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Abstract. Classical signature-based attack detection methods demonstrate stagnation and inability 

to fight the zero-day and similar attacks, while anomaly-based detection methods are still 

characterized by huge numbers of false-positives. The progress achieved in recent years in the area 

of deep learning techniques provide a potential for renewing investigations on anomaly-based 

intrusion detection system training. While network-based intrusion detection systems have datasets 

for training, host-based intrusion detection systems researchers lack this component. Most datasets 

are created for Linux OS and the latest Windows OS dataset was introduced in 2013 and included 

only minimal collection of system calls’ features. In this article we propose a method for 

automated system-level anomaly dataset generation that is to be used in further artificial 

intelligence-based host-based intrusion detection systems training as well as our generated 

exhaustive collection of Windows OS malware-based system calls, that also includes additional 

information on malware activity. Main characteristics of the dataset are presented. 
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1. Introduction 
 

By definition intrusion detection systems (IDS) (Bace and Mell, 2001) is: “the 

process of monitoring the events occurring in a Computer system or network and 

analyzing them for signs of intrusions, defined as attempts to compromise the 

confidentiality, integrity, availability, or to bypass the security mechanisms of a 

computer or network”. Generic network intrusion detection system is shown on Fig. 1. 

Main components are: anomaly detection engine, alarm module, human analyst and 

security manager. 
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Fig. 1. Generic intrusion detection system (Bhattacharyya and Kalita, 2013) 

IDS can be classified into two types (Garcia-Teodoro et al., 2009).  

• Network-based intrusion detection system (NIDS) is designed to detect the 

intrusion before it happens by analyzing computer network traffic (Hay et al., 2008). On 

suspicious network activity –security personal is notified about possible attempt to 

commit intrusion. Those systems can also be not only intrusion detection, but in the 

same time had an intrusion prevention module. Despite the notification, they also try to 

prevent intrusion – discard resources or take other actions. That system is mainly 

installed on one network point where all network traffic is visible and can be easily 

controlled. Observing agent is installed on that point and connected to main server.   

• Host-based intrusion detection system (HIDS) is located on end-point user 

machine and monitors user and host operating system behavior. HIDS can provide the 

following functions: file integrity checking, registry monitoring, rootkit detection, policy 

monitoring, log analyzing and system calls analysis (Hay et al., 2008). File integrity 

monitoring (FIM) basically deploys simple alteration detection on sensitive system files 

by collecting cryptographic hash values of critical files. Later HIDS checks if that hash 

value is changed. If the result is a positive one – an alert to system administrator is raised 

(Hay et al., 2008). Registry monitoring also provides valuable information about user 

actions executed on system. HIDS can detect rootkits conducting signature-based scans 

or finding anomalies in the results of different system calls (Bace and Mell, 2001). 

Additional layer is inserted between operating system and applications to monitor 

system calls. HIDS can analyze system calls sequences and look for suspicious events. It 

can collect all sort off information: active applications, memory and CPU usage, 

outgoing and ingoing internet traffic. All that information, in real time, is transferred to 

the main server. Main server analyses information from the hosts and decides whether to 

notify security staff on suspicious behavior on the host machine. Suspicious activity can 

be: abnormal CPU and RAM usage or text editing application attempt to modify system 

password file. File integrity is also monitored besides activity on the host machine i.e. 

HIDS can be seen as an agent which monitors system and checks if any other agent 

violates security policy. 

The first intrusion detection model was introduced in 1987 (Denning, 1987). Three 

intrusion detection methods have evolved since that time (Buczak and Guven, 2016): 
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• Misuse or Signature-based 

• Anomaly-based 

• Hybrid 

Signature-based detection is designed to detect known attacks and has a small 

number of false-positives. It scans for patterns associated with known attacks against 

computer system. Those patterns can be: hardware-related parameters collection (CPU 

and RAM usage), cryptographic hash value of rootkit or error log generated by an attack 

(Hay et al., 2008). A regular database update on attack pattern is necessary to have a 

fully functional system. This method is not effective against new (zero-day) attacks until 

they are added to the database (Xie and Hu, 2013). 

