
Baltic J. Modern Computing, Vol. 6 (2018), No. 4, pp. 335–348
https://doi.org/10.22364/bjmc.2018.6.4.02

Evaluating the Effectiveness of Deep
Reinforcement Learning Algorithms in a Walking

Environment

Arjun NEERVANNAN

University High School, 4771 Campus Drive, Irvine, CA 92612

arjun.neervannan@gmail.com

Abstract. Deep Reinforcement Learning algorithms have shown to perform well on complex
tasks, such as video games and chess. However, when it comes to locomotive tasks, picking
the right algorithm and hyperparameters continues to be a challenge for many researchers. This
project addressed that issue by determining which one of three reinforcement learning algorithms
worked most effectively to help a computer learn to walk, without any external supervision or
guidance, in a simulated environment. In addition, the project also determined the best learning
rate for the algorithms by testing out 6 learning rates. A walking environment was used as it
is considered to be a good representative for a large class of reinforcement learning problems.
Proximal policy optimization was found to be the most effective, followed by the trust-region
policy optimization and the vanilla policy gradient. The algorithms worked best with learning
rate 1e-3.

Keywords: Proximal Policy Optimization; Deep Neural Networks; Optimization

1 Introduction

Reinforcement algorithms, especially the ones that combine neural networks, called
Deep Reinforcement Algorithms, have shown powerful learning abilities with the demon-
stration of AlphaGo and similar complex tasks Mnih et al.,2015, Sutton and Barto,2015,
Silver et al.,2017. However, choosing the right algorithm and set of hyperparameters for
locomotive tasks is a difficult task Peng et al.,2016. A walking environment was used
as it is considered to be a good representative for a large class of reinforcement learning
problems.

336 Neervannan

1.1 Basic Terminology

Reinforcement learning is a class of machine learning algorithms used to help comput-
ers learn to make decisions in an environment with or without any external guidance
during the learning process Sutton and Barto,2015. The agent learns to make decisions
solely off the states of the environment, the rewards that the environment returns to
the agent, and the actions that the agent takes. The goal of reinforcement learning is to
maximize a numerical reward by learning what to do and mapping situations to actions
Lu,2017. In the absence of existing training data, the agent learns from experience, up-
dating its weights to maximize the reward.

An artificial neural network (ANN) is a computational method inspired by neurological
systems to represent complex functions Schmidhuber,2014. ANNs can be represented
by neurons and axons, which form a large net. Neurons are organized in layers, and the
organization of neurons in a layer can change the purpose of that layer. In this project,
only fully-connected (FC) layers, in which all neurons in subsequent layers are con-
nected to each other, were used.

ANNs update their weights to improve the accuracy of the function using a method
known as gradient descent or ascent (depending on the type of problem), which com-
putes the delta between the expected and actual value, and updates each weight in the
network by propagating backwards through the network Ruder,2017. The ”value” dif-
fers depending on the case, but in this case it refers to a reward value, given by the
environment. Gradient descent also uses a hyperparameter called the learning rate (LR)
that controls the speed of the convergence Goodfellow et al., 2017. As neural networks
represent extremely complex functions, gradient descent has to take small steps to
reach the optimal set of weights to prevent itself from overshooting the local optima
Goodfellow et al., 2017, Baird Moore, 1999. Off-the-shelf implementations of gradi-
ent descent, such as Adam (ADAptive Moment estimation), which adaptively adjusts
the learning rate as the gradient descent algorithm nears convergence, are easier to use
in applications Kingma D. and Ba, J., 2015. As the goal of the algorithm was to maxi-
mize the reward, gradient ascent was used rather than gradient descent . However, the
foundational methodology between gradient descent and ascent remains constant.

1.2 Vanilla Policy Gradient

The general goal of policy gradient methods is to create a policy, or strategy on which
the agent can rely to make decisions in a virtual environment, that maximizes the possi-
ble reward Sutton and Barto,2015, Williams. Policy gradient methods differ from other
reinforcement learning methods such as value-iteration update functions and actor-critic
methods as they directly optimize the policy rather than optimizing the reward for each
action and state (as in the case of Q-learning) Li et al.,2017. As a result, they tend to
have better convergence rates and can work on environments with infinite action spaces
(infinite available actions at each step), such as the one used in this experiment; how-
ever, they also are computationally intensive and often have high variances. Neverthe-
less, policy gradients have become the state-of-the-art algorithms to use in locomotion

Effectiveness of Deep RL Algorithms 337

tasks Silver et al.,2017.

