
Baltic J. Modern Computing, Vol. 6 (2018), No. 4, 349-362

https://doi.org/10.22364/bjmc.2018.6.4.03

Aspect Based Construction of Software-Specific

Words Similarity Database

Asif NAWAZ1, Sohail ASGHAR2, Muhammad Rizwan Rashid RANA3
1Department of Computer Science & Software Engineering, International Islamic University,

Islamabad, Pakistan
2Department of Computer Science, COMSAT University, Islamabad, Pakistan

3University Institute of Information Technology, PMAS- Arid Agriculture University,

Rawalpindi, Pakistan

asif.nawaz@uaar.edu.pk, sohail.asg@gmail.com,

rizwanrana315@gmail.com

Abstract. There exist distinctive words that are used to express same semantics and as a result of

this it has become hard to quantify the exact matching of words. To deal with this issue, past

investigations endeavored to ascertain a likeness between distinctive pair of words. Conventional

methodologies for computing word similarity are based on repositories like WordNet. It is a

manually created lexical database and it processes semantic connection between various words.

However, WordNet is a universally useful asset but wide range of words are not present in it and

furthermore there exist an issue of identifying the meaning of words. Implication of words are

diverse in WordNet when we utilize it in a textual framework. There exists a need of the refined

approach that can gauge words resemblance in light of their co-occurrence. In this examination,

we proposed an approach that registers likeness in text particular words, with the assistance of

literary substance of various posts on StackOverflow. Our proposed strategy figures out word

similarities in text by ascertaining the weighted co-occurrence in view of Computing Term Co-

occurrence (CTC) and SentiWordNet. The exploratory outcome demonstrates that our system

proposed an arrangement of words that are identified with text data is exceptional. Moreover,

when it was compared with WordNet-based strategy named as WordNetres, it results with better

outcomes.

Keywords. Social Media; Natural Language Processing (NLP); WordNet.

1. Introduction

With the quick advancement of computers in all fields of life, the volume of

information and data increases with the advancement of data innovations. These

innovations increment the volume of information by Microblogging locales, Blogs, E-

Commerce sites and so on. It is assessed that consistently 2.5 trillion bytes data is

delivered and 90% data of worlds is created in most recent two years. Increment in fast

volume of data likewise named as 'Big Data' has made major issues i.e. how to locate the

required data from trillions of data. To deal with this inquiry another term named as 'Big

Data Retrieval' is conceived.

https://doi.org/10.22364/bjmc.2018.6.4.03

350 Nawaz et al.

After the enhancement of software systems, stakeholders and developers typically

make natural language artefacts (NLA) to communicate with one and another. Later on,

the developers need to break down these NLA’s to perform distinctive text building

exercises (Haiyan, 2007). There are numerous examinations and these investigations

proposed texted intends to build up these obligations. For instance, code search which

takes a query as an input and returns us distinctive parts of the code that are identified

with a particular query (Linstead et al., 2009). Indistinguishable bug report finding

perceive diverse report records that characterize those issues that are same.However, it is

composed in divergent practices by individuals (Wang et al., 2012). The essential

movement in these strategies to figure out the similarity between two records. There are

distinctive words in NL reports and these words have the same importance. Accordingly,

to compute the resemblance of various records, it isn't conceivable to coordinate same

words; thusly we have to ascertain the semantic separation among various words.

For instance, words like student, pencil, and paper are more comparative than Jupiter,

road, computer and mountain. Figuring the semantic separation between various kinds of

words is extremely basic for people. For machines and calculations, it is exceptionally

harder. The NLP has dealt with this issue for quite a while (Jiang and Conrath, 1998). To

enhance machine learning undertaking ascertain words similarity has a required

assignment, e.g., data gathering (Chen et al., 2005) and content gathering (Islam and

Inkpen, 2006). There are few errands identified with software engineering that are

incorporated in these sorts of assignments that are programming particular (Marcus and

Marcus, 2008; Sridhara et al., 2008). We can enhance these challenges with the

assistance ofword similaritydata. In spite of the fact that a considerable measure of

research work has been uncovered on the utilization of same words to the change of

indexed lists when we apply code search (Runeson et al., 2007). Along with these lines,

we can state that registering the comparability of various words is huge to text particular

research.

