definite network condition profile, and to switch the selected profile on/ off.

There are several ways how to deal with the initial set of photos and/ or contacts for

the automatic test presetup. One way is to use tTap commands that run specific

AppleScripts to manipulate with photos and contacts. It is possible to open such OSX

apps as Photos and Contacts and use their functionality to add/ remove data from the

device. This presetup is especially important in case of there are several apps being

tested on the same device. Another way is to build and install the custom app that adds/

removes such kind of data from the device.

In general, it is possible to simulate the different types of interruptions like phone

call, receiving of SMS, etc. However, this is not needed, because it is up to operating

system, not up to the app how to deal with such kind of interruptions. Receiving of the

phone call for the app is the same as switching it to background, nothing more.

It is impossible to manipulate with restrictions and privacy settings within the app.

The permissions to the photos and contacts can be asked by the app only once.

25

 http://stackoverflow.com/questions/5323515/unable-to-simulate-invoking-

applicationdidreceivememorywarning

http://stackoverflow.com/questions/5323515/unable-to-simulate-invoking-applicationdidreceivememorywarning
http://stackoverflow.com/questions/5323515/unable-to-simulate-invoking-applicationdidreceivememorywarning

82 Kuļešovs et al.

Afterwards OS prevents app from asking them again, even if user uses the functionality

of the app where these permissions are needed. User can change the restrictions only

manually in app or OS settings after giving the response on the first prompt. These

security features of OS make it impossible to automatically check the app behavior when

there are some restrictions set for the app, because it limits the testing of positive cases

afterwards without a manual intervention.

To have a constant automatic check of app behavior under different regional and time

setting is possible only if tests run on the multiple devices with different regional and

time settings being preset.

Fig. 6.2. Switching on/ off WiFi connection via LinkConditioner.

Fig. 6.3. Creating new network conditions profile.

 An Approach for iOS Applications’ Testing 83

6.3.6. Framework Level

The modified test runner from Tuneup JS is used to run the tests. Tests follow the unit

tests style convention. The test suite is wrapped into JavaScript function. There is a

separate file where these “test suite” functions are called in the definite order. We have

extended the test runner with the possibility to ignore the definite tests and make some

tests dependant from another tests result (e.g. not to run the test if the precondition is not

achieved). The advanced assertions capabilities are taken from Tuneup JS without

modification.

UIAutomation allows searching for the element only within one node of the UI

elements tree. tTap implements the recursive search by accessibility identifier from the

root node or from the definite parent. The idea is taken from Penn (2013).

As already mentioned, almost all actions are made on device (target) level. This is

the closest way how touches occur in reality. Gestures are executed on the target using

the calculated center point of UIAElement in absolute coordinates. iOS recognizes the

object at these coordinates and go through the responder chain searching the element that

executes the actions responding to the definite gesture, as shown in Fig. 5.4. This solves

the following:

• There are cases when UIAutomation does gesture on the wrong coordinates if the

command is called exactly from the UIAElement. It more often occurs with the system

windows like email controller or some context menu, especially if app is created using

some cross-platform solutions like Xamarin. We have not searched for the reason, but

this workaround works perfectly.

• By default UIAutomation does tap at (0, 0) point of UIAElement, while the real

user tends to tap to the center of the object in the most cases.

• This led to the idea of creation such convenient and often used function as

UIAElement1.tDragAndDrop(UIAElement2) where the object on top of which to drop

the current object is set as a parameter.

Fig. 6.4. The examples of responder chain in iOS. (Apple Developer, 2015)

84 Kuļešovs et al.

UIAutomation has quite limited logging capabilities that, taking into account the

JavaScript object nature of UI elements, is not sufficient for proper debugging. We refer

to debugging here, because there is no other way to debug than doing extensive logging

in UIAutomation environment. There is more extensive logging mechanism available in

tTap extension.

tTap framework comes with a set of different wait conditions like waiting for the

ability to tap the element, waiting till it is visible, waiting till it reaches the specific

position on the screen, etc.

We have adjusted the default inter key delay of the keyboard from 0.03 seconds till

0.2 seconds that makes typing more robust, because it constantly failed when switching

between the keyboard types (e.g. numeric, capital letters), especially when running tests

on CI machine, and even more often when run on simulator.

The authors have improved the image comparison solution that comes with Tuneup

JS. It used to fail when there were some tens of files on the desktop, because the

screenshots temporary were stored there. We also have rewritten it to perform the

comparison of images with an option to set the similarity threshold. Now its robustness

does not rely on the number of files on the desktop. It is worth mentioning that

UIAutomation itself allows only capturing the screenshot.

