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Abstract. There is no known formula yielding the number of distinct polyominoes of the given 

number of squares. The same can be said about tetrads made of polyominoes or another polyforms.  

All n-ominoes up to n = 17 have been checked, the number of tetrads and the number of full 

tetrads have been determined. Some open problems have been proposed.       
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1. Introduction 
 

A tetrad is a plane figure made of four congruent shapes in such a way that every 

pair of shapes has a border arc in common. We shall call this shape a generating element 

of a tetrad or more briefly – g-element. In accordance with the famous populariser of 

mathematics Martin Gardner (Gardner, 1989) the name ‘tetrad’ firstly was used by 

M. R. W. Buckley in the Journal of Recreational Mathematics (1975, Vol. 8.). Already 

DeMorgan (1806 – 1871) had noticed that no more than four regions on the plane can all 

be in mutual contact with each other. Here we shall study tetrads that are made of 

polyominoes, i.e. plane shapes formed by joining unit squares edge to edge. If a 

polyomino consists of exactly n unit squares it is called an n-omino.  

The tetrads have connections with the famous four-colour problem, which since 

its formulation in 1852 remained unsolved for a long time, until the mathematicians 

Kenneth Appel and Wolfgang Hacken (University of Illinois, USA) came up (in 1976) 

with the announcement that they finally had proved the four-colour-map conjecture. 

Large-size publications appeared in the next year (Appel, Haken, 1977). For more 

information on this problem and its history, see e.g. (Benjamin, Chartrand, Zhang, 2015; 

Dowek, 2015). The solution of this problem was obtained in an unconventional way, by 

reducing the problem to checking many but the finite number of planar graphs by using a 

computer. The four-colour problem in mathematics history is considered to be the first 

major problem to be verified using a computer programme. It is not a coincidence that 

the very notion tetrad appeared almost at the same time when this famous problem was 

solved. There have been and will be many discussions on the nature of such proofs, 

whether they are recognizable as correct admissible proofs in mathematics. It is 
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important to note here that computer-assisted proofs play an increasingly important role 

in modern mathematics, cf., for example (Dowek, 2015).  

With purpose-built computer programmes, all n-ominoes (up to n = 17) have been 

tested, and it was determined how many of them are those that form the tetrads. We paid 

a special attention to such computer-assisted proofs that give the opportunity to obtain 

the proof in the classical sense, if possible, a beautiful proof. As a good example of this 

type of a computer-assisted proof we mention the proof of the existence of full tetrads, 

see Theorem 1.  

So far, there has not been extensive, systematic study of tetrads. One can find several 

contributions on polyomino tetrads in (Cibulis, Čerņenoks 2012; 2013) and on the 

website created by American computer scientist George Sicherman (WEB, a).  

 

2. Generating tetrads of a polyomino  
 

Probably the simplest polyomino tetrad is the one shown in Figure 1. This tetrad 

is made of 9-ominoes. The smallest polyomino tetrads are made from 8-ominoes or 

octominoes. Moreover, there are exactly 8 octominoes (out of 369) useful for forming 

tetrads, see Figure 2. None of these tetrads is full (holeless). 

 

 
 

Figure 1. Rectangular tetrad of 9-ominoes. 

 

 

 

 

There is no known formula yielding the number of distinct polyominoes of the given 

number of squares. All polyominoes containing up to 24 squares have been enumerated 

in the article (Redelmeier, 1989). He mentions that it was done by using a faster 

Figure 2. Octominoes useful for tetrads. 
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polyomino enumeration method than previous ones, and spending ten months of 

computer time. Now the enumeration has been done up to 45-ominoes, see the sequence 

A000105 in The On-line Encyclopedia of Integer Sequences (WEB, b). 

  To create and to investigate tetrads the full list of n-ominoes was firstly 

generated by using the Redelmeier’s method. Then each n-omino was analysed 

separately.  

1) The first copy of the given polyomino P is fixed in the first quadrant. The next copy 

of P is added to the first in all possible ways and they all are stored in array M (cells of 

polyominoes are coded by complex numbers). If a polyomino is not symmetric, it has 8 

different positions. 

2) Further, a triple cycle is performed over all elements of M. If every two polyominoes 

out of three M (i), M(j), M (k), i < j < k, do not overlap and have a common boundary, 

then the tetrad [P, M (i), M (j), M (k)] is found.  Of course, it is verified that such a tetrad 

from P has not been generated already before (for example, by rotation or by a mirror 

image). 