For estimating exactness between the diverse matching of words NLP made

WordNet (Miller, 1995). It is a database which is utilized for general purpose and it has

bunch ofadjectives, verbs, adverbs and nouns into reasoning synonym groups. For

ascertaining the semantic distance between two distinct words we can likewise utilize

WordNet. In view of broadly useful nature of WordNet, it may not contain an expansive

number of various words that are of textual context. For instance, extraordinary words

i.e. programming or logical and database specific words like "localhost","cmd", "src",

"WSDL", and so forth can't accessible in WordNet in light of the fact that these words

are programming particular and database specific.

Also, in WordNetsome words are programming particular yet their semantic

importance spared in WordNet repository is change. For instance, a word "Eclipse" in

WordNet database is connected with the moon yet in programming perspective; it is an

IDE (integrated development environments). Later on, another paper recommended that

general similarity count established on WordNet can't give great outcomes and can't

propose us same words in software perspective (Wu et al., 2009). Accordingly, we will

build up an uncommon word likeness lexical database for groups identified with

software engineering.

A great deal of research has been led to build up a word similarity repository that is

especially for the group which is identified with software engineering. Yang and Tan,

2013 finished up with connected words in programming premise code. Another

 Aspect Based Construction of Software-Specific Words Similarity Database 351

exploration led by Howard et al.(2013)extricates related verb sets accumulated from post

and procedure marks. However various words that are identified with programming are

additionally not present in the code, but rather placed in the various connected content

substances, posts of forms, the reports identified with bugs, distinctive conferred logs

and so forth. Moreover, there are few words that are in code, especially extraordinary

commenting used to recognize something or utilized as a part of various strategies that

are identified with few activities. Another examination directed by Wang et al., 2012 that

assembles semantically same labels in FreeCode. In any case, they can just ascertain the

likeness of various labels and not with the numerous ones that are in FreeCode. In our

work, we will build a more refined word similarity database which will be utilized for

various programming designed obligations on a wide range of related ventures.

In the event in which the substance of two words are same then it might be viewed as

comparative. For instance, "tcp" and "customer" often show up in few sections,

sentences, or online journals that depictnetworking. Keeping in view the end goal to

recognize such excess, there is a need to build up another approach on the basis of the

idea of word co-occurrence to compute the resemblance of two distinct words. We

aggregate each word which evolves in the co-occurrence of a vector with some notable

labels identified with software, different words and diverse programming labels which

can relate each pair based on their co-occurrence.

Our new similitude metric𝑊𝑜𝑟𝑑𝑆𝑖𝑚𝐶𝑇𝐶 ,we endeavour to outline a semantic database

for text corpus that is domainspecific and superior to WordNet. We used StackOverflow

dataset that is a prevalent inquiry noting site and take its posts as info which incorporates

a substantial number of words identified with software context. We additionally control

the technique for labelling on account of its regularity which is maintained by countless

data sites including SourceForge, FreeCode and StackOverflow. These labels are utilized

for marking the key highlights of client created substance which are frequent terms that

are programming particular. We utilize diverse posts from StackOverflow as semantic

words to ascertain the similarity of various words.

We think about our technique that depends on𝑊𝑜𝑟𝑑𝑆𝑖𝑚𝐶𝑇𝐶 , with an old word

similarity database ascertained by a WordNet based strategy. Pedersen et al. (2004)

named that as WordNet resource used for various words. We utilize SentiWordNet

alongside with 𝑊𝑜𝑟𝑑𝑆𝑖𝑚𝐶𝑇𝐶 to get the upper 10 related words. In this we utilize ten

people to judge the effectiveness of each and every technique by labelling the yield

words with various scores to some degree. We assembled a wide range of words

identified with programming setting that are not accessible in WordNet asset. Few words

that are accessible in both 𝑊𝑜𝑟𝑑𝑆𝑖𝑚𝐶𝑇𝐶and SentiWordNet DB,that is averagely

computed and it is 51% higher than the average score of the WordNet asset. Our main

contributions in this research are:

1. We build up a word similarity database that is programming particular

utilizing 10,000 posts in StackOverflow.

