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Abstract. The article focuses on the tasks of the mathematical physics — one-dimensional
diffusion-convection boundary-value problem (BVP) for solving the heat conduction equation
with piece-wise smooth coefficients in the multi-layer media. For this purpose the conservative
averaging method (CAM) is using with special created integral splines of exponential type that
interpolate the middle integral values of piece-wise smooth function through averaging in z-
direction. Thus BVP is reduced to the system of ordinary differential equations (ODE) dependent
on time — this enables to find out the averaged solutions of BVP — non-stationary and stationary.
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1. Introduction

The numerical modelling of mathematical physics 1-D problems in layered medium
using engineering-technical calculations of sufficient accuracy is important in numerous
areas of the applied sciences.

Therefore we are studying the conservative averaging method (CAM) by using
special integral exponential type splines with parameters in every layer, which means
that the values of these parameters have to be chosen to decrease the error of
approximation of the solution.

In the limit case when parameters tend to zero we have the integral parabolic type
spline, developed by A. Buikis (Buikis, 1994a; Buikis,1994b).

CAM can be applied both to linear processes (Kalis, 2016) and non-linear processes
(the dependency of mathematical model equation coefficients on the process
characteristics, such as temperature in the combustion process) (Aboltins, 2017),
(Weber, 2012).


mailto:ilmars.kangro@rta.lv

A Modified Method to Solve the One-Dimensional Heat Conduction Problem 147

2. Formulation of the problem

The non-stationary diffusion-convection problem is studied in 1-D domain
Q:{(z):Os z< LZ}.

The domain Q consists of N -layered medium. We will consider the non-stationary
1-D problem of the linear diffusion theory for layered piece-wise homogenous materials
of one (N =1) and two (N =2) layers.

0 ={(2):2e(zi0,)}i=1N,
where H; = z; —zj_4 is the height of layer Q3,25 =0,z =L;.

We can find the distribution of concentrations u; :ui(z,t) in every layer Q; at the
point (z):Qi and at the time t by solving the following initial-boundary value
problem for partial differential equation (PDE):

ouj 0 ou; ou; L=
EI = E(Diz a—z'j+ fiy 6_zl_ai20ui +F(2) 2€(iq.2)te0ts ] i=1N,

Y101 (0.1) /82— 3, (g (0.) ~Coy ) = 0, t e 0,1 |

¥220U3 (Ly 1)/ 02 + a5 (U (Ly 1) Cop ) =0, t € [0, ] 2.1)

ou; (z;,t OUi,q(z;,t .,
Ui (2, 1) = Ui 1 (zi,1), D % =Di; %,t € [Ovtf 1 I=1LN-1,

Ui (z,0) = Ujg, z €[zi_1. 2z i =L N,

where  y;, >0,(j=12),
Uj =U;(z,t) - concentrations functions in every layer,
Fi.Dj; >0,Cp,,C,; .1, a9 - constant coefficients,
a,, B, = 0- constant mass transfer coefficients,
Caz 1 Coz - the given concentration on the boundary for the boundary,
t - the final time,
Ujo - the given initial condition.
It must be added, that in present paper a specific diffusion-convection process is
investigated, for which the constancy of the source-function F; is inherent. For N =1

the conditions on the contact line are deleted. Similarly 3-D initial- boundary problem in
N =1-layer domain is considered in (Kalis, 2016).

3. The conservative averaging method (CAM) in z-direction
using integral spline with two fixed exponential type functions

Using CAM with respect to  Z with fixed parametrical functions fiq, fi;o, 1 =12, we
have



154 Kangro

Ui (z,t) = Ui, (£)+ miz (t) fizy + €57 () iz (3.1)

_ 2 )
fiz1 =explay, (z-7))- w sinh(0.5a4;,H;),

Tiz'i

sinh(0.5a,;, Hi) ,

fiz2 :eXp(aZiz (Z_zi ))_ 2 Hi
iz i

uj, (t) = Hi_ljzZi Ui, (z,t)dz - the averaged values, Jj' fip(2)dz = j;' fi,o(2)dz =0,
i-1 i-1 i-1

Zi :(Zi—l+zi)/2lze[zi—l'zi]vi:]TZ'

For exponential functions we use following parameters:

2 2 2
i, | Mz +ai0 I S

20
i .
iz C iz

These parameters are the characteristic values of the solution of problem’s (2.1)
homogenous differential equation (F =0) in the stationary case (ou; /6t=0). The

parameters are also used by designing the stationary analytic solution of the above
mentioned BVP.