3) The tetrads found are saved and the algorithm continues with the next n-omino. 

The results obtained using the computer are summarised in Table 1. 

 
Table 1. Polyomino tetrads. 

 

n 

The number 

of   

n-ominoes 

The number of 

useful  

n-ominoes 

The number 

of tetrads 

The number 

of full 

tetrads  

8 369 8 14 0 

9 1285 42 83 0 

10 4655 187 341 0 

11 17073 739 1388 1 

12 63600 2871 5648 10 

13 238591 11300 22688 1 

14 901971 44440 90243 11 

15 3426576 172984 352243 36 

16 13079255 670107 1373595 66 

17 50107909 2599478 5384209 70 
 

 

Comparing the data of the second and third columns we can hypothesise that the ratio 

between the number of useful n-ominoes and the number of all n-ominoes is growing. 

Let us mention that computer search for tetrads made from 17-ominoes took 

approximately 30 hours (only one thread used). Calculations were performed on 

processor Intel® Core™ i7-3820 @ 3.60 GHz. Programme was implemented in Pascal.                                        

Remark. This algorithm is not difficult to generalise if polyominoes are replaced by 

another polyforms. 
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3. Full tetrads  
 

Generating of full tetrads, even from small polyominoes, is not an easy task. For 

example, the checking of all 11-ominoes (their total number is 17073) may take several 

hours of computer time. The smallest full polyomino tetrad uses 11-ominoes. 

Surprisingly that there is only one 11-omino and only one 13-omino (out of 238591) 

forming a full tetrad, see Figure 3. Notice that this unique 11-omino serves also as the 

base to generate infinitely many full tetrads. Moreover, these polyominoes (g-elements) 

consist of the odd number of squares and form full tetrads without being reflected. 

 

 

 

There are also infinitely many polyominoes consisting of the even number of 

squares and generating full tetrads without being reflected, see Figures 4 – 5. The 

smallest n-gon generating a full polyomino tetrad is an octagon, see Figure 4. Is there a 

symmetric full tetrad? The smallest n, giving a positive answer to this question, is n = 

14, see Figure 6. Moreover, there is only one such 14-omino (out of 901971). 
 

  

 
Figure 4.  Full tetrads composed of octagons without being reflected. 

 

Figure 3.  Full tetrads generated by n-ominoes with an odd n. 
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Theorem 1. For every n > 11 there is a full polyomino tetrad made of n-omino.  

The very idea of this theorem is simple. It is necessary to find such a tetrad that can be 

extended to the next one. It is easily to propose such an idea, but it is hard to find such a 

tetrad. Let us emphasise that the key how to prove this theorem was found looking 

through the huge set of tetrads generated by the computer. We managed to find (by a 

computer) the necessary tetrad made from 17-omino. 

Proof. The base tetrad the g-element of which is the 17-omino is shown in Figure 7. 

Afterwards such a tetrad has been found we can present the proof of the classical type. 

This tetrad (or its g-element) can be stretched out horizontally, more precisely; we can 

add any number of unit squares in the indicated places in Figure 8. 

Figure 6. The symmetrical tetrad composed of 14-ominoes. 

Figure 5. Tetrads composed of (16 + 6k)-ominoes without being reflected. 
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Full tetrads for the remaining values n = 11, 12, 13, 14, 15 and 16, are shown in 

Figures 3 – 6, respectively. The theorem has been proved.  

Remark. The possibility is not excluded that there is also a smaller base tetrad in the 

polyomino class.  

 

4. Tetrads with a prescribed hole  
 

The study of tetrad arrays shows a great variety of holes and suggests the question: what 

polyominoes can represent the hole in single hole tetrads? The answer is given by such a 

theorem.  

 

Theorem 2. For each full polyomino P, there is a tetrad with the single hole being P.  

 

Proof. This theorem has an unexpectedly short proof. Let us fix the lowest square of the 

polyomino P. If the lowest square is not unique we choose the first square on the left and 

colour it in black, see Figure 9 as an example. Then we place the polyomino P on the 

sufficiently large g-element shown in Figure 10 so that the black squares of both 

polyominoes coincide with each other. The required tetrad with the hole P is shown in 

Figure 11. The theorem has been proved. 

 

 

 

                                         

Figure 7.  The base tetrad. Figure 8.  Extension of the tetrad. 