More specifically, the underlying principle behind the vanilla policy gradient (VPG)
method is to maximize the expected future discounted reward in the environment
by performing gradient descent on the policy directly to reach the optimal weights
Sutton and Barto,2015. Policy gradients differ from other methods in this way in that
they do not receive the reward at each timestep; rather, they use the total reward at the
end of the episode to optimize the policy. Although this method is seemingly inefficient
as certain actions taken in an episode may have contributed to the reward more than
others, in the end, this disparity has little effect as the policy, through exploration of
actions, eventually learns which actions give a better reward.

The policies that are iterated through are formally defined by Π = {πθ, θ ∈ Rm},
which represents a set of policies Π that contain policies πθ parametrized by weights
θ. Since ANNs are typically used to represent policies, each policy πθ can be thought
of as a neural network parametrized by weights θ that outputs an action at each state.
The equation below shows the value for each policy, and the goal of the VPG method
is to create a policy that maximizes this value. t represents the timestep, γ represents
the discount factor, and r(t) represents the reward given at each step Li et al.,2017. A
discount factor is used to lower the weight that the algorithm gives to future rewards (in
future states).

J(θ) = E
[∑
t=0

γtr(t)|πθ
]

The goal of the algorithm is to reach a set of parameters θ∗ such that θ∗ =
argmaxJ(θ) by performing gradient ascent on the policy directly to reach the opti-
mal weights Sutton and Barto,2015.

The basic process that VPGs follow can be represented as pseudocode, shown be-
low:

Initialize Parameter θ
For iteration 1, 2, 3 do:

– Using policy πθ, interact with the environment by taking the actions (output from
the policy) until the episode ends

– At the end of the episode, obtain the total reward for that episode from the environ-
ment

– Update the policy πθ by using gradient ascent on parameters θ

End for
The gradient estimator used to update the weights is

∇θJ(θ) ≈
∑
t>1

r(τ)∇θ log πθ(at|st)

338 Neervannan

where θ represents the weights that parametrize policy πθ, t represents the timestep,
at and st represent the action and state taken at timestep t, respectively, and r(τ) rep-
resents the total reward at the end of the episode (with τ as a trajectory of states and
actions from one episode). Again, the policy gradient is only given the cumulative re-
ward at the end of the episode, rather than individual rewards per timestep. The purpose
of this algorithm is to update the weights θ by increasing or decreasing the probabil-
ity of actions (represented by πθ(at|st)). Given a high episodic reward, the algorithm
assumes that all the actions taken in that episode were good actions and pushes up the
probabilities of all the actions, and vice versa given a low episodic reward Li et al.,2017.
Again, while this may seem simplistic, this method does work as the policy, by trying
out different actions, eventually learns which actions are good and which are not.

However, determining which rewards are better than others is also a challenge, as the
range of the rewards between a bad episode and a good episode can be very small, and
consequently, the updates will also be small, even though the actions taken in the good
episode should receive a higher weight. To solve this problem, a baseline function is
used to compare the rewards to determine which ones are better and which ones are
worse Li et al.,2017.

1.3 Trust-Region Policy Optimization

The trust-region policy optimization algorithm (TRPO) builds off of the VPG algorithm
by using Kullback-Leibler (KL) Divergence to constrain each optimization step to a
”trusted region” around the original policy Schulman et al.,2015. This constrained opti-
mization step ”guarantees a monotonic improvement” to the policy, essentially making
the ascent to convergence more controlled Schulman et al.,2015.

Below is the derivation for the TRPO algorithm Lu,2017.

An MDP is defined as a tuple (S,A, Psa,γ, R, p0), where:

– S is a finite set of N states
– A is a set of k actions, a1, a2, ...ak
– Psa(s′) represents the probability of landing at state s′ upon taking action a at state
s

– γε[0, 1) is the discount factor
– r : S → R is the reward function (defined by the environment)
– p0 : S → R is the initial state distribution
– pπ : S → R is the discounted visitation frequencies (the discounted probability of

landing at each state)

pπ(s) = P [s0 = s] + γP [s1 = s] + γ2P [s2 = s] + ...

n(π) = Es0,a0,...
[∑
t=0

γtr(st)

]

Effectiveness of Deep RL Algorithms 339

The above equation represents the expected discounted cumulative reward of policy π,
where s0 ∼ p0(s0), at ∼ π(at|st), st+1 ∼ P (st+1|at+1).