The idea of anomaly-based intrusion detection is predicated on a belief that an 

intruder’s behavior is noticeably different from that of a legitimate user and that many 

unauthorized actions are detectable. This type of intrusion detection should be effective 

against zero-day attacks. Another advantage for this type is that a – detection algorithm 

can be tailored for a specific company, network or a user, making it challenging task for 

the attacker to select effective and non-detectable intrusion actions. Numerous machine 

learning methods of clustering and classification were applied for anomaly detection 

(Agrawal and Agrawal, 2015). The main disadvantage of this type of intrusion detection 

are the high false positives rates. Large sets of training data are required to construct 

normal behavior profile (Aydin et al., 2009). It is also possible that malicious activity is 

included into the legitimate activity training data – in that case the intrusive activity will 

be legit in later detection process (Tan et al., 2002). Due to this reason it is extremely 

important to ensure creation of “sterile” datasets that would separate legitimate and 

malicious actions. 

Many IDS systems usually make use of a hybrid method which combines signature 

and anomaly-based techniques. Such combination provides small amount of false 

positives for unknown attacks and raises detection rate on known intrusions (Depren et 

al., 2005). 

So far NIDS systems are dominating the field. However, HIDS systems are receiving 

more attention due to the fact that they provide more information about intrusion and can 

prevent from significant damage (e.g., the alteration of important system files) as well as 

offering an additional layer of security. 

While NIDS have sufficient amount off open data for training, HIDS researchers lack 

this important ingredient, since most of datasets are created for Linux OS and the latest 

publicly available Windows OS dataset was introduced in 2013 and only included 

minimal collection of system calls features, although systems call with additional 

information can provide valuable information on suspicious process behavior evaluation.  

A system call is typically a function in the kernel that services I/O requests from 

users; it is implemented in the kernel because only a high-privilege code can manage 

such resources (Dang et al., 2014). Linux system calls are well documented and their 

description can be easily found and system calls traces can be easily collected by 

invoking “strace” followed by the program and its command-line arguments (Mitchell 

and Oldham, 2001). These are the main reasons why Linux system calls are more widely 

used than ones based on Windows OS, despite the majority of attacks and malware being 

Windows-oriented. Unfortunately, descriptions of Windows OS system calls are very 

limited and a full list of them for x86 and x64 can be found in (Jurczyk, n.d.). Microsoft 

MSDN only provides information about a system call if you know its exact name. No 

defined special list for them is available (Dang et al., 2014). Plus, system call traces 

collections on Windows can only be executed with third party applications (Canzanese et 
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al., 2015). Still, a method for system calls monitoring layer to kernel mode with minimal 

impact on system performance was introduced earlier (Battistoni et al., 2004). 

Therefore, we propose a robust method of malicious activity generation on a 

Windows OS platform. We also present our generated new collection of Windows OS 

malware-based system calls that can be used for training anomaly-based HIDS systems. 

Main characteristics such as structure, composition, distribution of malware used for 

system call generation of the dataset are discussed. The generated dataset provides 

possibility for better HIDS training, since as well as offering a more in-depth view on 

malware used system calls, it also provides information on other malware performed 

actions, like files modified.  

The paper contains six main sections: introduction, related work on datasets 

generated to train anomaly-based IDS systems, presentation of the proposed method for 

new dataset generation, presentation of the attack-caused Windows OS system calls 

traces dataset and conclusions. 

2. Related Work 
 

Signature-based intrusion detection is showing better results on detecting known 

attacks, but it fails to report new and unknown attacks. For that reason anomaly-based 

intrusion detection methods are getting more attention (Azad and Jha, 2013; Hu, 2010) – 

more than 60% research papers are focused on anomaly detection. However, despite of 

significant progress in anomaly-based intrusion detection methods, they still show higher 

false-positive detection rate than signature-based methods. The progress achieved in 

recent years in the sphere of deep-learning artificial intelligence techniques provide a 

potential for renewing the research on the topic specified. 

