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Abstract In this paper, we describe a tool for debugging the output and attention weights of
neural machine translation (NMT) systems and for improved estimations of confidence about the
output based on the attention. We dive deeper into ways for it to handle output from transformer-
based NMT models. Its purpose is to help researchers and developers find weak and faulty
translations that their NMT systems produce without the need for reference translations. We
present a demonstration website of our tool with examples of good and bad translations: http:
//attention.lielakeda.lv.
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1. Introduction
As one of the primary use-cases for the modern computer, automated translation of texts
from one language into another or machine translation (MT) has evolved vastly since
its early days in the 1950s. There have been several large paradigm shifts that have
greatly impacted the field of MT - rule-based MT (RBMT), statistical MT (SMT) and
neural network MT (NMT) (Bahdanau et al., 2014). With each paradigm shift detailed
understanding of how the system produces its final translation has changed from fully
clear in the case of RBMT to slightly less, but often still predictable in SMT, to often
completely unpredictable in NMT. Many current tools for inspecting results of statisti-
cal phrase-based approaches are either not compatible or serve little purpose in dealing
with neural network generated output.

To address the lack of tools for inspection and analysis of NMT translations, we pro-
pose a tool for browsing, inspecting and comparing translations specifically designed
for NMT output. The tool uses the attention weights that correspond to specific token
pairs, which are generated during the decoding process, by turning them into one of
several visual representations that can help humans better understand how the output
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translations were produced. Aside from just visualising attention alignments, the tool
also uses them to estimate the confidence in translation, which allows to distinguish
acceptable outputs from completely unreliable ones. For this, no reference translations
are required.

The structure of this paper is as follows: Section 2 summarises related work on
tools for inspecting translation outputs and alignments; Section 3 introduces the key
concepts of the baseline tool - how it scores translations and displays the visualisations
in different environments, as well as outlines the improvements made to make it more
useful for debugging machine translation output. In section 4, we give an overview of
how to make the most use of our tool in finding odd translations, what to look for when
comparing them and possible causes of errors. Section 5 talks about the challenges
introduced by multi-layer models like transformers and section 6 - about how to deal
with them. Finally, we conclude the paper in Section 7 and introduce plans for future
work in the area.

2. Related Work
The foundation of our tool is based on the paper of Rikters et al. (2017), who introduce
visualisation of NMT attention and use attention-based scoring of NMT as described
by Rikters and Fishel (2017). While in general it can be useful to quickly find sentences
with “scrambled” attention alignments, it gets more challenging when having to deal
with output from multi-layer neural networks. This tends to mislead users when sorting
data sets by confidence and looking for the highest scoring examples.

2.1. Attention Averaging

The general intuition is that transformer models do learn to pay more attention to spe-
cific source sentence tokens while generating translation tokens just like attentional
RNNs. Since each attention head in each layer shows different results, it becomes non-
trivial to decipher which one or several matrices, if any, has learnt the alignment repre-
sentation. Averaging attention probabilities over all attention heads in all layers provides
a solution to obtain a single attention matrix for a translated sentence.

We trained transformer and RNN NMT models using data from the highest-ranking
English-Latvian system in WMT 2017 (Pinnis et al., 2017) and used both systems to
translate formatting-rich documents. To compare the quality of attention averaging to
the established RNN attention alignments. we performed a small-scale human evalua-
tion on the formatting transfer between source and translated documents. The human
evaluation showed that the averaged transformer alignments are just as acceptable as
RNN alignments.

2.2. Guided Alignments

Chen et al. (2016) claim that translation of unknown out of vocabulary (OOV) words
is linked to soft alignment dispersion and may be the source of some translation errors.
To improve the alignments and the output translations, the authors propose to use the
IBM model 4 Viterbi alignments as additional input data during training. They experi-
ment with adding alignments produced by GIZA++ to RNN-based NMT systems. The
authors report improvements in alignment distributions as well as overall translation
quality.
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Liu et al. (2016) also attempt to improve attention alignments produced by RNN-
based NMT systems. In addition to GIZA++ alignments, they experiment with fast align
and add several heuristics. The authors report that the significantly faster fast align gen-
erates slightly lower quality alignments and they improve NMT output quality and soft
alignments just as well.

We did a similar experiment as with the averaging by training an NMT system with
guided alignments (fast align) and translating formatted documents to perform human
evaluation. The evaluation showed that the model with guided alignments is able to
transfer document formatting slightly better than the averaged alignments and RNN
attention alignments.