6.3.7. Summary

All identified UIAutomation limitations were thoroughly examined during the rise of

tTap extension. Majority of the limitations where workaround is possible are solved in

tTap, for some of the limitation there is a clear way how to deal with, however the

solution is not reliable enough (i.e. can have the issue with tests repeatability) due to the

objective infrastructure limitations (e.g. opening app from Push Notification), or such

tests are not needed at all because they can be compensated with other tests (e.g. testing

of interruptions). Some of the limitations can be solved by setting up the advanced

infrastructure (e.g. running tests on multiple devices with different regional and date/

time settings). There are also limitations left not solved, because of OS or UIAutomation

restriction by purpose (e.g. changing the restrictions, privacy settings, etc.). Various of

the framework limitations like unit test style notations, advanced assertions, logging, and

debugging capabilities are solved after ability of creating UI tests has been added to

Xcode 7 itself in XCTest framework. The status of overcoming Apple UIAutomation

limitations is shown in Table 6.3.

To summarize, in comparison to OEM Apple UIAutomation, with tTap extension

during automated tests execution it is possible:

• To switch on/ off the connectivity to the WiFi shared from the automated tests

execution host that allows checking how app works in offline, as well as to simulate the

network interruption during the online activity.

• To perform the image-based comparison of the whole screen or its part with an

etalon. Sometimes, it is the only way to perform the assertion. In other cases it could be

less complex to make such kind of assertion than the logical one.

• To add images and contacts from/ to Photos and Contacts apps. This allows making

the repeatable test data of such type before test execution and to clean up test data in test

tear down block.

 An Approach for iOS Applications’ Testing 85

Table 6.3. The Status of Overcoming Apple UIAutomation Limitations

Limitation Status in XCTest Status in tTap

Application

Support for custom developed

gestures

Support for complex dragging

gesture (more than two points)

Low-memory warnings (on

simulator only)

OS

Switching between apps

Open app from push notification

Device

-

OS/ Device

Switching on/ off WiFi connection

Changing the connectivity speed

Restrictions and Privacy Settings

Region Formats (can run

tests on multiple

devices)

Interruptions Not needed

Add/ remove images from Photos

app

Add/ remove contacts from

Contacts app

Framework

Unit test style notation

Limited assertions capabilities

Searching within the whole UI

elements tree

Image comparison

Wait conditions

Robustness of keyboard typing

Limited logging/ debugging

capabilities

Other than that several improvements to the framework that simplifies it or makes it

more robust have been developed. They are:

• unit test style notations;

• advanced assertion capabilities;

• searching within the whole UI elements tree;

• various wait conditions;

• improved keyboard typing robustness;

• advanced logging/ debugging capabilities.

In order to perform a stress testing tTap also allows simulating low-memory warning,

however only on simulator, not on the real device.

86 Kuļešovs et al.

7. Ideal Cross-Platform Mobile UI Test Automation Tool

Proposal

The analysis of the mobile UI test automation tools from the fifth section, the

analysis of the possibilities and limitations of the out of the box Apple UIAutomation,

and creating the solutions for these limitations united in tTap frameworks resulted into

the proposal of the ideal cross-platform mobile UI test automation tool creation. The

device control is achieved with EggPlant image-based tool instrument –custom

Springboard. More matured Appium tool (that being a wrapper on top of native

automators has the best concept for cross-platform support) is used for test automation

itself. Its part for iOS apps automation is extended with the solutions united in tTap

framework. Android UIAutomator and Microsoft Coded UI Tests capabilities and

limitations still to be investigated and solved if possible. Even Appium wraps only iOS

and Android native automators, there already a project called Winium
26

 started that

wraps Coded UI Tests as well. The proposal is schematically depicted in Fig. 7.1.

Fig. 7.1. The ideal cross-platform mobile UI test automation tool architecture.

Using custom Springboard from EggPlant to control the device is cleaner and most

efficient way in case of iOS. Jail-break is a no go for device control at all. Using

wrapping concept is the cleanest way possible for cross-platform UI test automation

solution.

26

 https://github.com/2gis/Winium.StoreApps.CodedUi

https://github.com/2gis/Winium.StoreApps.CodedUi

 An Approach for iOS Applications’ Testing 87

8. Conclusions and Discussions

The study consists of six main parts. Each part adds value to the software testing field in

general and to the field of the mobile software testing in particular.