A key factor in machine learning, which forms a basis for anomaly detection 

algorithms, is the quality of data. Most of the recent research on intrusion detection has 

been done using DARPA and KDD Cup 99 datasets. So far 42 % KDD cup dataset, 20 

% DARPA dataset and 38 % other datasets have been used to verify proposed new 

methods for anomaly detection (Azad and Jha, 2013). KDD Cup 99 dataset was 

collected in 1999 by processing the tcpdump portions of the 1998 DARPA Intrusion 

Detection System (IDS) Evaluation dataset, created by Lincoln Lab under contract to 

DARPA (Brugger, 2007; Lippmann et al., 1999). Those datasets contain various 

information collected on simulating attacks against a network. Four main attack types 

have been used against a simulated US Air Force LAN (Mukkamala et al., 2005): 

• Probing. Probing is a class of attacks where an attacker scans a network to 

gather information or find known vulnerabilities. Attacker can find related exploits if 

network machines map with corresponding services is available. 

• Denial of service attacks. DoS is a class of attacks where an attacker makes 

some computing or memory resource too busy or too full to handle legitimate requests, 

thus denying legitimate users access to a machine. 

• User to Root attacks. Attacker starts on local normal user account, and after 

some commands and related exploits usage – gains root user account control. 

• Remote to User attacks. On this type off attack, attacker sends commands to the 

target machine (one uses already known exploits for that machine) and illegally gain 

local access as a user. 

Therefore, DARPA-related datasets have a data associated to a network and are 

perfect to apply in NIDS research (Sahu et al., 2014). It is necessary to stress that 



 Method of Dataset Generation for HIDS Training and Presentation of AWSCTD Dataset  221 

 

DARPA, which has been used as a de facto standard for anomaly-based NIDS training, 

present the simulated and not the real attack data. Nevertheless, it is still considered by 

experts as a valuable dataset. 

The research done in the sphere of anomaly dataset generation for HIDS training is 

minimal despite the fact of the growing need for anomaly-based HIDS systems.  

Some information has been collected during the KDD dataset assembly. At first it 

was a UNIX-type host systems information. Later, in January 2000, Windows NT hosts 

data was collected on similar circumstances (Korba, 2000). It contains not only tcpdump 

provided data, but also the Windows NT event log audit data. Despite the provided 

collections, KDD Cup-related datasets lack host machines-related information and only 

NIDS researches use it (Haider et al., 2016).  

Some attempts have been made to generate novel public datasets for the Windows 

operating system. Windows audit logs analysis method was introduced and collected 

data was prepared for public usage by (Berlin et al., 2015). Audit logs have been 

produced by running malware on a target machines. The proposed audit logs analysis 

method yields high detection rate. Still, audit logs have some disadvantages. One of 

them – it cannot detect thread injection, which is a main tool in malicious tactics (Berlin 

et al., 2015). 

One of the latest datasets related to the host-based intrusion detection is the ADFA-

IDS dataset. In an experiment a zero day attack was simulated and system calls in 

Windows and Linux operating systems have been collected (Haider et al., 2016). Two 

comprehensive Windows operating system-based datasets (ADFA-WD and ADFA-WD: 

SAA) were introduced for the research community. Prior to the Windows OS datasets, 

Linux related collection was introduced (Creech, 2014; Creech and Hu, 2013). Windows 

OS datasets contains core dynamic link library (dll) name and called function address. 

Linux dataset contains sequence of numbers. Those numbers are representing a 

corresponding system call. An example of collected Windows OS system calls and their 

extracted feature vector can be seen in Fig. 2.  

 

 
 

Fig. 2. Windows OS system calls and their feature vector (Haider et al., 2016) 

However, ADFA family datasets have just a minimal data required for intrusion 

detection since it contains only system call identification: system dynamic link library 
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(dll) file name and the called function name. Twelve known vulnerabilities were 

analyzed for ADFA-WD dataset and three stealth attacks (Doppelganger, Chimera, and 

Chameleon) for ADFA-WD: SAA (Haider et al., 2016). As can be seen in Fig. 3, 6636 

malicious system call traces were collected in total: 

 

 
 

Fig. 3.  System Calls traces results (Haider et al., 2016) 

But even authors of (Haider et al., 2016) agree, that ADFA Windows datasets are 

incomplete. Only basic information was collected and insufficient amount of 

vulnerabilities was used to generate malicious activity. 

