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Abstract. There exist distinctive words that are used to express same semantics and as a result of 

this it has become hard to quantify the exact matching of words. To deal with this issue, past 

investigations endeavored to ascertain a likeness between distinctive pair of words. Conventional 

methodologies for computing word similarity are based on repositories like WordNet. It is a 

manually created lexical database and it processes semantic connection between various words. 

However, WordNet is a universally useful asset but wide range of words are not present in it and 

furthermore there exist an issue of identifying the meaning of words. Implication of words are 

diverse in WordNet when we utilize it in a textual framework. There exists a need of  the refined 

approach that can gauge words resemblance in light of their co-occurrence. In this examination, 

we proposed an approach that registers likeness in text particular words, with the assistance of 

literary substance of various posts on StackOverflow. Our proposed strategy figures out word 

similarities in text by ascertaining the weighted co-occurrence in view of Computing Term Co- 

occurrence (CTC) and SentiWordNet. The exploratory outcome demonstrates that our system 

proposed an arrangement of words that are identified with text data is exceptional. Moreover, 

when it was compared with WordNet-based strategy named as WordNetres, it results with better 

outcomes. 
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1. Introduction 
 

With the quick advancement of computers in all fields of life, the volume of 

information and data increases with the advancement of data innovations. These 

innovations increment the volume of information by Microblogging locales, Blogs, E-

Commerce sites and so on. It is assessed that consistently 2.5 trillion bytes data is 

delivered and 90% data of worlds is created in most recent two years. Increment in fast 

volume of data likewise named as 'Big Data' has made major issues i.e. how to locate the 

required data from trillions of data. To deal with this inquiry another term named as 'Big 

Data Retrieval' is conceived. 
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After the enhancement of software systems, stakeholders and developers typically 

make natural language artefacts (NLA) to communicate with one and another. Later on, 

the developers need to break down these NLA’s to perform distinctive text building 

exercises (Haiyan, 2007). There are numerous examinations and these investigations 

proposed texted intends to build up these obligations. For instance, code search which 

takes a query as an input and returns us distinctive parts of the code that are identified 

with a particular query (Linstead et al., 2009). Indistinguishable bug report finding 

perceive diverse report records that characterize those issues that are same.However, it is 

composed in divergent practices by individuals (Wang et al., 2012). The essential 

movement in these strategies to figure out the similarity between two records. There are 

distinctive words in NL reports and these words have the same importance. Accordingly, 

to compute the resemblance of various records, it isn't conceivable to coordinate same 

words; thusly we have to ascertain the semantic separation among various words. 

For instance, words like student, pencil, and paper are more comparative than Jupiter, 

road, computer and mountain. Figuring the semantic separation between various kinds of 

words is extremely basic for people. For machines and calculations, it is exceptionally 

harder. The NLP has dealt with this issue for quite a while (Jiang and Conrath, 1998). To 

enhance machine learning undertaking ascertain words similarity has a required 

assignment, e.g., data gathering (Chen et al., 2005) and content gathering (Islam and 

Inkpen, 2006). There are few errands identified with software engineering that are 

incorporated in these sorts of assignments that are programming particular (Marcus and 

Marcus, 2008; Sridhara et al., 2008). We can enhance these challenges with the 

assistance ofword similaritydata. In spite of the fact that a considerable measure of 

research work has been uncovered on the utilization of same words to the change of 

indexed lists when we apply code search (Runeson et al., 2007). Along with these lines, 

we can state that registering the comparability of various words is huge to text particular 

research. 

For estimating exactness between the diverse matching of words NLP made 

WordNet (Miller, 1995). It is a database which is utilized for general purpose and it has 

bunch ofadjectives, verbs, adverbs and nouns into reasoning synonym groups. For 

ascertaining the semantic distance between two distinct words we can likewise utilize 

WordNet. In view of broadly useful nature of WordNet, it may not contain an expansive 

number of various words that are of textual context. For instance, extraordinary words 

i.e. programming or logical and database specific words like "localhost","cmd", "src", 

"WSDL", and so forth can't accessible in WordNet in light of the fact that these words 

are programming particular and database specific. 