The first part concentrates on the inventory and structuring of testing ideas and terms.

It has resulted into discovering of eight classes of the testing ideas. Initiation of such

process has helped to understand the need of making the clear definition of such terms as

testing approach, testing method, and testing techniques that has been achieved using the

solution made by Anthony in the field of language teaching. Testing methods and

techniques have been united under black box, white box, and in-operational testing

approaches. Structuring of the ideas have also made it possible to schematize and

visualize the software testing on meta-level, defining the relation between such concepts

as testing strategy, testing tactics, testing schools, testing mission, testing vision,

different (organizational and project-wide) contexts, testing approach, testing method,

testing technique, testing plan, etc. Uniting various software testing processes under

software testing tactic term has been made for the first time. The visualization of the

relation and clustering of the software testing ideas and terms has been done for the first

time as well.

In the second part the aspects of mobile applications functional testing are

investigated. iOS was chosen as a target platform for investigation, because it is the

current market leader in the enterprise world. The literature review of both academic and

multivocal literature was performed. The majority of the sources selected for the review,

both academic and multivocal, were published during the last seven years period.

The results of SLR are mostly related to general mobile applications testing aspects

like limited resource utilization, orientations, localizations, etc., while the results of

MLR provided the needed details of iOS application testing aspects (like definite

restrictions and privacy settings, iOS accessibility features, etc.), as well as identified

some new aspects like IAP, date/ time settings, etc. The identified aspects were divided

between 4 large clusters: Environment, Application Lifecycle, Inside the Application, and

(functional or performance aspects of) UI/ UX.

The third part looks into the functional security testing of iOS applications. While

application security in most cases is tested by the security specialists, it is possible and is

much cheaper to verify that security mechanisms provided by OS vendor are used as

much as possible (if the nature of the app needs it, of course) before giving the app to

them. This often is neglected in favor of time to market rush. These mechanisms are

usage of the secure network protocols, data base encryption, and locking the application

data. Another functional security testing part is to check and eliminate the leftovers of

development and testing activities in the productive build of the app. The examples of

leftovers are settings files and code that reads them or performs the action based on the

setting value. This issue is not discussed in the literature at all. The authors got the

details through the own studies while breaking the apps.

The solutions for mobile UI test automation are discovered and categorized in the

fourth part. These solutions can be divided into three parts: OEM tools, API-based tools,

and image comparison based tools. API-based tools can also be divided into two groups:

wrappers (tools that wrap the native automators) and tools that need 3rd party library

integration into the application code. All non OEM tools are cross-platform tools.

88 Kuļešovs et al.

Tests written using the tools that are using image pattern recognition of the UI object

are quite fragile in comparison to API-based solution, while having the image

comparison for assertion in some cases is the only way to go for UI level tests.

The study of the (mobile) automation tools available on the market has been

performed by practitioners many times, for sure. However, most of them are not

publically available, but those who are do not provide any thorough categorization of the

tools.

The rigorous study of the capabilities and limitation of Apple UI Automation has

been done for the first time. This is reflected in the sixth section. These capabilities are

divided among several levels: application, OS, device, and OS/ device. UIAutomation

capabilities are: interact will all built-in UI elements; interact with custom developed UI

elements; support for all built-in gestures; web-views; changing app settings; sending

app to background/ foreground; simulating device buttons pressing (i.e. volume, etc.);

orientation change; manipulation with location services. Out of the box UIAutomation

limitations are: support for custom developed gestures; support for complex dragging

gesture (more than two points); low-memory warnings, switching between apps; open

app from push notification; switching on/ off WiFi connection; changing the

connectivity speed; restrictions and privacy settings; region formats; interruptions; add/

remove images from Photos app; add/ remove contacts from Contacts app; unit test style

notation; limited assertions capabilities; searching within the whole UI elements tree;

image comparison; wait conditions; robustness of keyboard typing; limited logging/

debugging capabilities.

All limitations were analyzed and solutions were provided for those that do not

require to jailbreak device or perform any other hacking of the OS or device. These

solutions are united in tTap framework – the extension for Apple UIAutomation. The

following limitations are solved in tTap framework: low-memory warnings (on simulator

only); switching on/ off WiFi connection; changing the connectivity speed; add/ remove

images from Photos app; add/ remove contacts from Contacts app; unit test style

notation; limited assertions capabilities; searching within the whole UI elements tree;

image comparison; wait conditions; robustness of keyboard typing; limited logging/

debugging capabilities.