3. The Proposed Robust Dataset of Malicious Activity 

Generation Method 

3.1. Method description 
 

The following nonfunctional requirements were formulated for the malicious activity 

dataset generation method: the system has to be flexible (it must allow adapting new data 

collection in the future), easy to configure (no special tools must be required to change 

system parameters), and based on open-source software only. The target operating 

system for malicious activity collection chosen – was Windows, because it is still the 

most widely used operating system in the world, although the method can be easily 

adapted for any other OS. 

For reasons of simplicity and proof of concept, only openly available malware 

samples were used to generate malicious activity samples. The method can be easily 

automated: any malware samples can be downloaded, prepared according to the 

requirements, and used. Malware samples contain items for all well-known operating 

systems, so malicious activity sets are generated for any operating system. 

The proposed method (Fig. 4) has six following steps:  

1. Malware samples preparation. At first, malware must be obtained from 

available sources. Later, malware of Windows OS executables type should 

be extracted and added to a separate collection for use. 

2. Host machine preparation. Hypervisor must be installed and configured 

on the selected host machine. Malware samples must be copied to the host 

machine for later execution. 

3. Guest machines preparation. Template for a virtual guest machine must 

be added and configured on the host machine. Later, the required number of 

guest machines (copies) should be created for malware execution. Execution 

of malware samples can be performed in parallel and is dependent on the 

number of guest machines available. 
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4. Data collection server preparation. Server storage for the malware 

execution log information (such as anomaly samples in form of logs, 

network activity, system calls, etc.) must be prepared. 

5. Malware samples execution and data collection. When all machines are 

prepared – main execution script is started. The main script will upload a 

malware sample to the target guest machine and will start the operating 

system. Later, a script on the guest machine will execute malware on OS 

startup. Malware-generated activity log will be automatically collected and 

uploaded to the data collection server. 

6. Collected data preparation and analyzation. When all samples are 

executed, collected data can be transformed to the XML format and 

analyzed. 

 

 
 

Fig. 4.  Main steps of the proposed method of dataset generation. 

3.2. Method implementation 
 

The proposed method implementation (architecture) can be seen on  

Fig. 55. The virtualization technique, based on a free ProxMox hypervisor, was 

selected to simulate quest machines that will be used for running malicious actions. 

ProxMox VE is a completely open-source platform for enterprise virtualization, a built-

in web interface that allows management of VMs and containers, software-defined 

storage and networking, high-availability clustering, and multiple out-of-the-box tools in 

a single solution (Kovari and Dukan, 2012). ProxMox is running QEMU - a generic and 

open source machine emulator and virtualizer and is based on Debian operating system. 

According to the results of the latest research, QEMU has a less detectable virtualization 

through basic detection techniques (Miller et al., 2017), which maximizes the malware 

execution rate. 

A main bash script is executing all commands required to collect data: a guest 

machine is prepared, started and stopped by that script. The main bash script has only 

one parameter – a folder that contains prepared malware samples. ProxMox firewall is 

enabled on the Host machine to manage network flow and minimize the risk of malware 

propagation. Only one-directional flow to the remote HIDS server was allowed – all 

other connections were blocked. All data sent to that server was stored on LOG server 

for later analysis. 

An anomaly data collection was done by three tools: Dr. Memory provided system 

call tracer for the Windows OS, OSSEC (open source HIDS (Timofte, 2008)) for file 
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integrity monitoring and WinDump for the network-related information. Dr. Memory 

tool provides not only system call name, but also passed parameters list and return value. 

All that information can be used to detect earlier mentioned thread injection, which is 

missing in method provided by (Berlin et al., 2015).  