Unknown functions m;, (t), e;,(t) shall be determined from (2.1) applying boundary
conditionsby z=0,z=L,,z=1.

My, (£) = Mog (Up, (£) Uy, () + Myzer, (1) + mypey, (1),

My, (£) = Mop (U, (t) - Uy, (1)) + Maaey, (1) + maaey, (1),

Moy = D2za21/81, 81 = Dza0104] —Di,afidz1, Moy =MogS, S =afiDy, / (arznlDZZ)l
my1 = (D,aldf) - Dy,afid B sy My, =D, (%A% —a%df))

_ p m _ m,;,m
My =My1Sy + alz DlZ /(a21D22 ), Moy =My2Sy —asy /3.21, where

m ,
diy =exp(—0.5akiZHi)— sinh(0.5a;, Hj),

1Z

dp —exp(0.5ay, Hj )- sinh(0.5ay4,Hj) , alll =ayj; exp(-0.5ay5; Hj ),

kiz™i

aiﬁ = Az eXP(0-5akizHi ) ik=12.

The functions e;, (t) are in the form:

€12 (t) = Dby, (t)+ bioUs, (t)+ 03, €2, (t)=Da1up, (t)+byuy, (t)+ 94,
where

by = (dop (B + by )—dyoby )/ det , byp =(dyp (e +by ) —dpply )/ dlet,
byy =(—dpq (B +by)+dygby )/ det, byy =(—dyg(eq +bp)+dpgby )/ det,
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Pr=Plr, aa=arlys;, by =m01(af1 —ﬂldlni)’ by :moz(azpl +0‘1d2p1)’
93 =—(Coz 41020 +Copendip )/ det, gy = (Cop ity +Copendy )/ det,
dy1 =aqimy +ag —ﬂl(dﬂmll + d1n21), dip =my, (aﬂ —ﬂldlni),
dz1 :m21(a2pl +oqd 2p1)v
dgp =afmy, +aj, +a1(d2p1m22 +d2p2), det =dy;dyy —dpodoy .
The method of CAM is applied — we integrate the equation of the system (2.1) by

variable z within the boundaries of each layer, and divide it by each layer’s height H;

then we insert function (3.1) and use the system (2.1) boundary conditions thus obtaining
the system of ODEs (3.2):

Uj, (£) = CyyUy, (t) + CyoUy, () + 9y
U5, (t) = Coyly, (t) + Cooly, () + 9, 3:2)
Uy, (0) = Uy, Uy, (0) = Uy,

C11 = €13 (— Mgy +My4byg + My )+epobys — a120 '

Cip = €11 (Moq +Myybyp +Mypby5 )+ €151,

Co1 = €21 (= Moy + My +Mpobyy )+ ep5b1

Cop =1 (Moy + My +Myobyy )+ €0bp) — a220 '

2 . 2 .
ey = H—S'”h(o-5311z HyXDiag1, +11;), €1 = H—S'nh(0-5321zH XD123-21Z +1,),
1 1
2 .
€1 = H—S'”h(o-Salzz HZ)(DZZalZZ + 1y )a O, = ell(93mll +04Myp )+ €293+ Fy,
2

2 .
€0 = H—S'nh(0-53222 HZ)(DZZaZZZ + 1, ), Uz =€ (03Myy + GaMyy )+ €229, + Fy.
2

The non-stationary solution of (3.2) can be represented in the following form:
v(t)= EXP(AI)(VO - A_lF)+ A'F, A is the matrix

A (011 C12 j ,
Ca1 C22
v(t)= [ulZ (t);uzZ(t)],Vo = [ulo;uzo], F= [Fl; Fz] are the vectors-columns.

The stationary averaged solution is
Uz, =(92C12 — 91C20 )/d , Up, =(=0pC1q +91C1)/d | d =C15Cop —C1oCo1.