The investigations, analysis, and tTap solution creation from the fifth and sixth

sections led to the ideal cross-platform mobile UI test automation tool proposal. The

device control is achieved with EggPlant image-based tool instrument – custom

Springboard. Appium tool (together with Winium spin off for Windows) as a wrapper

concept is used for test automation itself. Its part for iOS apps automation is extended

with the solutions united in tTap framework.

This is also the fact, that the mobile applications field is not mature enough yet. It is

even less mature in terms of testing. The authors investigations on the iOS apps testing

aspects, iOS apps functional security aspects, and mobile UI test automation, including

the creation of tTap framework and making the proposal of the ideal cross-platform

mobile UI test automation tool, focuses on this issue and makes the field a bit more

mature.

Acknowledgments

The research was partly developed under the University of Latvia contract no.

AAP2016/B032 “Innovative information technologies”.

 An Approach for iOS Applications’ Testing 89

References

Addey, D. (2013). iOS Devices, available at http://daveaddey.com

/postfiles/AgantReleaseChecklist2013.pdf

Amalfitano, D., Fasolino, A., Tramontana, P.,Amatucci, N. (2013). Considering context events in

event-based testing of mobile applications.Proc. IEEE 6th Int. Conf. Softw. Testing,

Verification and Validation Workshops, Luxembourg.

App Quality Alliance (2013). Testing Criteria for iOS Apps, available at
http://www.appqualityalliance.org/files/AQuA_testing_criteria_

for_iOS_for_v1.0%20final%2022_oct_2013.pdf

Apple Developer (2012). UI Automation JavaScript Reference for iOS, available

athttps://developer.apple.com/library/ios/documentation/DeveloperTools/Reference/UIAuto

mationRef/

Apple Developer (2015). Event Handling Guide for iOS, available at
https://www.hitpages.com/doc/6281807121088512/1

Arnicans, G., Romans, D.,Straujums, U. (2013). Semi-automatic Generation of a Software Testing

Lightweight Ontology from a Glossary Based on the ONTO6 Methodology. Frontiers in

Artificial Intelligence and Applications. Databases and Information Systems VII: Selected

Papers from the Tenth International Baltic Conference, vol. 249, IOS Press, pp. 263-276.

Arnicans, G., Straujums, U. (2012). Transformation of the Software Testing Glossary into a

browsable Concept Map. International Conference on Engineering Education, Instructional

Technology, Assessment, and E-learning (EIAE 12); International Joint Conferences on

Computer, Information, and Systems Sciences, and Engineering (CISSE 12).

Barzdin, J., Bicevskis, J., Kalninsh, A. (1974). Construction of Complete Sample Systems for

Program Testing, Ucenye Zapiski Latv. Gos. Univ., vol. 210, pp. 152-188.

Barzdin, J., Bicevskis, J.,Kalninsh, A. (1977). Automatic Construction of Complete Sample

System for Program Testing, in IFIP Congress.

Beizer, B. (1990). Software Testing Techniques, 2nd ed., New York: Van Nostrand Reinhold Co.

Beizer, B. (1995). Black-Box Testing: Techniques for Functional Testing of Software and

Systems, New York: John Wiley & Sons, Inc.

Bicevska, Z., Bicevskis, J.,Oditis, I. (2015). Smart technologies for improved software

maintenance.Federated Conference on Computer Science and Information Systems

(FedCSIS), Lodz, Poland.

Bicevskis, J., Bicevska, Z., Oditis, I. (2016). Self-management of information systems. 12th

International Baltic Conference on Databases and Information Systems, Riga.

Citrix (2015). Citrix Data Reveal New Global Trends in Consumer and Enterprise Mobility,

available at http://www.citrix.com/news/announcements/feb-

2015/citrix-data-reveal-new-global-trends-in-consumer-and-

enterprise-.html

Dantas, V., Marinho, F., da Costa, A., Andrade, R. (2009). Testing requirements for mobile

applications. Proc. 24th Int. Symp. Comput. and Inform. Sci., Guzelyurt.
Diebelis, E., Bicevskis, J. (2013). Software Self-Testing. Frontiers in Artificial Intelligence and

Applications, vol. 249: Databases and Information Systems VII, pp. 249-262.