 

 
 

Fig. 5. Malware execution components scheme 

Open malware collections were used to generate malignant activity on guest 

machines. Malware execution was conducted on a Windows operating system. For 

simplicity reasons, during the first step, only malware of executable type was used, in 

order to minimize dependence on third party applications (e.g. office suites, utilities, 

viewers or any other). Malware samples were taken from the freely available database 

provided by VirusShare (WEB, c) (For this paper, VirusShare_00289.zip package, 

created on 2017-05-07, was used) and theZoo (WEB, b). VirusShare provides malware 

packages in a form of password-protected zip files with the usual 'infected' password or 

any other file types. As a result, every package file type must be analyzed, because there 

is no file extension provided. Every package can contain various types of malicious files 

that can target different operating systems: Linux, Windows, Mac, Android and iOS. For 

that reason, each package must be analyzed and only Windows OS-executable malicious 

samples have been selected in our case. VirusShare samples were combined with theZoo 

malware collection, that holds most popular and controversial malware samples. theZoo 

database already contains password protected archives with executable files. For that 

reason, no special preparation procedure was required. 

Malware sample preparation is presented on Fig6.  

Usually the first byte of a file is holding information about the file type. If that is 

already a Windows-executable file – corresponding file extension is added to it and the 

file is packed to the archive with a password “infected”. If the analyzed file is an archive 
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– it is extracted for further analysis and, if executable files are found, they are added to 

the password protected archive. All other files are skipped.  

 
Fig. 6. Malware file preparation 

3.3. The Process of Malware Loading to the Guest Machine 
 

Malware transfer to the guest machine was implemented with the help of ProxMox 

VE, which provided the capability to attach an additional virtual drive and copy the file 

straight to it. It is not dependent on any other third-party software and firewall 

configuration has no impact on file transfer.  

The number of malware samples that can be executed in parallel, thus influencing the 

dataset generation speed, depends on the number of running guest machines, that is 

directly related to the available hardware resources. 

For our experiments tests were performed on the HP ProLiant DL 380 G6 server with 

the following specifications: 2x Xeon E5520 CPU, 8 GB of RAM and 4x146 GB HDD’s 

connected to RAID 5. Six guest machines were running in parallel. 

A bash script on the host machine was used to control guest machine’s state (startup 

and shutdown) and malicious file transfer to the corresponding virtual drive. Virtual 

drive preparation for the guest machine also was implemented via bash script. To ensure 

such method on the newest ProxMox VE – a thin provisioning must be turned off. After 

that, every guest machine drive is represented on a hypervisor as a simple local file. 

Most importantly, it can be mounted on a hypervisor system and updated with required 

malware file. Main actions performed by the bash script on the host machine are: 

1. Copying guest machines disks from prepared templates. 

2. Mounting virtual disk for every guest machine, copying prepared malware, 

unmounting disk. 

3. Starting the guest machine. 

4. Pausing script for defined time to provide the malware the possibility to 

reveal all functionality and features. The default pause time in tests was 

equal to 30 minutes but can be optimized for generating sets of specific 

malware types (e.g. longer for botnet and shorter for worm). 
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5. Stopping the guest machines. The Stop command will halt the machine 

immediately. Shutdown process is not initiated. 

Basically, all steps combine simple commands: copy, machine start and machine 

stop. However, step number 2 requires more sophisticated knowledge of virtual disk 

handling commands. 

Guest machine images were also prepared. Each guest machine was running 

Windows 7 OS and Dr. Memory, OSSEC agent and WinDump. A malware execution 

script was added to the Windows task scheduler. Task scheduler provides all required 

privileges for an unimpeded application/malware startup. Then defined archive file is 

extracted, malware is executed by a run command for every executable in the extracted 

folder. The anomaly data gathered (list of modified/accessed files, system calls with 

related information and network data) was sent to the LOG server for analysis. 

All actions required for implementing malware samples execution are presented on 

Fig.7.  

 
Fig. 7. Activity diagram of single malware sample batch execution 

Malware samples are executed in a batch manner. Every batch has a number of files 

identical to the number of available guest machines. It can be seen, that host machine 

waits for the predefined time while a script on guest machine is executing the provided 

malware sample. This pause is needed to collect anomaly activities in case malware 

manifests itself after some delay after infecting the machine. 

4. Attack-Caused Windows OS System Calls Traces Dataset 
 

While developing the dataset (further referred to as Attack-Caused Windows System 

Calls Traces Dataset or AWSCTD) the following three main objectives were targeted for 

the dataset generation process: 
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1. Malware/attack tools have to be publicly available in order to assure easy 

renewal of dataset in future database renewal and independent verification 

of results. 