2. We proposed another closeness construct strategy that depends on the

technique for labeling and gathering a word based on co-occurrence. A

similarity of words is ascertained by figuring the resemblance of their

reliable characteristics and contexts.

3. We applied our proposed technique on various words that are programming

particular with the assistance of ten humans. Our research demonstrates that

strategy gives better outcomes when contrasted with WordNet. There are

352 Nawaz et al.

55% words that don't show up in WordNet and other 45% percent that are

accessible can't coordinate with its correct implications as indicated by the

programming specific context.

Whatever remains of paper is sorted out as takes after. Segment 2 presents the

Related Work. Segment 3 discusses about the Preliminaries. Segment 4 outlines the

proposed framework depiction. A framework incorporates four noteworthy strides of

proposed model including Dataset and Pre-processing. Segment 5 demonstrates the

Experiments and results. Conclusion is tended to in area 6 and finally, there is a

segment of References.

2. Related work

Acquiring similarity between two words is one of the straightforward NLP assignments.

Numerous papers show the various techniques to degree of this similarity. A large

portion of the mainstream existing methods contain a lexical database to ascertain

similarities of words. Pedersen et al.(2004) have made a UI to allow clients to compute

the semantic separation between words. They ascertain the likenesses of all sets of words

in WordNet and freely (Porter, 1980).

Like these examinations, we additionally endeavour to figure out the

similitudes in words. However, endeavouring to utilize, WordNet is a universally useful

asset, we used to administrate the Normalised Google Distance(NGD), which is specific

for the undertakings identified with programming build setting. Various strategies have

additionally been recommended to naturally develop a dictionary (Chen et al., 2005;

Falleri et al., 2010). They developed it on the distributional theory that embraces that

wordin similar settings that is required to have the comparable sense. For introducing

novelty in existing approaches wecentreon the software engineering group, preferably

not the same as the general dataset we make for utilization of a dataset which is

identified with software engineering.

Yang and Tan (2013) displayed the strategy for ascertaining the semantic

closeness in programming source code document. They introduced a system that takes

input code with a container of stopwords and produces the corresponded set of words.

Exploratory outcomes demonstrate that this procedure is debugged in C and JAVA to

judge the semantic related words with more accuracy. Later a comparable system is

introduced by Howard et al., (2013) which compute the semantic scores from client

remarks. They extricated 97 same verb sets from 150 strategies are tested arbitrarily

from 36 Java codes over few spaces. In this examination, we likewise create

semantically associated words. However, we analyse textual context that is programming

particular opposed to breaking down code.Conventional techniques including machine

learning and lexicon based strategies are especially utilized as a part of customary

methodologies. Matveeva (2006) proposed the Vector Space Model (VSM) to figure the

similarity between two vectors utilizing Cosine similarity..

2.1. Research Questions

There are some research questions:

1. How precisely our projected method is associated with the baseline method?

 Aspect Based Construction of Software-Specific Words Similarity Database 353

2. How universal our projected method is used to calculate the similarity of

words?

3. How our proposed method is scalable?

As for as we see this from data recovery perspective, the primary inquiry figures

exactness while the second computes review. A measure of soundness is called accuracy,

while measure of culmination is called review. In last inquiry, there is a need to research

an opportunity which creates WordSimSE DB from a product related words and the

probability to increase WordSimDB SE by observing more surveys.

2.2. Preliminaries

We initially examine StackOverflow, which is extremely famous these days in term of

questions and their answers. At this point we discuss about various prominent content

pre-handling techniques, for example stop-word disposal, tokenization of data and

stemming.

1. StackOverflow: It is one of the popular site on which we question about our

problem. It offers a bridge for developers to support one another by answering

and questioning. With more than 1.8 million people and over 5,000,000 queries

on StackOverflow. Most of the subjects of StackOverflow are associated to

software related tasks. In our research, we get dataset from StackOverflow to

make a database that contains similarity between different words.

2. Word Co-occurrence: It is the idea of co-occurrence of words based on

“context”, which talks about the nearby words of a specific word (Höst et al.,

2000). For scope of word we used a sliding window that limits some context.

The targeted words should be located in centre of the window. For example, a

window having mass 7 would also contain the targeted word itself i.e. the three

words having three words to its left and three to right. If word is located in the

start, a size 5 sliding window only contains the target word and 2 other words

that are appearing on right side of it.