The stationary analytic solution is
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{Ul (Z) =P exp (allz Z)+ P, exp (a21z Z)+ f; (33)
Uz(z) = P;exp (a12zz)+ P, exp (a2222)+ fa,
PL=—(01P, +b,), Py =Py —by , P = (b5 +bghy, )/d Py = (bgby1 — by )/d
Bi—ayy Bi(f1—Co;)
d= by — b ’ bl = ’ b = ’
P1aP22 ~BizPan Br—aqy; Br—aqy,
o +a aq(f, —C
by =—exp(L, (az, — a1, ) =224, by =—exp(- L,ayp, )M ,
o +ay; o +ay9;
bs = f5 — f + by explagg, Hy )—by explagy, Hy ),
D
bg =1a11, exp(agy, Hy )—byas kexp(agp, Hy ), k= D_iz ’
VA

byy = by exp(agg, Hy )+exp(agizHi), bro =bzexp(ags, Hy )+exp(agy; Hy),
byy =—byayy, exp(ags, Hy)+az, explagy, Hy),

F F
by =—k(bgarp, exp(agp,Hy ) +agy, explagy,Hy)), fr=—-, f, ===
a10 az

4. The CAM in one layer

In one layer we have following problem

ou 0 ou ou
—=—|D,—|+r,——-agu+Fy,ze(0,L,) tel0,t
ot 62[ Z@Z) P 0 0 G( z) e( fl

D,0u(0,t)/ 8z — B, (u(0,t) —Co, ) =0, te [0, ] (4.1)
D,ou(L, t)/0z +a; (u(L, 1) ~Coy )= 0, t e [0, ]
u(z,0) = ug, z<[0,L,}
where u = u(z,t) is the unknown function,
D, >0, a;,8;, 20, F,Cy;,Cy;,1;,89 are the constant coefficients.
Using averaged method with respect to z we have

e S

1z-z

sinh(0.5a;, L, )J +

sinh(0.5a;, L, )]

e, <t{exp<a22<z—Lz/z»—

azl; (4.2)
2 2
-1k Iz Iz ap
where u, (t) = [ Fu,(z,t)z, a1, =- - = +=,
Z z J‘O Z( )d 2DZ 4D22 DZ
2 2
I I a
Ay, =—7Lt—+ |-F +2

2D, \4D? Dy
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The unknown functions m, (t), e, (t) we obtain from boundary conditions (4.1):
1) For z=0, D, (mzaf‘ +eza£"): By (uz ~Cp; +m,d;" +ezd£"),
p

2)For z=L,, D, (mzal'fJ +e,a} )+az(uz ~Cqy +myd} +ezd2p)=0,
where

dlin = exp(— 0.5a,L; )—

2 .
sinh(0.5a;, L),
2Lz (0.58;L7)

d =exp(05a Ly )- . 2L sinh(0.5a,, L) ,

kz -z

al! =y exp(-05ay, L7 ), af =ay, exp(0.5ay, Ly ) k=12.
The functions m, (t), e, (t) are in the following form:
e,(t)=-gu, (t)+C4a+Cq,b, m,(t)=gyu, (t)+C,,a) +Cp,by . where
g=(apor +axn/)/det, 1=, /D;, B = B,/ D; b= pray /det,

a= alallldet y 01 = (azzﬂl +a12a1)/det , bl = —ﬁ]_azz /det a1 = —agn /det ,
ay =a' - Adf", ay =af +a1df, ap, =a3 - fid7, Ay =af +end],
det =ayqay) —ayoay;.

We integrate the equation of the system (4.1) by variable z betweenO,L, and
divide it by layer heightL then we insert function (4.2) and use the system (4.1)
boundary conditions thus obtaining an initial value problem (4.3) for the ODE:

u (t) =a,u, (t)+ 95, u, (0) = U, (4.3)
where a, Zdlgl—dzg —ag <0, 0o = FO +dl(b1COZ +a1CaZ)+d2(bCOZ +aCaZ),
d :Lisinh(o.SalZ L,XD,a, +1,), dy :Lisinh(O.SazZ L, D,ay, +1,).