Qπ(st, at) = Est+1,at+1,...

[∞∑
l=0

γlr(st+1)

]
The above equation is the action-value function, which expresses the expected value of
taking action at at state st and then following the policy π afterwards.

Vπ(st) = Eat,st+1,,...

[∞∑
l=0

γlr(st+1)

]
The above equation is the value function, which expresses the expected value of follow-
ing the policy π from state st onwards.

Aπ(s, a) = Qπ(s, a)− Vπ(s)

The above equation is the advantage function, which expresses the ”advantage” of tak-
ing action at over following the policy π at state st. As with the VPG, the TRPO does
not have the advantage value for each timestep, rather having a cumulative advantage
from the whole episode.

The below identity was proved by Kakade and Langford 2002 Kakade Langford,2002.

n(π) = n(π0) + EpπEa∼π(s)[Aπ0(s, a)]

where π is the new policy and π0 is the old policy. However, the gradient estimator does
not have π yet; therefore, pπ does not exist. The TRPO algorithm instead uses pπ0

as
an approximation of pπ . Hence, the objective function becomes

Lπ0
= n(π0) + Epπ0Ea∼π(s)[Aπ0

(s, a)]

Schulman et al 2015 then used KL divergence to create a surrogate objective by
penalizing the Loss function Schulman et al.,2015. KL divergence, which calculates
the distance between two probability distributions, calculates the distance between the
old policy and the new policy and penalizes the loss function by that value.

n(π) ≥ Lπ0
(π)− CmaxsDKL(π0(s))||π(s)

where ε = maxs
∣∣Ea∼π′(s)[Aπ0](s,a)

∣∣ and C = 4εγ
(1−γ)2 .

However, calculating the KL divergence term over the whole state space is intractable
Kakade Langford,2002. Instead, Schulman et al. used mean KL divergence over the
whole state space as an approximation Schulman et al.,2015.

DKL(π0||π) = Es∼pπ0
[
DKL(π0(s))||π(s)

]
Therefore, the base TRPO optimization problem is

maximizeθ
[
Lθ0(θ)− CDKL(π0||π)

]

340 Neervannan

However, in practice, TRPO does not use a penalty term or the penalty coefficient C as
the step sizes would be very small. Instead, a hard limiter is used Schulman et al.,2015.

maximizeθ Lθ0

subject to DKL(π0||π) ≤ δ

The algorithm can then be optimized using the conjugate gradient method
Schulman et al.,2015. Because of this constrained optimization step, the TRPO algo-
rithm provides a steady, consistent update to the policy. It is fairly computationally
expensive, but further implementations of the base TRPO algorithm have been created
to simplify the optimization steps Lu,2017. TRPO uses Natural Gradient Ascent to up-
date the ANN as it is built directly into the TRPO algorithm; consequently, TRPO is
not compatible with other optimizers, such as Adam. Natural Gradient Ascent uses KL
divergence to constrain the optimization step of an ANN Grosse.

1.4 Proximal Policy Optimization

The Proximal Policy Optimization (PPO) algorithm builds on the base TRPO al-
gorithm, rather using first-order optimization methods to simplify the computation
Schulman et al.,2017. PPO does not use KL divergence, rather clipping the the ratio
of the old and new policy to a certain range. It then takes the minimum across that
clipped ratio and the original ratio, and finally multiplies that minimum by the Advan-
tage estimate. Eliminating KL divergence from the surrogate objective function makes
the PPO algorithm much simpler to implement.

The surrogate objective function for the PPO algorithm is

LCLIP (θ) = Êt
[
min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)

]
given parameters θ, advantage function estimator Ât, policy ratio rt(θ) = πθ(at|st)

πθold (at|st)
(probability ratio between new and old policy), and some hyperparameter ε used to clip
the probability ratios Schulman et al.,2017. Clipping rt between [1− ε, 1 + ε] prevents
the ratio between the old policy and new policy from going too high, which ensures
that improvement is fairly controlled and constant. Furthermore, Schulman et al.’s tests
determined that the best value for ε was 0.2 Schulman et al.,2017.