3. The context of phrases and words varies as per their use in daily life of

comparative semantics to some other phrases and words. In term of computer,

"society" can be considered as "database" and "use" can be considered as a way

that is used for database. For a particular query we usedGooglesearch engine.

This concept is then further applied to construct a technique that automatically

extracts all those pages that pertained a particular word association using

Google page count. This technique is likely applicable in clustering,

classification and language translation.

3. Proposed Model for Word Similarity Database

In order to get more successful results, we should make sure that our proposed

approach performance should be equal or better than accepted solutions to software

specific words similarity database construction. In the domain of software engineering

especially, word similarity the proposed approach is compared with existing state-of-the-

art approaches that have much better acceptance and credibility.

354 Nawaz et al.

Fig. 1. Proposed model for Word Similarity Database

The proposed approach for 𝑊𝑜𝑟𝑑𝑆𝑖𝑚𝐶𝑇𝐶attempts to identify most appropriate words

based on computational process. It extractssimilar words from reviews, blogs and users

questions/answers repositories and thenassociates it with the word similarity database as

shown in Fig.1. Different steps of proposed model will discuss in below section.

3.1. Pre-processing

Pre-processing can be considered as a key step in dataset pruning. In this module

documents from social web possibly stack overflow and Facebook forums are taken as

input. Such raw documents may contain text, code, tags and may also contain redundant

or irrelevant data. Some redundant or irrelevant text snippetis discarded on the basis of

following rules:

1. Universal Resource Locator (URL) will be removed because URL does not

consider as a part of the job forgetting viewpoints.

2. We will remove every single word that does not start with English alphabet or a

digit.

3. Common words like full stop, commas and punctuations etc. will also be

eliminated by using a standard porter stemmer algorithm.

4. We will also remove those words that start with the symbol “@” because this

symbol is used at the beginning of usernames and we are not taking users and

their relationship in it. We will also remove words start with “#” symbol.

 Aspect Based Construction of Software-Specific Words Similarity Database 355

3.2. Computing Term Co-occurrence (CTC)

In this phase, each pre-processed document can be considered as a bag of words. CTC

(Computing Term Co-occurrence) used to compute the semantic similarity between

occur words with target words used in a document.Computation of Term Co-occurrence

(CTC) is defined in equation (1).

 𝐶𝑇𝐶(𝑡1, 𝑡2) =
high{𝑙𝑜𝑔𝑓(𝑡1),𝑙𝑜𝑔𝑓(𝑡2)}−log𝑓(𝑡1,𝑡2)

log 𝑁−low{𝑙𝑜𝑔𝑓(𝑡1),𝑙𝑜𝑔𝑓(𝑡2)}
 (1)

Wheref (𝑡1) is the number of pages containing occurrence of term𝑡1 and f

(𝑡1, 𝑡2) containing association of both reported by Google. For the number of pages

returned by Google we have to choose N and it is apparent that by reducing the N, the

CTC will increase. In this experiment some main properties of CTC that were applied

are as follows:

1. The approximate value of the CTC lies between 0 and ∞, may be sometimes

little bit negative if the Google search count irrelevant score or when it

contains too much junk information for:

a. If 𝑡1 = 𝑡2 or if 𝑡1 ≠ 𝑡2 but the frequency f (𝑡1) =f (𝑡2)= 𝑓(𝑡1, 𝑡2) > 0,

then𝐶𝑇𝐶(𝑡1, 𝑡2) = 0.

b. If the occurrence f (𝑡1) =0 then for each term 𝑡2 we have 𝐶𝑇𝐶(𝑡1, 𝑡2)

and the𝐶𝑇𝐶(𝑡1, 𝑡2) = ∞/∞.

2. The weight of CTC is almost nonnegative and 𝐶𝑇𝐶(𝑡1, 𝑡2) = 0 for every𝑡1. For

every pair (𝑡1, 𝑡2) we have𝐶𝑇𝐶(𝑡1, 𝑡2) = 𝐶𝑇𝐶(𝑡2, 𝑡1), e.g. x indicate the set of

web pages holding one or more occurrences of𝑡1,e.g. choose 𝑡1 ≠ 𝑡2 with x = y,

formerly f (𝑡1) =f (𝑡2)= 𝑓(𝑡1, 𝑡2)and𝐶𝑇𝐶(𝑡1, 𝑡2) = 0.