2. The dataset should contain the following information: 

a. All possible information about the system call (function name, 

passed arguments list and values of them, return value). 

b. List off changed files affected by malware attack/tools. 

c. Network traffic generated by malware attack/tools. 

3. Dataset should be based on a relatively high number of system calls, 

generated by a wide selection of malware/attack tools. 

4.1. Dataset Size and Structure 
 

A total of 12110 executable malware samples in a form of password protected 

archives were prepared from VirusShare provided packages and used for dataset 

generation. All samples were tested in a two months period (2017.07-2017.08) and 

89.34% (10820) of them were executed successfully, i.e. the selected malware sample 

has infected the custom-made test system with Windows OS running on it. Further 

verification has revealed that not all malware samples acquired could be considered to be 

100% malicious. Some of them did not have a proper amount of positive detection rate 

reported on VirusTotal.com site (WEB, d). Because of that, only samples with 15 and 

more positive detections were selected for the dataset. 

Table 1.  Most common malware categories and families used in dataset generation 

 

Category Count 

AdWare 5139 

Trojan 2353 

Downloader 853 

WebToolbar 659 

DangerousObject 137 

Trojan-Ransom 101 

Backdoor 79 

RiskTool 55 

Trojan-Downloader 45 

Trojan-Spy 37 

Packed 34 

Virus 17 

Trojan-PSW 16 

Trojan-Dropper 15 

Trojan-Clicker 5 
 

Family Count 

AdWare.Win32 4655 

Trojan.Win32 2326 

Downloader.Win32 830 

WebToolbar.Win32 654 

AdWare.MSIL 412 

DangerousObject.Multi 137 

Trojan-Ransom.Win32 96 

Backdoor.Win32 75 

AdWare.NSIS 71 

RiskTool.Win32 46 

Trojan-Downloader.Win32 44 

Packed.Win32 34 

Trojan-Spy.Win32 34 

Downloader.NSIS 19 

Trojan.MSIL 18 
 

 

Distribution of selected malware is presented in Table 1 (“DangerousObject” 

category according to Kaspersky: Malicious software is detected by KL Cloud 

Technologies. This verdict used for samples that were not classified exactly.). Malware 

category and family information is based on VirusTotal.com classification. Only 

malware detected by at least 15 antivirus vendors was analyzed further – this rule has 

allowed us to select 10276 malware samples from 10820 tested. 

Collection of system calls traces was performed with the help of drstrace tool, 

developed by Dr. Memory (WEB, a). It allowed to gather all required system calls 
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information: system call name, passed parameters information (parameters count and 

values), return values and execution result (success or false). A sample system call is 

presented on Fig. 8. 

 

    

Fig. 8. System Call sample from drstrace tool 

 

 

 

Fig. 9.  Part of code of system calls log transfer to database 

All system calls were recorded in that format to the log files. A special logs 

conversion into a better defined formats (JSON and SQLITE database) was implemented 
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in separate C++ application. A part of code, presenting logs conversion to SQLITE 

database is shown on Fig. 9. 

A total of 112.56 million system calls traces for generated by 10276 malware 

samples were recorded to the database. Such amount of data had a massive impact on the 

database size – the generated SQLITE file consumes 39.1 GB of storage space. Database 

contains not only system calls, but also metadata about the malware (database scheme 

can be seen on  

Fig10).  

 

 
 

Fig. 10.  Generated malware activity database scheme. 

Part of that information (Malware info) was imported with the help of Academic API 

provided by Virus Total. The information for every malware record has included: 

 Scan engines (antivirus applications) that provided information about the 

detected threat: e.g. malware type; 

 Positive scan results value; 

 Web page to malware description page; 

 Malware behavior information: 

o File system action; 

o Network communication; 

o Loaded modules (dll files) 

A sample of exported record from the database is provided below in CSV format 

with | symbol as fields separator (first row – fields names, second – values): 

Table “Malware info”: 