3. Visualisation Tool
The basis of our visualisation tool is described in full detail in the baseline paper (Rik-
ters et al., 2017). It requires source and translated sentences along with the correspond-
ing attention alignments from NMT systems as input files and can provide a visual
overview in a command line environment (Linux Terminal or Windows Powershell) or
a web browser of any modern device. It is published in a GitHub repository1 and open-
sourced with the MIT License. In the further subsections of the paper, we will outline
only core components and focus more on highlighting improvements and differences.

In addition to Nematus, Neural Monkey and Marian2 (Junczys-Dowmunt et al.,
2018), we have also added out-of-the-box support for working with attention align-
ments from OpenNMT and Sockeye3 (Hieber et al., 2017) frameworks.

3.1. Confidence Scores

This section outlines how the confidence scores are calculated and outlines what is how
the final score differs from the baseline.

The four main metrics that we use for scoring translations are:

– Coverage Deviation Penalty (CDP) penalises attention deficiency and excessive
attention per input token.

CDP = − 1
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– Absentmindedness Penalties (APout, in) penalise output tokens that pay attention
to too many input tokens, or input tokens that produce too many output tokens.

APout = − 1
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1 NMT Attention Alignment Visualisations: https://github.com/M4t1ss/
SoftAlignments

2 Marian: https://github.com/marian-nmt/marian
3 Sockeye: https://github.com/awslabs/sockeye
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Figure 1. A plot of the overlap penalty.

– Overlap Penalty (OP) penalises translations that copy large fractions from source
sentences. A stronger penalty is allocated to longer sentences that copy large amounts
from the source while shorter ones get more tolerance (e.g., the three-word English
sentence “Thanks Barack Obama.” can be perfectly translated into “Paldies Barack
Obama.” although 2/3 of words in the translation are the same in the source). A plot
of how the penalty increases in relation to the source-translation overlap and source
sentence length is shown in Figure 1.

OP = (0.8 + (Lt ∗ 0.01)) ∗ (3− ((1− S) ∗ 5)) ∗ (0.7 + S) ∗ tan(S) (4)

– Confidence is the sum of the three main metrics – CDP, APin and APout and the
similarity penalty, when the similarity between input and output sentences is high
(similarity > 0.3) .

confidence =

{
CDP + APout + APin, if similarity < 0.3

CDP + APout + APin − OP, otherwise
(5)

In all of the metrics Ls is the length of the source sentence; Lt - length of the target
sentence; S - similarity between the source sentence and the translation on the scale of
0 - 1; αji - the attention weight between source token i and translation token j.

Changes have been introduced to the final confidence score by first calculating the
similarity ratio between input and output sentences and then adding a further penalty
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only if the similarity is high enough. The similarity is calculated by finding the longest
contiguous matching sub-sequence.

Since the baseline confidence score considered only the attention alignments when
calculating the final value, examples like shown in Figure 2 received particularly high
values due to consistent one-to-one attention alignments. The updated score takes care
of this problem by penalising hypothesis sentence that is overly similar to the input
source.

Source: Kepler measures spin rates of stars in Pleiades cluster
Hypothesis: Kepler measures spin rates of stars in Pleiades cluster
Reference: Keplers izmēra zvaigžņu griešanās ātrumu Plejādes zvaigznājā.

Figure 2. An example of a translated sentence that exhibits a verbatim rendition of the input.
CDP: 100.0%; APout: 98.84%; APin: 98.85%; Baseline Confidence: 95.44%; Updated Confi-
dence: 25.02%;

3.2. Web Interface

The web interface is the primary point of interaction with the tool. Aside from brows-
ing visualisations, ordering data sets by confidence scores and exporting visualisations
as images, that are all clarified in the baseline paper, we introduce several significant
changes to the system. The first one is a technical update on how data is served — load-
ing is performed asynchronously in the background and thereby eliminating long wait
times to view the proceeding sentences in a large data set. The three major additions
are:

– the addition of source-translation overlap percentage alongside the four base scores
(Section 3.3);

– the ability to provide reference translations, if available, to display next to the hy-
pothesis and calculate BLEU scores (Section 3.4);

– the ability to directly compare translations and alignments from two different NMT
systems (Section 3.5).

3.3. Overlap

As mentioned in Section 3.1, the updated confidence score considers hypotheses trans-
lations that are long and have a significant overlap with the source sentence as a worse
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translations, while tolerating considerable overlap for shorter sentences. In addition to
contributing to the final confidence score, the overlap ratio has been added as an indi-
vidual score for sorting, navigating and comparing sentences from a data set as shown
in Figure 3. The system also underlines the longest matching sub-string between the
source and translation in cases where the overlap is high enough (over 10%). An exam-
ple is shown in Figure 3, where the overlap ratio is 20.19%.