Intuitively, the PPO uses a simpler calculation to create a lower bound on which the
policy can optimize on, similar to an Majorize-Minimization algorithm Lange,2007.
This can be thought of as a ”soft limit” as opposed to the hard limit of TRPO.

2 Experimental Design

The project tested the effectiveness of three different algorithms on a simulated walking
environment, in which the computer had control over 6 joints and received 17 observa-
tions (17x1 input vector and 6x1 output vector) from each of those joints (see Figure 1).
The goal was to move forward as far as possible, and rewards were based on the change

Effectiveness of Deep RL Algorithms 341

in position as well as other metrics (see below for reward calculation). High rewards
indicate a good performance. 6 learning rates, 0.1 (1e-1), 0.01 (1e-2), 0.001 (1e-3),
0.0003 (3e-4), 0.0001 (1e-4), and 0.00001 (1e-5), were tested on all of the agents to
determine the best one. The computer ran each algorithm for 40,000 episodes, or for
16,000,000 time steps, since each episode was 400 timesteps long.

Other variables, including the network size and type, activation function, training episodes,
and hardware used were kept constant between the algorithms. However, the Adam op-
timizer was used for the VPG and PPO algorithms but not for the TRPO algorithm. This
was because TRPO already had a built-in optimizer technique that limited the search
to a certain region, thus producing an identical effect as Adam (see 1.3). A two-layer
ANN with tanh activations and 2 fully-connected layers with 32 nodes each was used.

The effectiveness of the algorithms was based on the following criteria:

– the 100-episode average reward after training was used to judge the performance of
the algorithm for a learning rate. A higher reward meant that the agent performed
better, and vice versa.

– The algorithm had to show consistent improvement across the episodes for the
results to be considered. This ensured that the agent was not just randomly attaining
a certain result.

– if an algorithm did not get the highest reward for that episode, it could still get the
highest rank for that learning rate if it showed that it had a higher slope, or more
”momentum”. This was determined based on the ”learning curve”, or progression
of rewards per episode over episodes, for each algorithm (all learning curves are in
the appendix).

The program itself used TensorForce, a reinforcement learning library built on top of
Tensorflow (a common machine learning library). OpenAI Gym environment (an open
source platform for creating, evaluating and benchmarking agents in a game environ-
ment) was used to render after the completion of the learning phase Brockman, 2016.
Matplotlib and Numpy were used to process the data and graph the results.

In addition, the final code modified the existing TensorForce examples code base, found
on Github. However, the code used in this project bears very little semblance to the orig-
inal due to the extensive modifications that were made to suit the goals of the experi-
ment. Functions were added to help render and record the models every 1000 episodes
as well as save the model every 100 episodes. This helped to evaluate and compare the
performance of the models.

In the game environment itself, 17 state observations were given to the agent, and these
included information about the position of the agent from the center, balance, and other
metrics. There were 6 available actions at each state of the model, with one for each
joint. Rewards were calculated based on the agents distance from the starting point (see
below for reward calculation equation).

The reward calculation (given by the environment) is

342 Neervannan

R(α, β, T,A) = −0.1

T∑
n=1

a2n +
α− β
T

;A = {a1, a2, ...}

Where α is the starting position of the simulated walker, β is the ending position, A
is the set of actions, and T is the total number of timesteps in that episode.

Fig. 1: The diagram above shows the observations that the agent receives as well as the
actions that it can take.

Fig. 2: The diagram above shows the neural network structure used in this project. It is
a 2-layer, 32-node network with 17 inputs and 6 outputs.

Effectiveness of Deep RL Algorithms 343

3 Results

Table 1 shows all of the results from the experiment. For reasons detailed in the Anal-
ysis section (Section 4), the results from Learning Rates 1e-1, 1e-2, and 1e-5 were
dropped.

Algorithm 1e-1 LR 1e-2 LR 1e-3 LR 3e-4 LR 1e-4 LR 1e-5
TRPO 470.515 595.417 773.893 669.667 709.202 410.042
PPO 34.448 369.436 1086.395 814.096 665.178 -1.633
VPG 246.349 1159.34 443.049 208.143 58.494 -82.808

Table 1: Average Reward for Algorithms and Learning Rates

PPO outperformed TRPO and VPG for LRs 1e-3 and 3e-4. TRPO outperformed
VPG for all of the LRs except for LR 1e-2, where VPG got the highest results. Further-
more, TRPO tended to perform well across many learning rates, while PPO performed
very well for a select range of learning rates and VPG performed poorly for most learn-
ing rates. Table 2 shows the modified results in numerical form, while Figure 2 shows
the results as a line graph.