ID|Name|VirusShare|VirusScanRes|TotalScans|Positives|URL|Behaviour 

2|000600ee5aedc6e5d4ca946b99f3c924|"{""Kaspersky"":{""detected"":true,""versi

on"":""15.0.1.13"",""result"":""AdWare.Win32.MultiPlug.nnnn"",""update"":""201710

24""}|67|54|https://www.virustotal.com/file/6abbf5200f267e482b363c4634db9b7213c74

6ef03cae20ff65da7b8c14d0866/analysis/1508868909/|{Virus Behavior information in 

JSON format} 

Table “MalwareFile”: 

ID|fkMalwareIndo|FileName 

1|2|drstrace.VirusShare_000600ee5aedc6e5d4ca946b99f3c924.exe.02320.0000 

Table “SystemCalls”: 

ID|fkMalwareFile|SystemCall|Arguments|RetArguments|Return|Success|CallNumber 

1|1|NtQueryPerformanceCounter|"[""0x002ff8f4 (type=LARGE_INTEGER*, 

size=0x4)"",""0x002ff8d8 (type=LARGE_INTEGER*, size=0x4)""]"|"[""0x1f4690a2 

(type=LARGE_INTEGER*, size=0x4)"",""0x989680 (type=LARGE_INTEGER*, 

size=0x4)""]"|0x0 (type=NTSTATUS, size=0x4)|1|1 
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As it can be seen from Table 2, AWSCTD exceeds the only currently available 

dataset by the number of tested malware and generated system calls count by order.  

Table 2.  ADFA-IDS dataset comparison to our dataset. 

Dataset Executed malware samples Collected System Calls count 

ADFA-IDS 15 6636 

AWSCTD 10276 112.56 million 

 
It is also important to note, that AWSCTD includes additional information missing in 

ADFA-IDS. Of course, the researcher is free to choose only those dataset parameters 

that are relevant to his specific task. 

4.2. Dataset Characteristics 
 

According to the (Miao et al., 2006) there are about 949 native calls (284 key APIs 

from Ntdll.dll and 665 less important from Ntoskrnl.dll) in the already discontinued 

Windows XP operating system. In our tests performed on the basis of Windows 7 OS, 

645 distinct system calls were captured. The most commonly used system calls are 

presented on Fig11. The dominating part of calls generated by malware were related to 

registry querying. The next dominating group of calls was implementing the file 

processing functions (reading and writing). The system calls success rate parameter 

obtained was very high – 99% of all executed calls have returned the desired result. Dr. 

Memory was used to evaluate the success rate. The calls with the highest success rate 

were NtQueryValueKey and NtOpenKeyEx. The lowest rate was demonstrated by 

NtYieldExecution (this function stops execution of thread calling and switches to any 

other currently running thread) and NtCallbackReturn (this function finishes execution 

of User-Mode callback). 

 
Fig. 11.  Most frequently requested system calls. 

0 1 2 3 4 5 6 7 8 9

NtQueryValueKey

NtClose

NtYieldExecution

NtOpenKeyEx

NtUserQueryWindow

NtQueryInformationProcess

NtCreateEvent

NtWriteFile

NtUserGetProp

NtAllocateVirtualMemory

NtWaitForSingleObject

NtUserPeekMessage

NtReadFile

NtOpenThreadToken

Millions 
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As stated earlier, some characteristics of malware behavior (mainly related to file 

access) was obtained from Virus Total. The most frequently requested files are listed in 

Table 3. In this category, not only critical Windows system files can be noticed, but also 

various services: such as driver responsible for maintaining persistent drive letters and 

volume names (MountPointManager), or remote procedure calling (lsarpc) used by the 

applications based on the client-server architecture. 

Table 3.  The most frequently requested files. 

File path Count 

\\.\PIPE\lsarpc 1080 

C:\WINDOWS\Registration\R000000000007.clb 766 

\\.\Ip 681 

\\.\MountPointManager 652 

c:\autoexec.bat 611 

C:\WINDOWS\system32\shdocvw.dll 326 

C:\WINDOWS\system32\msi.dll 248 

C:\WINDOWS\system32\stdole2.tlb 221 

C:\WINDOWS\WindowsShell.manifest 218 

C:\Program Files\Internet Explorer\iexplore.exe 210 

 
AWSCTD dataset provides additional system call information: a list of parameters, 

which were not included in previous publicly available datasets. These parameters can 

provide additional information on malware behavior while performing ML methods 

training. A sample parameters combinations, together with statistics of the NtCreateFile 

system call, are provided in Table  4 (parameter CreateOptions) and Table 5 (parameter 

ShareAccess). 