Also, in WordNetsome words are programming particular yet their semantic 

importance spared in WordNet repository is change. For instance, a word "Eclipse" in 

WordNet database is connected with the moon yet in programming perspective; it is an 

IDE (integrated development environments). Later on, another paper recommended that 

general similarity count established on WordNet can't give great outcomes and can't 

propose us same words in software perspective (Wu et al., 2009). Accordingly, we will 

build up an uncommon word likeness lexical database for groups identified with 

software engineering. 

A great deal of research has been led to build up a word similarity repository that is 

especially for the group which is identified with software engineering. Yang and Tan, 

2013 finished up with connected words in programming premise code. Another 
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exploration led by Howard et al.(2013)extricates related verb sets accumulated from post 

and procedure marks. However various words that are identified with programming are 

additionally not present in the code, but rather placed in the various connected content 

substances, posts of forms, the reports identified with bugs, distinctive conferred logs 

and so forth. Moreover, there are few words that are in code, especially extraordinary 

commenting used to recognize something or utilized as a part of various strategies that 

are identified with few activities. Another examination directed by Wang et al., 2012 that 

assembles semantically same labels in FreeCode. In any case, they can just ascertain the 

likeness of various labels and not with the numerous ones that are in FreeCode. In our 

work, we will build a more refined word similarity database which will be utilized for 

various programming designed obligations on a wide range of related ventures. 

In the event in which the substance of two words are same then it might be viewed as 

comparative. For instance, "tcp" and "customer" often show up in few sections, 

sentences, or online journals that depictnetworking. Keeping in view the end goal to 

recognize such excess, there is a need to build up another approach on the basis of the 

idea of word co-occurrence to compute the resemblance of two distinct words. We 

aggregate each word which evolves in the co-occurrence of a vector with some notable 

labels identified with software, different words and diverse programming labels which 

can relate each pair based on their co-occurrence. 

Our new similitude metric𝑊𝑜𝑟𝑑𝑆𝑖𝑚𝐶𝑇𝐶 ,we endeavour to outline a semantic database 

for text corpus that is domainspecific and superior to WordNet. We used StackOverflow 

dataset that is a prevalent inquiry noting site and take its posts as info which incorporates 

a substantial number of words identified with software context. We additionally control 

the technique for labelling on account of its regularity which is maintained by countless 

data sites including SourceForge, FreeCode and StackOverflow. These labels are utilized 

for marking the key highlights of client created substance which are frequent terms that 

are programming particular. We utilize diverse posts from StackOverflow as semantic 

words to ascertain the similarity of various words. 

We think about our technique that depends on𝑊𝑜𝑟𝑑𝑆𝑖𝑚𝐶𝑇𝐶 , with an old word 

similarity database ascertained by a WordNet based strategy. Pedersen et al. (2004) 

named that as WordNet resource used for various words. We utilize SentiWordNet 

alongside with 𝑊𝑜𝑟𝑑𝑆𝑖𝑚𝐶𝑇𝐶 to get the upper 10 related words. In this we utilize ten 

people to judge the effectiveness of each and every technique by labelling the yield 

words with various scores to some degree. We assembled a wide range of words 

identified with programming setting that are not accessible in WordNet asset. Few words 

that are accessible in both 𝑊𝑜𝑟𝑑𝑆𝑖𝑚𝐶𝑇𝐶and SentiWordNet DB,that is averagely 

computed and it is 51% higher than the average score of the WordNet asset. Our main 

contributions in this research are:  

1. We build up a word similarity database that is programming particular 

utilizing 10,000 posts in StackOverflow. 

2. We proposed another closeness construct strategy that depends on the 

technique for labeling and gathering a word based on co-occurrence. A 

similarity of words is ascertained by figuring the resemblance of their 

reliable characteristics and contexts. 