This association measure can be utilized to identify the most accurate co-occurrence

of a particular term(see section 2.2 part 3). The main advantage of this approach is that

doesn't require any background knowledge or any particular analysis of problem domain.

Instead it automatically analyses all features through Google search using World Wide

Web. In this phase term matrix is created that arrange each term along with

corresponding target term. Term with minimum scorethan standard thresh hold i.e. 0.5

are discarded.

Algorithm 1. ComputeWord Similarity

Input : All Pre-processed words (𝑊𝑎𝑙𝑙)

 Output: 𝑊𝑜𝑟𝑑𝑠 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑑𝑎𝑡𝑏𝑎𝑠𝑒 𝑊𝑆𝐷𝐶𝑇𝐶

Initialize an empty 𝑊𝑆𝐷𝐶𝑇𝐶

for 𝑤𝑖 to 𝑊𝑎𝑙𝑙

 for 𝑤𝑗 to 𝑊𝑎𝑙𝑙

 𝑊𝑆𝐷𝐶𝑇𝐶 = 𝑊𝑆𝐷(𝑤𝑖, 𝑤𝑗)

 end for

end for

356 Nawaz et al.

3.3. Computation Terms Similarity

Generally, context words that are appearing with each term in a document are taken as a

potential candidate for computing terms similarity in a document. To identify the context

from a text, a sentiment dictionary or lexicon will be generated for each specific domain

(SentiWordNet). Unit of resources are adjectives and verbs. Such as <No> + <adjective

+ verb>. Similarity calculation technique is applied to all sentiment units. We assign a

unique name to this similarity score as 𝑃𝐶𝑂𝐶𝐶𝑅 (Point wise Occurrence).

𝑃𝑜𝑐𝑐𝑢𝑟(𝑤𝑖 , 𝑤𝑗) = 𝑙𝑜𝑔1

𝑃1(𝑤𝑖 , 𝑤𝑗)

𝑃(𝑤𝑖), 𝑃(𝑤𝑗)
(2)

Where

𝑤𝑖=First word, 𝑤𝑗=second word

The optimized score is :

 -∞ ≤ 𝑃𝑜𝑐𝑐𝑢𝑟(𝑤𝑖 , 𝑤𝑗) ≤ min [−𝑙𝑜𝑔𝑃1(𝑤𝑖) − log 𝑝(𝑤𝑗)(3)

Highest similarity score will be taken as final term score from text using equation (3).

Generally 𝑃𝐶𝑂𝐶𝐶𝑅 scores will be calculated from whole document.

Algorithm 2. Compute Optimized Word Similarity

Input : All Pre-processed words (𝑊𝑎𝑙𝑙)

 Output: 𝑊𝑜𝑟𝑑𝑠𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑑𝑎𝑡𝑏𝑎𝑠𝑒𝑊𝑆𝐷𝐶𝑇𝐶

Initialize an empty 𝑊𝑆𝐷𝐶𝑇𝐶

Cache = Empty bin for words.

for 𝑤𝑖 to 𝑊𝑎𝑙𝑙

 if(𝑤𝑖 not in cache)

 Compute scores from SentiWordNet of 𝑤𝑖

 Add score to Cache

Endif

 for 𝑤𝑗 to 𝑊𝑎𝑙𝑙

 if(𝑤𝑗 not in cache)

 Compute scores from SentiWordNet of 𝑤𝑖

 Add score to Cache

Endif

𝑊𝑆𝐷𝑁𝐺𝐷 = 𝑊𝑆𝐷(𝑤𝑖, 𝑤𝑗)

 end for

__

4. Experiments

This section will take a closer look at the experimental results. Various experiments are

performed on the different dataset to evaluate the performance of proposed approach.

The detail description of each experiment is as follows

 Aspect Based Construction of Software-Specific Words Similarity Database 357

4.1. Datasets

We use three different datasets for experiments. Details of all three datasets are given

below.