Table 4  NtCreateFile parameter "CreateOptions" most frequently used combinations. 

Parameter combinations Count 

FILE_SEQUENTIAL_ONLY|FILE_NON_DIRECTORY_FILE 8434 

FILE_SEQUENTIAL_ONLY|FILE_NON_DIRECTORY_FILE|FILE_OPEN 

_REPARSE_POINT 8431 

FILE_NON_DIRECTORY_FILE|FILE_OPEN_NO_RECALL 374 

FILE_SYNCHRONOUS_IO_NONALERT|FILE_NON_DIRECTORY_FILE 

|FILE_OPEN_NO_RECALL 221 

FILE_SYNCHRONOUS_IO_NONALERT 129 

FILE_SEQUENTIAL_ONLY|FILE_SYNCHRONOUS_IO_NONALERT| 

FILE_NON_DIRECTORY_FILE|FILE_OPEN_NO_RECALL 10 

FILE_OPEN_FOR_BACKUP_INTENT 6 

FILE_SEQUENTIAL_ONLY|FILE_SYNCHRONOUS_IO_NONALERT 4 

FILE_SEQUENTIAL_ONLY|FILE_SYNCHRONOUS_IO_NONALERT| 

FILE_OPEN_FOR_BACKUP_INTENT 1 

FILE_WRITE_THROUGH|FILE_SYNCHRONOUS_IO_NONALERT| 

FILE_NON_DIRECTORY_FILE 1 
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Table 5. NtCreateFile parameter "ShareAccess" most frequently used combinations. 

Parameter combinations Count 

FILE_SHARE_READ 340030 

FILE_SHARE_READ|FILE_SHARE_WRITE 233424 

FILE_SHARE_READ|FILE_SHARE_WRITE|FILE_SHARE_DELETE 92609 

FILE_SHARE_READ|FILE_SHARE_DELETE 85237 

0x0 27297 

FILE_SHARE_WRITE 914 

0xffffff90 3 

 
The parameter combinations used with system calls usually vary for legal 

applications and malware, therefore this information can be used as one of distinguishing 

characteristics of malware behavior. The dataset includes parameter combinations in the 

same form as presented for all system calls included in the dataset. 

5. Conclusions 
 

 The performed analysis has shown that there is an increasing requirement 

for the development and training of anomaly-based HIDS solutions, which 

is currently being slowed down due to the lack of available and suitable 

host-level anomaly datasets. 

 The method for host-level anomaly dataset generation was proposed. The 

proposed method is based on malware execution in a sterile, isolated virtual 

machine environment with further anomaly activity collection and data 

representation in an SQLite database format.  

 The method was implemented and tested only with free or open-source tools 

and freely available malware samples. The tests performed have proved the 

method stability and method suitability for host-level anomaly dataset 

generation. Automated anomaly generation allows flexible training data-set 

expansion, response to the new attack types and generation of specific on-

demand datasets. No interruptions or errors related to the malware execution 

were noticed which is an advantage against well-known tool for such task - 

Cuckoo sandbox. According to Miller et al. – it has stability issues that 

cause Cuckoo samples results to be inconsistent between runs (Miller et al., 

2017). 

 AWSCTD was generated for 10276 malware samples. The dataset size 

exceeds the size of previously known datasets by order and includes much 

wider representation of malware types and system calls. AWSCTD has 

additional advantage against existing datasets because of parameters 

(system call arguments list and return value) that allow more in-depth HIDS 

training. 
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 An expansion of the generated dataset is being planned for creating a more 

comprehensive host-level anomalies dataset for HIDS training. The 

expansion is planned via inclusion of non-executive type malware samples, 

non-malware attacks and optimizing the pause interval for better feature 

assembly of delayed malware activities. 
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