Algorithm LR 1e-3 LR 3e-4 LR 1e-4
TRPO 773.893 669.667 709.202
PPO 1086.395 814.096 665.178
VPG 443.049 208.143 58.494

Table 2: Average Reward for Algorithms and Learning Rates

Fig. 3: The above graph shows the average 100-episode reward for the three different
algorithms for all six learning rates.

344 Neervannan

The below six graphs show the learning curves for the algorithms for each learning
rate.

Fig. 4: The above graph shows the reward
over episodes for learning rate 1e-1. Green
= PPO, Red = TRPO, Blue = VPG.

Fig. 5: The above graph shows the reward
over episodes for learning rate 1e-2. Green
= PPO, Red = TRPO, Blue = VPG.

Fig. 6: The above graph shows the reward
over episodes for learning rate 1e-3. Green
= PPO, Red = TRPO, Blue = VPG.

Fig. 7: The above graph shows the reward
over episodes for learning rate 3e-4. Green
= PPO, Red = TRPO, Blue = VPG.

Fig. 8: The above graph shows the reward
over episodes for learning rate 1e-4. Green
= PPO, Red = TRPO, Blue = VPG.

Fig. 9: The above graph shows the reward
over episodes for learning rate 1e-5. Green
= PPO, Red = TRPO, Blue = VPG.

Effectiveness of Deep RL Algorithms 345

4 Analysis and Discussion

The hypothesis was partially supported, as the Proximal Policy Optimization (PPO) al-
gorithm outperformed the Trust-Region Policy Optimization (TRPO) for two out of the
three learning rates examined, and consistently had a higher momentum in the learning
curves. VPG performed significantly worse that TRPO and PPO for all three learning
rates.

4.1 Learning Rate 1e-1

All three agents did not learn at all with learning rate 1e-1, and their rewards oscillated
randomly (refer to Figure 3). Hence the results from this learning rate were disregarded.

4.2 Learning Rate 1e-2

With a learning rate of 1e-2, VPG appeared to attain a better result, but the results
fluctuated randomly and did not show consistent improvement (refer to Figure 4). Both
PPO and TRPO had flat learning curves showing no consistent improvement in the
rewards. Hence the results from this learning rate were disregarded.

4.3 Learning Rate 1e-3

With the learning rate of 1e-3, all three agents performed 6well (refer to Figure 5). In
fact this learning rate provided the highest reward for all 3 agents across all learning
rates and hence was chosen as the best learning rate. PPO outperformed TRPO and
VPG with the highest reward.

4.4 Learning Rate 3e-4

With this learning rate PPO outperformed TRPO and VPG (refer to Figure 6). Even
though all 3 algorithms showed good performance, rewards were still lower than 1e-3.
PPO had the best momentum for this learning rate.

4.5 Learning Rate 1e-4

With the learning rate of 1e-4, VPG did not perform well as can be seen with the fairly
flat reward function (refer to Figure 7). TRPO outperformed PPO by a relatively small
margin. However, in the learning curve graph, PPO had a much higher slope as the
training neared completion (around 30000 episodes). This indicated that, although PPO
had a smaller reward, it had a higher learning momentum, and therefore performed the
best for learning rate 1e-4.

346 Neervannan

4.6 Learning Rate 1e-5
With the learning rate of 1e-5 both PPO and VPG did poorly as can be with the flat line
for the reward growth with episodes (refer to Figure 8). Even though TRPO showed a
fairly good learning curve, the reward at 40,000 episodes was almost half that of other
learning rates, such as 1e-3 and 3e-4. For this reason the results from this learning rate
were disregarded.

4.7 Final Rankings
Therefore, PPO was determined to be the most effective algorithm for this task as it not
only outperformed TRPO in two out of three learning rates and VPG in all three learn-
ing rates, but also consistently showed to have a higher learning momentum through the
learning process. TRPO was given the second-highest rank as it consistently obtained
better rewards than VPG, and also had a much better learning curve than VPG. Learn-
ing rate 1e-3 was chosen as the best learning rate for the algorithms as the algorithms
performed best with this learning rate.