Source: see 0,2 mg/ml kuni 0,8 mg/ml ( 0,9 mg/ml Küprosel ) ning mõnedes riikides ei tohi
sõiduki juhtimise ajal veres üldse alkoholi olla.

Hypothesis: на 0,2 mg/ml до 0,8 mg/ml ( 0,9 mg/ml на Кипре ) , и в некоторых
странах в крови не может быть алкоголя.

Match: 0,8 mg/ml ( 0,9 mg/ml

Figure 3. An example translation from Estonian into Russian, showing useful features for debug-
ging translation outcomes - underlining of the longest matching sub-string between the source
and translated sentences; sorting translations by overlap (pink bars) or BLEU score (purple bars);
reference translation (grey background).

3.4. References and BLEU

We believe that simply displaying the reference next to the hypothesis is helpful more
often than not. Having provided references also allows to calculate BLEU scores for the
translations, providing yet another dimension for sorting (Figure 3). Unlike overlap, the
BLEU scores do not influence the overall confidence scores.

Both overlap and BLEU score calculation and output has also been added to the
terminal interface of the tool (Figure 4).

3.5. Comparing Translations

The final major addition to the tool is the option to directly compare two translations
of the same source sentence. To perform the comparison, all source sentences for both
input data sets must match, but the target sentences may differ in output token order
as well as count. Comparisons may be performed between translations obtained from
any two of the five currently supported NMT frameworks (Nematus, Neural Monkey,
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Figure 4. An example of the updated terminal interface output.

OpenNMT, Marian and Sockeye) or even an arbitrary input file, as long as it’s formatted
according to the specification provided in the readme 4.

Figure 5 shows an example comparison of a sentence translated by two different
NMT systems. On the top row is the source text and the bottom rows represent output
from each individual NMT system colour-coded to match the colours of the alignment
lines. The second hypothesis (in green) exhibits stronger and more reliable output align-
ments to the content words while the first shows strong alignments coming from the stop
sign. In this example neither hypothesis matches the reference, but since it is only two
words long for a source sentence of triple the length, it can hint to an oversimplified
translation by the translator (assuming English was the original) and does not mean that
both hypotheses are completely wrong. In fact, the second hypothesis is a fairly decent
representation of the source sentence.

Figure 6 illustrates another example with strong attention alignments and a high
overlap ratio (94.03%) between source and translated sentences from one system com-
pared to a weak, but at least better translation from another system. The final confidence
score for the second translation is strongly influenced by the high overlap, even though
the sentence is not particularly long. In similar conditions, the confidence score of the
second hypothesis calculated by the baseline system would be very close to 100% due
to its complete disregard for the actual words of the source and hypothesis sentences.

4. Recipes for Debugging
In this section, we summarise several tips and tricks that may come in handy when using
the tool to look for faulty translations of various kinds. Here we also list common causes
associated with the problems. Some peculiarities to pay attention to may include:

– Short sentences with a low confidence, CDP, APin or APout

All of the metrics do not necessarily need to be low, but translations that exhibit at
least one of them to be under 30% are often worth looking into.

4 Using other input formats - https://github.com/M4t1ss/SoftAlignments\
#how-to-get-alignment-files-from-nmt-systems
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Source: the loss was by the team.
Hypothesis 1: zaudējums bija komandas biedrs.
Hypothesis 2: šis zaudējums bija komandai.
Reference: zaudē komanda.

Figure 5. A direct comparison of attention alignments for translating the same sentence with two
different NMT systems.

– Long sentences with a high overlap
As stated before, for short, several words long sentences it may be completely nor-
mal to have an overlap of 50% or more, but if it occurs in sentences that are 10 or
more words long, it may indicate that the system has only partially translated the

Source: they did so just in time as Hindes emerged.
Hypothesis 1: viņi to darı̄ja tikai toreiz , kad parādı̄jās hinduisti.
Hypothesis 2: it did so just in time as Hindes emerged.
Reference: viņiem tas izdevās pēdējā brı̄dı̄.

Figure 6. A comparison of lower and higher scoring hypotheses from two different NMT systems.
Scores for Hypothesis 1 (orange): Confidence 53.1%; Overlap 0.9%. Scores for Hypothesis 2
(green): Confidence 28.63%; Overlap 94.03%.
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source or not translated anything at all. When completely untranslated sentences
are found, it is worth checking the training data for any source-target sentence pairs
that are equal. Removing them from the training data will reduce cases where words
or even full sentences are left untranslated.