3. We applied our proposed technique on various words that are programming 

particular with the assistance of ten humans. Our research demonstrates that 

strategy gives better outcomes when contrasted with WordNet. There are 
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55% words that don't show up in WordNet and other 45% percent that are 

accessible can't coordinate with its correct implications as indicated by the 

programming specific context. 

Whatever remains of paper is sorted out as takes after. Segment 2 presents the 

Related Work. Segment 3 discusses about the Preliminaries. Segment 4 outlines the 

proposed framework depiction. A framework incorporates four noteworthy strides of 

proposed model including Dataset and Pre-processing. Segment 5 demonstrates the 

Experiments and results. Conclusion is tended to in area 6 and finally, there is a 

segment of References. 

2. Related work 

Acquiring similarity between two words is one of the straightforward NLP assignments. 

Numerous papers show the various techniques to degree of this similarity. A large 

portion of the mainstream existing methods contain a lexical database to ascertain 

similarities of words. Pedersen et al.(2004) have made a UI to allow clients to compute 

the semantic separation between words. They ascertain the likenesses of all sets of words 

in WordNet and freely (Porter, 1980). 

Like these examinations, we additionally endeavour to figure out the 

similitudes in words. However, endeavouring to utilize, WordNet is a universally useful 

asset, we used to administrate the Normalised Google Distance(NGD), which is specific 

for the undertakings identified with programming build setting. Various strategies have 

additionally been recommended to naturally develop a dictionary (Chen et al., 2005; 

Falleri et al., 2010). They developed it on the distributional theory that embraces that 

wordin similar settings that is required to have the comparable sense. For introducing 

novelty in existing approaches wecentreon the software engineering group, preferably 

not the same as the general dataset we make for utilization of a dataset which is 

identified with software engineering. 

Yang and Tan (2013) displayed the strategy for ascertaining the semantic 

closeness in programming source code document. They introduced a system that takes 

input code with a container of stopwords and produces the corresponded set of words. 

Exploratory outcomes demonstrate that this procedure is debugged in C and JAVA to 

judge the semantic related words with more accuracy. Later a comparable system is 

introduced by Howard et al., (2013) which compute the semantic scores from client 

remarks. They extricated 97 same verb sets from 150 strategies are tested arbitrarily 

from 36 Java codes over few spaces. In this examination, we likewise create 

semantically associated words. However, we analyse textual context that is programming 

particular opposed to breaking down code.Conventional techniques including machine 

learning and lexicon based strategies are especially utilized as a part of customary 

methodologies. Matveeva (2006) proposed the Vector Space Model (VSM) to figure the 

similarity between two vectors utilizing Cosine similarity.. 

2.1. Research Questions 

There are some research questions:  

1. How precisely our projected method is associated with the baseline method?  
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2. How universal our projected method is used to calculate the similarity of 

words?  

3. How our proposed method is scalable? 

As for as we see this from data recovery perspective, the primary inquiry figures 

exactness while the second computes review. A measure of soundness is called accuracy, 

while measure of culmination is called review. In last inquiry, there is a need to research 

an opportunity which creates WordSimSE DB from a product related words and the 

probability to increase WordSimDB SE by observing more surveys. 

2.2. Preliminaries 

We initially examine StackOverflow, which is extremely famous these days in term of 

questions and their answers. At this point we discuss about various prominent content 

pre-handling techniques, for example stop-word disposal, tokenization of data and 

stemming. 

1. StackOverflow: It is one of the popular site on which we question about our 

problem. It offers a bridge for developers to support one another by answering 

and questioning. With more than 1.8 million people and over 5,000,000 queries 

on StackOverflow. Most of the subjects of StackOverflow are associated to 

software related tasks. In our research, we get dataset from StackOverflow to 

make a database that contains similarity between different words.  

2. Word Co-occurrence: It is the idea of co-occurrence of words based on 

“context”, which talks about the nearby words of a specific word (Höst et al., 

2000). For scope of word we used a sliding window that limits some context. 