5 Conclusion

The purpose of this project was to determine which reinforcement learning algorithm
would perform the best to learn to walk, a simple locomotion task, in a simulated en-
vironment. The hypothesis, based on previous studies, stated that the Proximal Policy
Optimization Algorithm would perform the best, followed by the Vanilla Policy Gradi-
ent and the Trust-Region Policy Optimization. Algorithms were graded across a set of
criteria, which included the 100-episode average reward after training, the speed of the
learning process, the consistency of improvement across episodes, and others.

The hypothesis was partially supported, as the PPO algorithm outperformed TRPO and
VPG, in that order. The results from learning rates 1e-1, 1e-2, and 1e-5 were disregarded
because they failed to meet the criteria. All algorithms performed best for learning rate
1e-3, and with that learning rate, PPO outperformed TRPO and VPG, in that order. With
learning rates 1e-3 and 3e-4, PPO outperformed TRPO, and even though it performed
marginally worse with Learning rate 1e-4, it consistently showed to have a higher mo-
mentum throughout the learning process. VPG performed significantly worse than PPO
and TRPO on all three learning rates examined.

6 Acknowledgements

I would like to thank the following people for helping me with my project:
– Professor Alexander Ihler, Associate Professor of Information and Computer Sci-

ence at University of California, Irvine and Director of UCIs Center for Machine
Learning and Intelligent Systems

– Michael Schaarschmidt, PhD Student, Networks and Operating Systems Group
Computer Laboratory, University of Cambridge, and co-author of Tensorforce

– Alex Kuhnle, PhD Student, NLIP group at the Computer Laboratory, University of
Cambridge, and co-author of Tensorforce

Effectiveness of Deep RL Algorithms 347

References

Agarwal, S. (2018). Approximately Optimal Approximate RL, TRPO. Github, IEOR 8100,
https://ieor8100.github.io/rl/docs/Lecture%207%20-Approximate%20RL.pdf.

Baird, L., Moore, A. (1999). Gradient Descent for General Reinforcement Learning.
ArXiV, MIT Press, 1999, https://www.ri.cmu.edu/pub files/pub1/baird leemon 1999 1/
baird leemon 1999 1.pdf.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., Zaremba, W.
(2016). OpenAI Gym. ArXiV, OpenAI, 5 June 2016, https://arxiv.org/pdf/1606.01540v1.pdf.

Goodfellow, I., Bengio, Y., Courville, A. (2107) Deep Learning. MIT Press.

Grosse, R. (2017). CSC2541 Lecture 5 Natural Gradient. Github, University of Toronto,
http://csc2541-f17.github.io/slides/lec05a.pdf.

Kakade, S., Langford, J. (2002) Approximately Optimal Approximate Reinforcement
Learning. EECS, UC Berkeley (2002), http://people.eecs.berkeley.edu/∼pabbeel/cs287-
fa09/readings/KakadeLangford-icml2002.pdf.

Kingma D., Ba, J. (2015). ADAM: A Method for Stochastic Optimization. ArXiV. Retrieved
May 8 2018, from https://arxiv.org/pdf/1412.6980.pdf.

Kullback, S., (1959). Information Theory and Statistics. Dover Publ.

Lange, K., (2007). The MM Algorithm. UC Berkeley Statistics, UC Berkeley (Apr. 2007),
http://www.stat.berkeley.edu/∼aldous/Colloq/lange-talk.pdf.

Li, F., Johnson, J., Yeung, S. (2017). ”Lecture 14: Reinforcement Learning.” Stanford, Stanford
May 2017, http://cs231n.stanford.edu/slides/2017/cs231n 2017 lecture14.pdf

Lu, Y. (2017). Notes on Trust Region Policy Optimization. Max’s Blog, University of Pennsyl-
vania 25 June 2017, http://178.79.149.207/posts/trpo.html.

Li, Y. (2017). DEEP REINFORCEMENT LEARNING: AN OVERVIEW. ArXiV 15 Sept. 2017,
https://arxiv.org/pdf/1701.07274.pdf.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A., Veness, J., Bellemare, M., Graves, A., Ried-
miller, M., Fidjeland, A., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I.,
King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis, D. (2015). Human-level control
through deep reinforcement learning. Nature. Retrieved from https://web.stanford.edu/class/
psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf.