Eston, T. (2012). Android vs. Apple iOS Security Showdown, available at
http://pittsburgh.issa.org/Archives/Android-vs-iOS-

MayUpdate.pdf
Franke, D., Elsemann, C., Kowalewski, S., Weise, C. (2011). Reverse engineering of mobile

application lifecycles. Proc. 18th Work. Conf. Reverse Eng., Limerick.
Franke, D., Kowalewski, S., Weise, C. (2012). A mobile software quality model.Proc. 12th Int.

Conf. Quality Softw., Xi'an, Shaanxi.
Franke, D., Kowalewski, S., Weise, C., Prakobkosol, N. (2012). Testing conformance of lifecycle-

dependent properties of mobile applications.Proc. 5th Int. Conf. Softw. Testing, Verification

and Validation, Montreal.

http://daveaddey.com/

90 Kuļešovs et al.

Gao, J., Xiaoying, B., Wei-Tek, T., Uehara, T. (2014). Mobile application testing: a tutorial..IEEE

Computer, vol. 47, no. 2, pp. 46-55.

Good Technology (2013). Good Technology™ Mobility Index Report Q4 2013, available
athttps://media.good.com/documents/rpt-mobility-index-q413.pdf

Goodenough,J. and Gerhart, S. (1975). Toward a Theory of Test Data Selection,IEEE Transactions

on Software Engineering, vol. 1 (2), pp. 156-173.

Gorbans, I., Kulesovs, I., Buls, J., Straujums, U. (2015). The Myths about and Solutions for an

Android OS Controlled and Secure Environment. Environment. Technology. Resources.

Proceedings of the 10th International Scientific and Practical Conference., Rezekne.

Hall, G. (2011). Exploring English Language Teaching: Language in Action, New York:

Routledge.

Haller, K. (2013).Mobile testing. ACM SIGSOFT Softw. Eng. Notes, vol. 38, no. 6, pp. 1-8.

ISO (2011). ISO/IEC 25010:2011.

ISTQB (2012). Standard glossary of terms used in Software Testing.

Kalninsh, A. and Borzovs, J. (1981). Inventarizacija idej testirovanija programm, Riga, Latvia:

Latv. Gos. Univ.

Kaner, C., Basch, J., Pettichord, B. (2001). Lessons Learned in Software Testing: A Context-

Driven Approach, New York: John Wiley & Sons, Inc.

Kaner, C., Falck, J.,Nguyen, H. (1999). Testing Computer Software, 2nd ed., Wiley & Sons, Inc.

Khalid, H. (2013). On identifying user complaints of iOS apps. Proc. 35th Int. Conf. Softw. Eng.,

San Francisco, CA.

Kim, H.-K. (2012). Mobile applications software testing methodology. Commun. In Comput. and

Inform. Sci., vol. 342, pp. 158-166.

Kitchenham, B., Charters, S. (2007). Guidelines for performing Systematic Literature Reviews in

Software Engineering, EBSE Tech. Rep.

Kulesovs, I. (2015). iOS Applications Testing.Environment. Technology. Resources. Proceedings

of the 10th International Scientific and Practical Conference., Rezekne, Latvia.

Kuļešovs, I. (2017), Mobile Applications Testing, PhD thesis, University of Latvia, Riga, Latvia.

Kuļešovs, I., Arnicane, V., Arnicans, G.,Borzovs, J. (2013). Inventory of Testing Ideas and

Structuring of Testing Terms.Baltic J. Modern Computing, vol. 1, no. 3-4, pp. 210-227.

Kulesovs, I., Susters, A., Keiduns, K., Skutelis, J. (2015). Automated Testing of iOS Apps: tTap

Extension for Apple UIAutomation.3rd International Conference on Horizons for

Information Architecture, Security and Cloud Intelligent Technology: Programming,

Software Quality, Online Communities, Cyber Behaviour and Business (HIASCIT),

Sanremo, Italy.

Kumaravadivelu, B. (2006). Understanding Language Teaching: From Method to Postmethod,

Mahwah, NJ: Lawrence Erlbaum Associates, Inc.

Land, R. (2012). iOS Accessibility - A Useful Guide For Testing, available at
http://www.rosiesherry.com/2012/09/02/ios-accessibility-a-

useful-guide-for-testing/

Marinho, E. H.,Resende, R. (2012). Quality factors in development best practices for mobile

applications. Proc. Computational Sci. and Its App., Salvador de Bahia, Brazil.