Z Z

Then, the non-stationary averaged solution is u, (t)= (U — g, /a; Jexp(ast)+ g, /a; .
The stationary averaged solutionisu, =g,/a;.
The stationary analytical solution is
u(z)= Py exp(ay, )+ P, exp(az, )+ fy. (4.4)
—by explag, L, Nag, + o )+ (Cyy — f
where P =bP, +b,, P, = p exp(ag, Ly Neg, +n)+ a1 (Cop — 1) ’
by eXp(alz L, )(alz o )eXp(aZZ L, )+ (a22 + 0‘1)

by =(ap, — B )I(BL—a1,), 0p =(Co, — f)/(BL—2y,), Ty =Tolaf.
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5. Some numerical results

The results of calculations are obtained by MATLAB. We use the discrete values
xj=jh j=0N,,Nyh=L, =3, ty=nz,n=0,N; , Nyz=t; =19,

N; =100, Ny =20,up =0, a, =100, 8, =0.0001, C,, =1,Cq, =5.

For two layers: F; =0.6, F, =0.4, , =—0.001, r,, =0.001, a;5 =0.6,a,9 =0.4,
D,, =0.1, Dy, =0.01,»¢, =0.1, 5, =0.01, H; =1.8,H, =1.2,

a11, =—1.892, ay1, =1.902, a1, =—4.050, ay,, =3.950.

For one layer: Fy =0.5, D, =0.01, r, =0.01, a5 =0.5, &;, =—5.52, a5, =4.52.

In the following Figs. 1-3 there are represented the numerical and analytical (for
stationary problem) results obtained by CAM using exponential type splines and "pdepe”
for one and two layers. MATLAB routine "pdepe” solves nonlinear PDEs of the
following form (u=u(z,t) ) (WEB, a):

ou\ou O ou ou
c z,t,u— |—=—| f|z,t,u,— | [+9] z,t,u,— |,
oz)ot oz oz oz

where f is a flux term and s is a source term. For allt and either z=21 =0 or
z = zr =L, the solution components satisfy two boundary conditions of the form

p(z,t,u)+q(z,t)f (z,t,u,g—lzjj =0

The error of approximation for stationary solutions with exponential type spline is
10", with parabolic type spline (Buikis, 1994b) — 0.212 (Figurel, b)), for non-stationary
solution with exponential type splines — 0.016 (Figure2, a)). For one layer the maximal
error of approximation for non-stationary solution is 0.018 (Figure2, b)).

Numerical solution u(x,t) g=u(z),erexp=0.0000,erpar=0-21 16

O analyt.sol.

25} exp.spline
=&=par.spline

PO VoS

b)

Figurel. Surface of solution generated by "pdepe” (a),
stationary solution (analytical, generated by exponential and parabolic splines) (b)
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Sol,t=tf, Maxer =0.0163 ex.and spl.Sol,t=tf, Maxer =0.0183
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Figure2. Solution generated by "pdepe" and by exponential splines, t=t; :
a) for two layers; b) for one layer
Maxu(z,tf) =2.2858 Max u(z,tf) =1.9931
2.5 : . 2.5
O analyt,, s.tat.sol. ....
nonst.spline pe
2! | @ statspline ™Y - 2099999999999999...
[ -
IS L4 N O analyt., stat.sol. *
N o0 ) analyt., stat.so
= 000000 e® L ] > 15 nonst.spline °
1.5 ® stat.spline
1 : [
1 ® 0 1 2 3
0 1 2 3 2
z
a) b)

Figure3. Stationary solution (analytical and generated by exponential spline)
and non-stationary generated by exponential spline, t=ts: a) for two layers; b) for one layer

6. Conclusions

The 1-D non-stationary diffusion-convection problem in a layered domain applying the
conservative averaging method (CAM) is reduced to initial value problem (IVP) of
ODEs using the created integral exponential type splines with two different functions
each of them contain the parameter.

The error of approximation using the splines depends on these parameters. It was
established that, to obtain a minimal error of approximation, the parameters of spline
function must be equal to characteristic values of the solution of homogenous ODEs for
the above mentioned IVP.

The stationary problems are solved analytically but the solutions of corresponding
averaged non-stationary initial-boundary-value problems are obtained numerically also
applying MATLAB routine "pdepe".
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The numerical solutions are compared with the analytical solutions and the matching
results can be considered sufficiently accurate for engineering-technical calculations.

The third-type boundary conditions used in the mathematical model allow for the
modelling of studied processes (filtration, combustion) in the direction of the flow
changes of their characteristics (substance temperature, concentration, humidity, etc.).

It must be added that the CAM can be also used to solve more complex 3-D
problems of mathematical physics by initially reducing them to 2-D problems and then
solving with the method described herein.
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