Peng, X., Panne, M. (2016). LEARNING LOCOMOTION SKILLS USING DEEPRL: DOES
THE CHOICE OF ACTION SPACE MATTER? ArXiV, University of British Columbia 3
Nov. 2016, https://arxiv.org/pdf/1611.01055.pdf.

Ruder, S. (2017). An Overview of Gradient Descent Optimization Algorithms. ArXiV,
Insight Centre for Data Analytics, NUI Galway Aylien Ltd. 15 June 2017,

https://ieor8100.github.io/rl/docs/Lecture%207%20-Approximate%20RL.pdf
https://www.ri.cmu.edu/pub_files/pub1/baird_leemon_1999_1/baird_leemon_1999_1.pdf
https://www.ri.cmu.edu/pub_files/pub1/baird_leemon_1999_1/baird_leemon_1999_1.pdf
https://arxiv.org/pdf/1606.01540v1.pdf
http://csc2541-f17.github.io/slides/lec05a.pdf
http://people.eecs.berkeley.edu/~pabbeel/cs287-fa09/readings/KakadeLangford-icml2002.pdf
http://people.eecs.berkeley.edu/~pabbeel/cs287-fa09/readings/KakadeLangford-icml2002.pdf
https://arxiv.org/pdf/1412.6980.pdf
http://www.stat.berkeley.edu/~aldous/Colloq/lange-talk.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture14.pdf
http://178.79.149.207/posts/trpo.html
https://arxiv.org/pdf/1701.07274.pdf
https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf
https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf
https://arxiv.org/pdf/1611.01055.pdf

348 Neervannan

https://arxiv.org/pdf/1609.04747.pdf.

Schmidhuber, J. (2014). Deep Learning in Neural Networks: An Overview. ArXiV, University of
Lugano and SUPSI 8 Oct. 2014, https://arxiv.org/pdf/1404.7828.pdf.

Schulman, J., Levine, S., Moritz, P., Jordan, M., Abbeel, P. (2015). Trust Region Policy
Optimization. ArXiV. https://arxiv.org/pdf/1502.05477.pdf.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O. (2017). Prox-
imal Policy Optimization Algorithms. ArXiV. Retrieved May 5, 2018, from
https://arxiv.org/pdf/1707.06347.pdf.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T.,
Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L., Driessche, G., Grae-
pel, T., Hassabis, D. (2017). Mastering the Game of Go without Human Knowledge. Nature
News, Nature Publishing Group, 18 Oct. 2017, https://www.nature.com/articles/nature24270.

Sutton, R., Barto A. (2015). Reinforcement Learning: An Introduction. Stanford, The MIT Press
2015, https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf.

Thomas, P., and Brunskill E. (2017). Policy Gradient Methods for Reinforcement Learning
with Function Approximation and Action-Dependent Baselines. ArXiV, Carnagie Mellon
University and Stanford University, 20 June 2017, https://arxiv.org/pdf/1706.06643.pdf.

Williams, R. (2017). Simple Statistical Gradient-Following Algorithms for Connectionist Rein-
forcement Learning. ArXiV, Northeastern University, http://www-anw.cs.umass.edu/∼barto/
courses/cs687/williams92simple.pdf.

Received August 2, 2018 , revised September 30, 2018, accepted October 1, 2018

https://arxiv.org/pdf/1609.04747.pdf
https://arxiv.org/pdf/1404.7828.pdf
https://arxiv.org/pdf/1502.05477.pdf
https://arxiv.org/pdf/1707.06347.pdf
https://www.nature.com/articles/nature24270
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://arxiv.org/pdf/1706.06643.pdf
http://www-anw.cs.umass.edu/~barto/courses/cs687/williams92simple.pdf
http://www-anw.cs.umass.edu/~barto/courses/cs687/williams92simple.pdf

	Evaluating the Effectiveness of Deep Reinforcement Learning Algorithms in a Walking Environment
	Introduction
	Basic Terminology
	Vanilla Policy Gradient
	Trust-Region Policy Optimization
	Proximal Policy Optimization

	Experimental Design
	Results
	Analysis and Discussion
	Learning Rate 1e-1
	Learning Rate 1e-2
	Learning Rate 1e-3
	Learning Rate 3e-4
	Learning Rate 1e-4
	Learning Rate 1e-5
	Final Rankings

	Conclusion
	Acknowledgements