– Sentences with a low BLEU score, but normal or even high confidence, CDP,
APin and APout

The BLEU metric has its flaws and one of them is comparing each hypothesis to
only one reference, although many sentences can actually have more than one cor-
rect translation. In cases when the only low-scoring metric output by the tool is the
BLEU score, it is often that the translation is perfectly good, but just different from
the reference. Such sentences are often useful examples to show that lower BLEU
scores of neural MT systems do not necessarily represent lower quality translations
and are cheaper to find than performing full manual human evaluation.

5. Dealing with Output from Multi-layer Models

Figure 7. An example of attention alignments from a 15-layer encoder and 15-layer decoder
convolutional neural machine translation system trained with FairSeq.

An ongoing challenge is to find a way of how to better acquire attention alignments
generated by multi-layer neural networks. While in recurrent neural network NMT sys-
tems this is rarely a problem, more modern approaches like convolutional neural net-
works (Gehring et al., 2017) and transformer neural networks (Vaswani et al., 2017)
require training of deeper models to achieve translation results of competitive quality.
This, however, results in uncertainties of how to interpret attention weights, including
whether they encompass reliable alignment information. Even when all attention ma-
trices are summed up, the result looks like every source token is connected to every
hypothesis token as can be seen in Figure 7.

Out of all modern NMT approaches that are built as deep multi-layer neural net-
works, the transformer-based NMT systems currently achieve state-of-the-art transla-
tion quality results for most language pairs (as shown by the results of the WMT shared
task for news translation (Bojar et al., 2018)). Therefore, we chose to investigate how
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they work and how the attention information can be made useful for debugging output
translations.

5.1. Transformer Models

Vaswani et al. (2017) proposed a novel neural network architecture, the Transformer,
which relies only on the attention mechanism to draw global dependencies between in-
put and output. It has an encoder-decoder structure using multiple stacked self-attention
and point-wise, fully connected layers for both the encoder and decoder. One of the big
advantages of training self-attentional models is that they are highly parallelizable, as
they do not employ the recurrent connections of recurrent neural networks (RNNs).

A typical transformer model would consist of six layers of which each would consist
of eight attention heads. This means that there are 48 source-to-target attention matrices
that the neural network can use for translation purposes.

Aside from visualising and interpreting NMT output, attention alignments are also
used to get hard word alignments in order to correctly translate structured documents
and reconstruct the structure after translating (Pinnis et al., 2018b). To achieve similar
results with transformer-based NMT models, several approaches have been explored,
such as learning guided alignments 5, averaging attention matrices 6 and using fast align
(Dyer et al., 2013) to generate alignments after the translation has been produced (e.g.,
Pinnis et al. (2018a)). The latter approach is of no use for interpreting NMT output as
it uses a separate model and only attempts to guess what the alignments are after the
result has been produced. The other two are worth looking into.

6. Experiments and Results
We used the previously mentioned averaged transformer and guided alignment trans-
former models to determine, which approach is better suited for our debugging tool
to quickly identify faulty and suspicious translations. Both models were trained using
data from the Tilde’s unconstrained submission to the WMT 2017 shared task on news
translation (Pinnis et al., 2017). The averaged transformer model was trained using the
Sockeye NMT toolkit on the fully processed (including factorisation and morphology-
driven word splitting) dataset of the Tilde’s unconstrained English-Latvian submission
(46.04 million sentence pairs in total). The guided alignment model was trained using
the Marian toolkit on the same dataset, but without factorisation and without morphol-
ogy driven word splitting (only byte-pair encoding was performed). Both models were
trained until convergence and reached about the same quality on news domain (WMT17
development set) and general domain data (ACCURAT development corpus (Skadiņa
et al., 2012)).

In order to determine the usefulness, we aimed to answer two main questions -
1) do the resulting attention alignments represent actual relations between the source
sentence and the output translation, and 2) do the confidence scores produce similar re-
sults using these alignments. Regarding the first question, it is important to understand
whether the alignments from transformer models for high-quality translations actually
represent word-by-word source-translation alignments and/or relevant phrases. As for

5 Make guided alignment work with transformer - https://git.io/fx5zy
6 Transformer Attention Probabilities - https://github.com/awslabs/sockeye/pull/504
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the second question - even if the first one is not fully confirmed, the alignments may
still be useful for finding translation errors. Therefore, if the resulting transformer at-
tention alignments help in producing distinct and sortable confidence scores, they will
be considered useful.

Table 1. NMT system quality on news (NewsTest 2017) and general (ACCURAT) data.