We develop a 𝑊𝑜𝑟𝑑𝑆𝑖𝑚𝐶𝑇𝐶using the question and answer posts from

StackOverflow. We get this data from MSR 2013 Mining Challenge (Demeyer et al.,

2013). Our collected dataset is around 12 GB and holds all the posts that are produced

from February 2014 to February 2018. We portray the data into different documents

where every single document covers a question and all its answers. The description, title

and all the tags of the question with their corresponding answers are mined and we save

all this data in the document. We have collected 83,468 documents. Randomly we select

sample 10,000 documents from all the dataset and use them to construct WordSimSE

DB. All the tests are executed on an Intel Xeon X5460 3.26GHz server with 32.0GB

RAM running Windows Server 2008 (32 bit). For the third step of our building

procedure,we use 460 pairs of words gained from old work to adjust the weight

parameters. We discover the better weights for α, β, and γ are 2.9, 2.1, and 1.5

respectively. It shows that other software tags are less important than popular software

tags and other words are less important than the software tags. As a baseline, we use

WordNet word pair similarity dataset. In this dataset we have billions of word pairs and

size of this dataset is approximately 100GB. We compute the similarity of a word on the

basis of Resnik matric (Roldan-Vega et al., 2013).

The popularity of micro-blogging is increasing day by day. People share their ideas

on social media sites. Forums play an important part in social media sites, as forums

allow users to share their ideas on any technique, method, issue etc. Software related

forums are also present in vast number that is mainly used by developers or

programmers. Usually, new ideasabout bug fixes and software fixes are discussed in

these forums. We collected ten million comments from web related social media forums.

These comments are extracted using Graph API (Weaver and Tarjan, 2013) from last 3

months.

Software repositories include packages related to software. Software companies

and organizations maintain these repositories on their server. These repositories contain

all information about software runtime errors, bugs, fixes and version details. These

repositories are very much useful for checking any software reliability. We are using one

of the biggest repositories named as ‘tera-PROMISE’ repository (Anwer et al., 2017).

This repository deals with software engineering data. It contains millions of records

about software engineering domain.

4.2. Results

Evaluation criteria are very much important in evaluating the results of any technique.

We describe the results in two different and new criterias. These criteria are discounted

cumulative gain (DCG)and Likert score (LS) (Jarvelin and Kekalainen, 2002). WordNet

is one of the largest lexicons and also the base of many new generated lexicons. Usually,

45% words are present in WordNet lexicons which mean 450 words out of 1000 are

present in WordNet. It also means WordNet returns only 450 software related words out

of 1000. Our proposed approach returns1000 software related words out of 1000 which

makes out approach far better than WordNet.

358 Nawaz et al.

As mentioned earlier, WordNet provides the accuracy of 45% in terms of software

related words. WordNet produces the average Likert score of 1.53 and our proposed

approach has an average Likert score of 2.42. Our proposed approach gets the

improvement of 60.18% which clears that our approach captures the software related

words accurately by identifying the semantic meanings of words. Average Likert scores

in tabular form are showing in Table 1.

Table 1. Average Likert Scores

Approach Average Likert score

WordNet 1.53

Proposed approach 2.42

Improvement 60.18%

Extraction of words with the ranking is one of the hardest tasks. Average Discounted

Cumulative Gain is used to calculate the ranking of the extracted software related words

(Wang et al., 2013), which implies that the most relevant document should be ranked

first. Ranking of words always helps to use words in the right way by using their ranks.

Table 2 shows the results coming from WordNet and from our proposed approach. It

also shows improvement of 74.21% from Wordnet approach.

Table 2. Average Discounted Cumulative Gain scores

Approach Average Discounted Cumulative Gain

WordNet 15.74

Proposed approach 28.62

Improvement 74.21%

Table 3 shows the comparison of our proposed technique with some state-of-the-art

techniques. These techniques are extracted from past studies named as WordNet and

Castellanoset al. (2017). We extract 10,000 word pairs by analysing 3,000 reviews. As

shown in Table 3 proposed technique extracts fewer word pairs from WordNet and it

extracts almost double times pair of words from Castellanos technique.

Table 3. Comparisons in number of pairs

Approach Pairs

WordNet 22,034,553,550

Castellanos et al. (2017) 5,636,534

Proposed technique 10,612,089

One of the research questions is scalability of proposed technique and the

stability when reviews increase? To answers these questions we run proposed technique

on 5,000, 10,000, 15,000, 20,000 and 25,000 reviews. Fig.2 shows the results when we

run on different sets of datasets.