Figure 9. Polyomino P. 

 

Figure 10. g-element. 
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Minimal tetrads including as a single hole n-omino, if n = 1, 2, 3 and 4, have been shown 

in Figure 12. In this class of tetrads T-tetromino requires the largest tetrad made of 15-

ominoes. 

  

   

 

 

Figure 11. The tetrad with a prescribed single hole. 

Figure 12. Minimal tetrads with a prescribed single hole. 
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With the help of a computer, the problem of including pentominoes in minimal 

tetrads has been completely solved. The greatest difficulties had to be overcome to find 

the minimal tetrad for pentomino X, see Figure 13, this pentomino requires the checking 

of all n-ominoes up to n = 17. The results are summarised in Table 2. The numbers of 

the second row of this table represent the minimum number of squares of the g-element. 

 
Table 2. The number of the squares of g-elements. 

 

 

 

 

 

Remark. As to including hexominoes there are 4 hexominoes (Figure 14) for which 

minimal tetrads have not been determined. To include these hexominoes at least 18-

ominoes are needed. 

 

 

 

 

 

I P L Z W F N T U V Y X 

10 10 12 12 13 15 15 15 15 15 15 17 

Figure 13.  Minimal tetrad including the pentomino X. 

Figure 14. Four hexominoes. 
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5. Tritads  
 

A tetrad has such an important property, one of its four components is always inside the 

tetrad, or one figure is surrounded by the other three. This property easy leads to the 

question: Can two identical shapes (polygons, polyominoes) include the same third 

shape (polygon, polyomino)? It is interesting that recreational mathematics deals with 

tasks that are essentially the construction of the tetrads, but a similar question with three 

figures, as far as we know, has been passed, maybe the authors of recreational 

mathematics may have believed that such figures do not exist at all. Rather 

unexpectedly, such figures exist and even in the polyomino class. For a general case see 

the paper (Mann, 2002). By analogy with the tetrads, we shall call such figures – tritads. 

The smallest tetrad uses 8-ominoes, but the smallest tritad – 12-ominoes, and unlike the 

tetrads it is unique, see Figure 15. There are two tritads made of 13-ominoes, both of 

them contain a hole of 9 unit squares, see Figure 16. 

 

                
 

 

 

Computer calculations show that only these two tritads among all  

n-ominoes where n ≤ 19, have the smallest known hole (9 unit squares). The results on 

tritads have been summarised in Table 3. 

 
Table 3. The number of tritads.  

 

n 
The number of useful  

n-ominoes 

The number of 

tritads 

12 1 1 

13 2 2 

14 2 2 

15 8 9 

16 41 66 

17 161 250 

18 601 879 

19 2006 3056 

Figure 15.  The minimal tritad. Figure 16.  Tritads of 13-ominoes. 
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6. Some unsolved problems 
 

P1. What is the smallest number of edges of g-element like? The answer is known for 

polyominoes, namely this number is 6, see Figure 1, and 8 for full tetrads, see Figure 4. 

In the book (Gardner, 1989) two full tetrads made of 6-gons are given, and the question 

what the smallest n-gon is like has been asked.   

 

P2. The smallest known full tetrad (Figure 17) for a symmetric polyomino was found 

independently by Frank Rubin and Karl Scherer. It uses 34-ominoes (WEB, a). Is there a 

full tetrad of smaller n-ominoes with vertical symmetry? What symmetric n-ominoes are 

useful to form full tetrads? The tetrad found by Juris Čerņenoks uses 48-ominoes (Figure 

18).  

            
 
 

                                                                        
P3. Does a full tritad exist? If it does not, what is the smallest possible hole like? 

 

P4. Is there a symmetric full tetrad, the generating element of which is a symmetric 

polyomino? Does a full tetrad from n-omino with point (or birotary) symmetry exist? 

Does a full tetrad from n-omino with diagonal symmetry exist? Juris Čerņenoks found 

the smallest tetrads for polyominoes (having holes) with diagonal symmetry, which use  

19-ominoes (WEB, a).  

 

P5. Is there an integer m such that for all n > m there exists a symmetric full tetrad made 

of n-ominoes? 

 

P6. Is there a tetrad the g-element of which has two symmetry axes? 

Two smallest known tetrads with g-element having one axis of symmetry are shown in 

Figure 19. 

Figure 17. Figure 18.   
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Figure 19. Symmetrical tetrads with symmetrical g-element. 
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