BLEU
News General

Attention Averaging 21.96 39.15
Guided Alignments 22.05 39.20

6.1. Attention Averaging

Figure 8 exhibits rather dispersed attention alignments for an acceptable translation. A
significant amount of the attention is focused on the stop mark in the end of the source
sentence and even more on the word “a”, which clearly should not be connected to so
many output tokens. Such a distribution of attention alignments for RNN-based models
would indicate that the model had problems translating some or most input tokens and
an unsuccessful translation had been produced. During manual inspection, we noticed
that most results exhibit similar outputs by having an excessive amount of attention
focused to one or two source tokens, while the translations themselves were good. This
indicates that the answer to the first question is negative.

To answer the second question, we sorted the test set of 2000 sentences by each
of the confidence scores and looked for low-scoring and relatively short sentences. All
scores exhibited a large number of false-positives, mainly due to dispersed attention
alignments. Such behaviour means that the attention-based scores that are computed
from transformer models with attention averaging cannot aid in finding poorly trans-
lated sentences.

6.2. Guided Alignments

The top part of Figure 9 shows how the same sentence is translated with the system
that was trained using guided alignments. In this example, the translation is noticeably
worse, but the alignment lines in the visualisation are much stronger and less scattered.
The computed confidence score of 48.65% seems fairly adequate, as the sentence-level
BLEU score is also quite low - 12.69. This leads to believe that the learned alignments
do a better job in representing relations between source and translated tokens, answering
positively to the first question. The example shows that the attention is mainly dispersed
in places where words are split in subword units (ending with ‘@@’).

To see how attention alignments change after joining subword units and the respec-
tive attentions into full words, we summed attention weights over source subword units
and averaged attention weights over target subword units. The soft attention alignments
acquired with this method for the same sentence can be seen in the lower part of Figure
9. As expected, the alignments became stronger and it also improved the confidence
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Source: Some cyclists sing hymns or recite nursery rhymes as a climbing aid.
Hypothesis: Daži riteņbraucēji dzied himnas vai deklamē bērnu dziesmas kā kāpšanas

palı̄glı̄dzekli.
Reference: Daži riteņbraucēji dzied himnas vai skaita bērnudārza dzejoļus, lai vieglāk tiktu

kalnā.

Figure 8. Attention alignment example of a translation from English into Latvian with a
transformer-based NMT model and attention averaging.

scores. This allowed to better single out several of the very-worst translations of the set
when sorting it by APout and CDP.

7. Conclusion

In this paper, we described how our visual NMT debugging tool handles output from
multi-layer neural networks, such as the recent and very popular Transformer models.
We explored two scenarios of preparing attention alignments from transformer-based
NMT to be compatible with our tool. We found that the guided alignment training strat-
egy yields the best results for quickly locating better and worse translations in arbitrary
test sets. Compared to other similar tools, ours relies on the confidence scores and does
not require reference translations to facilitate this easier navigation, but it only benefits
with additional features that are enabled when the references are provided. This allows
to integrate it, for example, in an NMT system with a web-based interface, providing
users with an explanation for the result of a specific translation.

In a future version of the system, we plan to include other reference-based MT
scoring metrics for more variety of scoring and sorting. Some examples of metrics may
include chrF (Popović, 2015) or TER (Snover et al., 2006). Another idea for future work
would be to list and order specific best, worst or interesting examples of translations.
This could be done by considering the recipes from Section 4.

In addition to the reference-based metrics, there exist other reference-less approaches
yet to be utilised. For instance, borrowing ideas from parallel corpora filtering (Pinnis
et al., 2017), such as 1) source-hypothesis sentence length difference; 2) language iden-
tification for the hypothesis; 3) digit mismatch between the source and hypothesis; 4)
foreign or corrupt symbol checking for the hypothesis.
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Source: Some cyclists sing hymns or recite nursery rhymes as a climbing aid.
Hypothesis: Daži velosipēdisti kā alpı̄nisma palı̄glı̄dzekli dzied himnas vai pārdomā bērnudārza

gaitas.
Reference: Daži riteņbraucēji dzied himnas vai skaita bērnudārza dzejoļus, lai vieglāk tiktu

kalnā.

Figure 9. Attention alignment example of a translation from English into Latvian with a
transformer-based NMT model trained using guided alignments. Attentions displayed on the sub-
word level (top) and word level (bottom). Confidence: 48.65%; CDP: 85.78%; APout: 84.09%;
APin: 88.78% (top), Confidence: 66.73%; CDP: 99.96%; APout: 90.10%; APin: 90.92% (bot-
tom).
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Pinnis, M., Rikters, M., and Krišlauks, R. (2018a). Tilde’s Machine Translation Systems
for WMT 2018. In Proceedings of the Third Conference on Machine Translation
(WMT 2018), Volume 2: Shared Task Papers, Brussels, Belgium. Association for
Computational Linguistics.
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