 Aspect Based Construction of Software-Specific Words Similarity Database 359

Fig. 2. Word Pairs

We also observed that how fast our proposed technique is working with some state-of-

the-art technique. For this, we plot the runtime values with number of reviews. Data pre-

processing, co-occurrence using normalized google distance and SentiWordNet are

included in runtime. An experimental result shows that our proposed technique works 5

to 6 times faster than the other technique. Fig. 3 shows the comparison graph between

proposed technique and state-of-the-art technique.

Fig. 3. Comparison between basic approach and optimized approach

Almost 30,000 comments are extracted from Facebookforums using Graph API.

Comparison graph using basic approach and optimized approach is showing in Fig. 4.

Reviews taken from social media forums are plotted on x-axis and time of a process is

plotted on the y-axis. Results are extracted in term of the number of reviews like 5,000,

10,000, 15,000, 20,000 etc. Fig. 4 shows the graph that optimized technique also works

well for the last amount of reviews and its results are improved in last reviews.

360 Nawaz et al.

Fig. 4. Comparison of Facebook Reviews

Fig. 5. Comparison of Software Repository

‘tera-PROMISE’ repository is one of the famous repositoriesthat iswidely used in

many research papers. There are millions of records present in a repository but we pick

fifty thousand sentences for our experiment. Experimental results are very promising, its

runtime decreases as reviews or sentences increases. Experimental results are plotted in

Fig. 5, where runtime is present in y-axis and reviews are present in an x-axis.

 Aspect Based Construction of Software-Specific Words Similarity Database 361

5. Conclusion

In this research, we proposed a method that automatically constructs software based term

databases that save the common words of software engineering domain. We create a

similarity metric named as WordSimSE based on question and answer posts in

StackOverflow to calculate the similarity of different words based on their weights in co-

occurrences with three different kind of anchors. We compare our technique with a

WordNet-based approach named as WordNet res. From results, it seems that our

technique produces better results than WordNet res in terms of average discounted

cumulative gain (DCG) and average Likert score by more than 67% and 51%

respectively. Our enhanced method can evaluate the similarity of more than 35 million

pairs of words in less than 17 minutes by examining a 60,000 document dataset. In

future, we are going to enhance it for larger𝑊𝑜𝑟𝑑𝑆𝑖𝑚𝐶𝑇𝐶 SE by executing it with more

question and answer posts from StackOverflow. We also have a plan to allow open

access to an expanded 𝑊𝑜𝑟𝑑𝑆𝑖𝑚𝐶𝑇𝐶SE as a web service.

References

Anwer, S., Adbellatif, A., Alshayeb, M., Anjum, M. S. (2017). Effect of coupling on software

faults: An empirical study. In Communication, Computing and Digital Systems (C-CODE),

International Conference, 211-215.

Castellanos, A., de Luca, E. W., Cigarán, J., García-Serrano, A. (2017). Partially squeezing the

resources of the web of data towards applications. In Intelligent Systems Conference

(IntelliSys), 358-365.

Chen, L., Fankhauser, P., Thiel, U., Kamps, T. (2005). Statistical relationship determination in

automatic thesaurus construction. In Proceedings of the 14th ACM international conference

on Information and knowledge management, 267-268.

Chen, L., Fankhauser, P., Thiel, U., Kamps, T. (2005). Statistical relationship determination in

automatic thesaurus construction. In Proceedings of the 14th ACM international conference

on Information and knowledge management, 267-268.

Demeyer, S., Murgia, A., Wyckmans, K., Lamkanfi, A. (2013). Happy birthday! a trend analysis

on past MSR papers. In Mining Software Repositories (MSR), 2013 10th IEEE Working

Conference, 353-362.

Falleri, J. R., Huchard, M., Lafourcade, M., Nebut, C., Prince, V., Dao, M. (2010). Automatic

extraction of a wordnet-like identifier network from software. In Program Comprehension

(ICPC), 2010 IEEE 18th International Conference, 4-13.

Haiyan, C. (2015). Measuring Semantic Similarity Between Words Using Web Search Engines.