The targeted words should be located in centre of the window. For example, a 

window having mass 7 would also contain the targeted word itself i.e. the three 

words having three words to its left and three to right. If word is located in the 

start, a size 5 sliding window only contains the target word and 2 other words 

that are appearing on right side of it. 

3. The context of phrases and words varies as per their use in daily life of 

comparative semantics to some other phrases and words. In term of computer, 

"society" can be considered as "database" and "use" can be considered as a way 

that is used for database. For a particular query we usedGooglesearch engine. 

This concept is then further applied to construct a technique that automatically 

extracts all those pages that pertained a particular word association using 

Google page count. This technique is likely applicable in clustering, 

classification and language translation.  

3. Proposed Model for Word Similarity Database 

In order to get more successful results, we should make sure that our proposed 

approach performance should be equal or better than  accepted solutions to software 

specific words similarity database construction. In the domain of software engineering 

especially, word similarity the proposed approach is compared with existing state-of-the-

art approaches that have much better acceptance and credibility. 
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Fig. 1. Proposed model for Word Similarity Database 

 

The proposed approach for 𝑊𝑜𝑟𝑑𝑆𝑖𝑚𝐶𝑇𝐶attempts to identify most appropriate words 

based on computational process. It extractssimilar words from reviews, blogs and users 

questions/answers repositories and thenassociates it with the word similarity database as 

shown in Fig.1. Different steps of proposed model will discuss in below section.  

3.1. Pre-processing 

Pre-processing can be considered as a key step in dataset pruning. In this module 

documents from social web possibly stack overflow and Facebook forums are taken as 

input. Such raw documents may contain text, code, tags and may also contain redundant 

or irrelevant data. Some redundant or irrelevant text snippetis discarded on the basis of 

following rules: 

1. Universal Resource Locator (URL) will be removed because URL does not 

consider as a part of the job forgetting viewpoints. 

2. We will remove every single word that does not start with English alphabet or a 

digit. 

3. Common words like full stop, commas and punctuations etc. will also be 

eliminated by using a standard porter stemmer algorithm. 

4. We will also remove those words that start with the symbol “@” because this 

symbol is used at the beginning of usernames and we are not taking users and 

their relationship in it. We will also remove words start with “#” symbol. 
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3.2. Computing Term Co-occurrence (CTC) 

In this phase, each pre-processed document can be considered as a bag of words. CTC 

(Computing Term Co-occurrence) used to compute the semantic similarity between 

occur words with target words used in a document.Computation of Term Co-occurrence 

(CTC) is defined in equation (1). 

                                     𝐶𝑇𝐶(𝑡1, 𝑡2) =
high{𝑙𝑜𝑔𝑓(𝑡1),𝑙𝑜𝑔𝑓(𝑡2)}−log𝑓(𝑡1,𝑡2)

log 𝑁−low{𝑙𝑜𝑔𝑓(𝑡1),𝑙𝑜𝑔𝑓(𝑡2)}
                                (1) 

Wheref (𝑡1) is the number of pages containing occurrence of term𝑡1 and f 

(𝑡1, 𝑡2) containing association of both reported by Google. For the number of pages 

returned by Google we have to choose N and it is apparent that by reducing the N, the 

CTC will increase. In this experiment some main properties of CTC that were applied 

are as follows: 

1. The approximate value of the CTC lies between 0 and ∞, may be sometimes 

little bit negative if the Google search count irrelevant score  or when it 

contains too much junk information for: 

a. If 𝑡1 = 𝑡2 or if 𝑡1 ≠ 𝑡2 but the frequency f (𝑡1) =f (𝑡2)= 𝑓(𝑡1, 𝑡2) > 0, 

then𝐶𝑇𝐶(𝑡1, 𝑡2) = 0. 

b. If the occurrence f (𝑡1) =0 then for each term 𝑡2 we have 𝐶𝑇𝐶(𝑡1, 𝑡2) 

and the𝐶𝑇𝐶(𝑡1, 𝑡2) = ∞/∞. 