Markets and Markets (2014). Heterogeneous Mobile Processing & Computing Market by

Component (processor, GPU, DSP, connectivity), Technology Node (45NM-5NM),

Application (Consumer, Tele-communication, Automotive, MDA, Medical), & Geography -

Forecast & Analysis to 2014 – 2020, available at http://

www.marketsandmarkets.com/Market-Reports/heterogeneous-mobile-

processing-computing-market-173926586.html

Muccini, H., Di Antonio, F., Esposito, P. (2012). Software testing of mobile applications:

challenges and future research directions. Proc. IEEE 7th Int. Workshop Automation of

Softw. Test, Zurich.

Myers, G. (1979/ 2004). The Art of Software Testing, 2nd ed., Hoboken, NJ: Wiley & Sons, Inc.

 An Approach for iOS Applications’ Testing 91

Nearsoft (2013). Testing iOS Apps for Tough Network Conditions, available at
http://nearsoft.com/blog/testing-ios-apps-for-tough-network-

conditions/

Neglected Potential (2013).iOS Testing mind map 1.2 – Now with more stuff, available at
http://www.neglectedpotential.com/2013/10/ios-testing-mind-

map-1-2/

Oditis, I.,Bicevskis, J. (2015). Asynchronous Runtime Verification of Business Processes: Proof of

Concept. International Journal of Simulation - Systems, Science & Technology, vol. 16, no.

6, pp. 1-11.

Oditis, I.,Bicevskis, J. (2015). Asynchronous Runtime Verification of Business Processes.

Proceedings - 7th International Conference on Computational Intelligence, Communication

Systems and Networks, Riga.

Ogawa, R. and Malen, B. (1991). Towards rigor in reviews of multivocal literatures: applying the

exploratory case study method. Review of Educ. Research, vol. 61, no. 3, p. 265–286.

OpenSignal (2015). Android Fragmentation Visualized, available at
http://opensignal.com/reports/2015/08/android-fragmentation/

Penn, J. (2013). Test iOS Apps with UI Automation: Bug Hunting Made Easy. Dallas, Texas: The

Pragmatic Bookshelf.

Pettichord, B. (2007). Schools of Software Testing, available at
http://www.prismnet.com/~wazmo/papers/four_schools.pdf

Pound, P. (2013). Tips For Accessibility Testing Of iOS Apps, available at
http://patstapestry.wordpress.com/2013/05/24/tips-for-

accessibility-testing-of-ios-apps/

Pressman, R. (2005). Software Engineering: A Practitioner's Approach, 6th ed., Singapore:

McGraw-Hill.

Rauhvarger, K.,Bicevskis, J. (2008). Towards a Semantic Execution Environment Testing.

Scientific Papers, University of Latvia, vol. 733, pp. 38-52.

Research and Markets (2014). Mobile Cloud Market by Application(Gaming, Entertainment,

Utilities, Education, Productivity, Business & Finance, Social Networking, Healthcare,

Travel & Navigation), & By User (Enterprise User, Consumer)-Worldwide Market Forecast

and Analysis (2014 - 2019), available at
http://www.researchandmarkets.com/research/7pj4cv/mobile_cloud

Scott, A. (2012).Introducing the software testing ice-cream cone (anti-pattern), available at
http://watirmelon.com/2012/01/31/introducing-the-software-

testing-ice-cream-cone/

SmartBear (2014). Testing iOS Applications, available at
http://blog.smartbear.com/mobile/testing-ios-applications/

Sommerville, J. (2007). Software Engineering, 8th ed., Harlow, Essex: Pearson Education Ltd.

TestElf (2013). We Find These Common Bugs When Testing iOS Apps, available at
http://blog.testelf.com/post/56341438836/we-find-these-common-

bugs-when-testing-ios-apps

Tom, E., Aurum, A., Vidgen, R. (2013). An exploration of technical debt. Journal of Systems and

Software, vol. 86, no. 6, pp. 1498-1516.

uTest (2013).The Essential Guide to iPhone & iPad App Testing, available at
http://qawiki.devsmm.com/wp-content/uploads/2014/10/

uTest_Whitepaper_The_Essential_Guide_to_iOS_App_Testing.pdf

Received February 11, 2018, revised March 28, 2018, accepted March 29, 2018

http://qawiki.devsmm.com/wp-content/uploads/2014/10/uTest_Whitepaper_The_Essential_Guide_to_iOS_App_Testing.pdf
http://qawiki.devsmm.com/wp-content/uploads/2014/10/uTest_Whitepaper_The_Essential_Guide_to_iOS_App_Testing.pdf