Computer Science, vol. 42 issue 2, pp. 261-267.

Höst, M., Regnell, B., Wohlin, C. (2000). Using students as subjects—a comparative study of

students and professionals in lead-time impact assessment. Empirical Software Engineering,

vol. 5, issue 3, pp. 201-214.

Howard, M. J., Gupta, S., Pollock, L., Vijay-Shanker, K. (2013). Automatically mining software-

based, semantically-similar words from comment-code mappings. In Proceedings of the 10th

Working Conference on Mining Software Repositories, 377-386.

Howard, M. J., Gupta, S., Pollock, L., Vijay-Shanker, K. (2013). Automatically mining software-

based, semantically-similar words from comment-code mappings. In Proceedings of the 10th

Working Conference on Mining Software Repositories, 377-386.

362 Nawaz et al.

Islam, A., Inkpen, D. (2006). Second order co-occurrence PMI for determining the semantic

similarity of words. In Proceedings of the International Conference on Language Resources

and Evaluation, 1033-1038.

Jiang, J. J., Conrath, D. W. (1997). Semantic similarity based on corpus statistics and lexical

taxonomy. arXiv preprint cmp-lg/9709008.

Järvelin, K., Kekäläinen, J. (2002). Cumulated gain-based evaluation of IR techniques. ACM

Transactions on Information Systems (TOIS), 422-446.

Linstead, E., Bajracharya, S., Ngo, T., Rigor, P., Lopes, C., Baldi, P. (2009). Sourcerer: mining

and searching internet-scale software repositories. Data Mining and Knowledge Discovery,

vol. 18, issue 2, pp. 300-336.

Matveeva, I. (2006). Document representation and multilevel measures of document similarity. In

Proceedings of the 2006 Conference of the North American Chapter of the Association for

Computational Linguistics on Human Language Technology: companion volume: doctoral

consortium , 235-238.

Menzies, T., Marcus, A. (2008). Automated severity assessment of software defect reports. In

Software Maintenance, 2008. ICSM 2008. IEEE International Conference, 346-355.

Miller, G. A. (1995). WordNet: a lexical database for English. Communications of the ACM, vol.

38, issue 11, pp. 39-41.

Pedersen, T., Patwardhan, S., Michelizzi, J. (2004). WordNet:: Similarity: measuring the

relatedness of concepts. In Demonstration papers at HLT-NAACL, 38-41.

Porter, M. F. (1980). An algorithm for suffix stripping. Program, vol. 14, issue 3, pp. 130-137.

Roldan-Vega, M., Mallet, G., Hill, E., Fails, J. A. (2013). CONQUER: A tool for nl-based query

refinement and contextualizing code search results. In Software Maintenance (ICSM), 2013

29th IEEE International Conference, pp. 512-515.

Runeson, P., Alexandersson, M., Nyholm, O. (2007). Detection of duplicate defect reports using

natural language processing. In Proceedings of the 29th international conference on

Software Engineering, 499-510.

Sridhara, G., Hill, E., Pollock, L., Vijay-Shanker, K. (2008). Identifying word relations in

software: A comparative study of semantic similarity tools. In Program Comprehension,

2008. ICPC 2008. The 16th IEEE International Conference, 123-132.

Wang, S., Lo, D., Jiang, L. (2012). Inferring semantically related software terms and their

taxonomy by leveraging collaborative tagging. In Software Maintenance (ICSM), 2012 28th

IEEE International Conference, 604-607.

Wang, Y., Wang, L., Li, Y., He, D., Chen, W., Liu, T. Y. (2013). A theoretical analysis of NDCG

ranking measures. In Proceedings of the 26th Annual Conference on Learning Theory.

Weaver, J., Tarjan, P. (2013). Facebook linked data via the graph API. Semantic Web, vol. 4, issue

3, pp. 245-250.

Wu, L., Yang, L., Yu, N., Hua, X. S. (2009). Learning to tag. In Proceedings of the 18th

international conference on World wide web, 361-370.

Yang, J., Tan, L. (2014). SWordNet: Inferring semantically related words from software context.

Empirical Software Engineering, vol. 19, issue 6, pp. 1856-1886.

Received June 21, 2018, revised October 7, 2018, accepted October 22, 2018