2. The weight of CTC is almost nonnegative and 𝐶𝑇𝐶(𝑡1, 𝑡2) = 0 for every𝑡1. For 

every pair  (𝑡1, 𝑡2) we have𝐶𝑇𝐶(𝑡1, 𝑡2) = 𝐶𝑇𝐶(𝑡2, 𝑡1), e.g. x indicate the set of 

web pages holding one or more occurrences of𝑡1,e.g. choose 𝑡1 ≠ 𝑡2 with x = y, 

formerly f (𝑡1) =f (𝑡2)= 𝑓(𝑡1, 𝑡2)and𝐶𝑇𝐶(𝑡1, 𝑡2) = 0.  

This association measure can be utilized to identify the most accurate co-occurrence 

of a particular term(see section 2.2 part 3). The main advantage of this approach is that 

doesn't require any background knowledge or any particular analysis of problem domain. 

Instead it automatically analyses all features through Google search using World Wide 

Web. In this phase term matrix is created that arrange each term along with 

corresponding target term. Term with minimum scorethan standard thresh hold i.e. 0.5 

are discarded. 

 
Algorithm 1. ComputeWord Similarity 

Input   :  All Pre-processed words (𝑊𝑎𝑙𝑙) 

               Output:  𝑊𝑜𝑟𝑑𝑠 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑑𝑎𝑡𝑏𝑎𝑠𝑒 𝑊𝑆𝐷𝐶𝑇𝐶 

Initialize an empty  𝑊𝑆𝐷𝐶𝑇𝐶 

for 𝑤𝑖 to 𝑊𝑎𝑙𝑙 

    for 𝑤𝑗  to 𝑊𝑎𝑙𝑙 

 𝑊𝑆𝐷𝐶𝑇𝐶 =  𝑊𝑆𝐷(𝑤𝑖, 𝑤𝑗) 

   end for 

end for 
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3.3. Computation Terms Similarity 

Generally, context words that are appearing with each term in a document are taken as a 

potential candidate for computing terms similarity in a document. To identify the context 

from a text, a sentiment dictionary or lexicon will be generated for each specific domain 

(SentiWordNet). Unit of resources are adjectives and verbs.  Such as <No> + <adjective 

+ verb>.  Similarity calculation technique is applied to all sentiment units. We assign a 

unique name to this similarity score as 𝑃𝐶𝑂𝐶𝐶𝑅  (Point wise Occurrence).  

𝑃𝑜𝑐𝑐𝑢𝑟(𝑤𝑖  , 𝑤𝑗) =  𝑙𝑜𝑔1

𝑃1(𝑤𝑖  , 𝑤𝑗)

𝑃(𝑤𝑖  ), 𝑃(𝑤𝑗)
(2) 

Where 

𝑤𝑖=First word, 𝑤𝑗=second word 

The optimized score is : 

  -∞ ≤  𝑃𝑜𝑐𝑐𝑢𝑟(𝑤𝑖  , 𝑤𝑗) ≤ min [−𝑙𝑜𝑔𝑃1(𝑤𝑖) − log 𝑝(𝑤𝑗)(3) 

Highest similarity score will be taken as final term score from text using equation (3). 

Generally 𝑃𝐶𝑂𝐶𝐶𝑅  scores will be calculated from whole document. 

___________________________________________________________________ 
Algorithm 2. Compute Optimized Word Similarity 

_______________________________________________________________________________ 

Input   :  All Pre-processed words (𝑊𝑎𝑙𝑙) 

               Output:  𝑊𝑜𝑟𝑑𝑠𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑑𝑎𝑡𝑏𝑎𝑠𝑒𝑊𝑆𝐷𝐶𝑇𝐶 

Initialize an empty 𝑊𝑆𝐷𝐶𝑇𝐶  

Cache  = Empty bin for words. 

for 𝑤𝑖 to 𝑊𝑎𝑙𝑙 

    if(𝑤𝑖  not in cache) 

         Compute scores from SentiWordNet of  𝑤𝑖 

         Add score to Cache 

Endif 

     for 𝑤𝑗  to 𝑊𝑎𝑙𝑙 

         if(𝑤𝑗 not in cache) 

             Compute scores from SentiWordNet of  𝑤𝑖 

             Add score to Cache 

Endif 

𝑊𝑆𝐷𝑁𝐺𝐷 = 𝑊𝑆𝐷(𝑤𝑖, 𝑤𝑗) 

 end for 

____________________________________________________________________________ 

 

4. Experiments 

This section will take a closer look at the experimental results. Various experiments are 

performed on the different dataset to evaluate the performance of proposed approach. 

The detail description of each experiment is as follows 



 Aspect Based Construction of Software-Specific Words Similarity Database 357 

 

4.1. Datasets 

We use three different datasets for experiments.  Details of all three datasets are given 

below. 

We develop a 𝑊𝑜𝑟𝑑𝑆𝑖𝑚𝐶𝑇𝐶using the question and answer posts from 

StackOverflow. We get this data from MSR 2013 Mining Challenge (Demeyer et al., 

2013). Our collected dataset is around 12 GB and holds all the posts that are produced 

from February 2014 to February 2018. We portray the data into different documents 

where every single document covers a question and all its answers. The description, title 

and all the tags of the question with their corresponding answers are mined and we save 

all this data in the document. We have collected 83,468 documents. Randomly we select 

sample 10,000 documents from all the dataset and use them to construct WordSimSE 

DB. All the tests are executed on an Intel Xeon X5460 3.26GHz server with 32.0GB 

RAM running Windows Server 2008 (32 bit). For the third step of our building 

procedure,we use 460 pairs of words gained from old work to adjust the weight 

parameters. We discover the better weights for α, β, and γ are 2.9, 2.1, and 1.5 

respectively. It shows that other software tags are less important than popular software 

tags and other words are less important than the software tags. As a baseline, we use 

WordNet word pair similarity dataset. In this dataset we have billions of word pairs and 

size of this dataset is approximately 100GB. We compute the similarity of a word on the 

basis of Resnik matric (Roldan-Vega et al., 2013). 

The popularity of micro-blogging is increasing day by day. People share their ideas 

on social media sites. Forums play an important part in social media sites, as forums 

allow users to share their ideas on any technique, method, issue etc. Software related 

forums are also present in vast number that is mainly used by developers or 

programmers. Usually, new ideasabout bug fixes and software fixes are discussed in 

these forums. We collected ten million comments from web related social media forums. 

These comments are extracted using Graph API (Weaver and Tarjan, 2013) from last 3 

months. 

Software repositories include packages related to software. Software companies 

and organizations maintain these repositories on their server. These repositories contain 

all information about software runtime errors, bugs, fixes and version details.  These 

repositories are very much useful for checking any software reliability. We are using one 

of the biggest repositories named as ‘tera-PROMISE’ repository (Anwer et al., 2017). 

This repository deals with software engineering data. It contains millions of records 

about software engineering domain. 

4.2. Results 

Evaluation criteria are very much important in evaluating the results of any technique. 

We describe the results in two different and new criterias. These criteria are discounted 

cumulative gain (DCG)and Likert score (LS) (Jarvelin and Kekalainen, 2002). WordNet 

is one of the largest lexicons and also the base of many new generated lexicons. Usually, 

45% words are present in WordNet lexicons which mean 450 words out of 1000 are 

present in WordNet. It also means WordNet returns only 450 software related words out 

of 1000. Our proposed approach returns1000 software related words out of 1000 which 

makes out approach far better than WordNet. 
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As mentioned earlier, WordNet provides the accuracy of 45% in terms of software 

related words. WordNet produces the average Likert score of 1.53 and our proposed 

approach has an average Likert score of 2.42.  Our proposed approach gets the 

improvement of 60.18% which clears that our approach captures the software related 

words accurately by identifying the semantic meanings of words.  Average Likert scores 

in tabular form are showing in Table 1. 

 
Table 1. Average Likert Scores 

 

Approach Average Likert score 

WordNet 1.53 

Proposed approach 2.42 

Improvement 60.18% 

Extraction of words with the ranking is one of the hardest tasks. Average Discounted 

Cumulative Gain is used to calculate the ranking of the extracted software related words 

(Wang et al., 2013), which implies that the most relevant document should be ranked 

first.  Ranking of words always helps to use words in the right way by using their ranks.  

Table 2 shows the results coming from WordNet and from our proposed approach. It 

also shows improvement of 74.21% from Wordnet approach.  

Table 2. Average Discounted Cumulative Gain scores 

 

Approach Average Discounted Cumulative Gain 

WordNet 15.74 

Proposed approach 28.62 

Improvement 74.21% 

Table 3 shows the comparison of our proposed technique with some state-of-the-art 

techniques. These techniques are extracted from past studies named as WordNet and 

Castellanoset al. (2017). We extract 10,000 word pairs by analysing 3,000 reviews. As 

shown in Table 3 proposed technique extracts fewer word pairs from WordNet and it 

extracts almost double times pair of words from Castellanos technique. 

 

Table 3. Comparisons in number of pairs 

 

Approach Pairs 

WordNet 22,034,553,550 

Castellanos et al. (2017) 5,636,534 

Proposed technique  10,612,089 

One of the research questions is scalability of proposed technique and the 

stability when reviews increase? To answers these questions we run proposed technique 

on 5,000, 10,000, 15,000, 20,000 and 25,000 reviews. Fig.2 shows the results when we 

run on different sets of datasets. 
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Fig. 2.  Word Pairs 

We also observed that how fast our proposed technique is working with some state-of-

the-art technique. For this, we plot the runtime values with number of reviews. Data pre-

processing, co-occurrence using normalized google distance and SentiWordNet are 

included in runtime. An experimental result shows that our proposed technique works 5 

to 6 times faster than the other technique.  Fig. 3 shows the comparison graph between 

proposed technique and state-of-the-art technique. 

 
Fig. 3. Comparison between basic approach and optimized approach 

Almost 30,000 comments are extracted from Facebookforums using Graph API.  

Comparison graph using basic approach and optimized approach is showing in Fig. 4.  

Reviews taken from social media forums are plotted on x-axis and time of a process is 

plotted on the y-axis. Results are extracted in term of the number of reviews like 5,000, 

10,000, 15,000, 20,000 etc. Fig. 4 shows the graph that optimized technique also works 

well for the last amount of reviews and its results are improved in last reviews. 
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Fig. 4. Comparison of Facebook Reviews 

 

 

 

Fig. 5. Comparison of Software Repository 

‘tera-PROMISE’ repository is one of the famous repositoriesthat iswidely used in 

many research papers. There are millions of records present in a repository but we pick 

fifty thousand sentences for our experiment. Experimental results are very promising, its 

runtime decreases as reviews or sentences increases.  Experimental results are plotted in 

Fig. 5, where runtime is present in y-axis and reviews are present in an x-axis. 
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5. Conclusion 

In this research, we proposed a method that automatically constructs software based term 

databases that save the common words of software engineering domain. We create a 

similarity metric named as WordSimSE based on question and answer posts in 

StackOverflow to calculate the similarity of different words based on their weights in co-

occurrences with three different kind of anchors. We compare our technique with a 

WordNet-based approach named as WordNet res. From results, it seems that our 

technique produces better results than WordNet res in terms of average discounted 

cumulative gain (DCG) and average Likert score by more than 67% and 51% 

respectively. Our enhanced method can evaluate the similarity of more than 35 million 

pairs of words in less than 17 minutes by examining a 60,000 document dataset. In 

future, we are going to enhance it for larger𝑊𝑜𝑟𝑑𝑆𝑖𝑚𝐶𝑇𝐶  SE by executing it with more 

question and answer posts from StackOverflow. We also have a plan to allow open 

access to an expanded 𝑊𝑜𝑟𝑑𝑆𝑖𝑚𝐶𝑇𝐶SE as a web service. 
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