
The Specifi c Text Analysis Tasks at the Beginning of
MDA Life Cycle

Armands Šlihte
Faculty of Computer Science and Information Technology,

Institute of Applied Computer Systems, Riga Technical University
armands.slihte@rtu.lv

Abstract. This paper recognizes the computation independent nature of a Topological
Functioning Model (TFM) and suggests it to be used as the Computation Independent Model
(CIM) within Model Driven Architecture (MDA). To step towards the completeness of MDA
and enable the automation of system analysis the Topological Functioning Model for Model
Driven Architecture (TFM4MDA) method is considered. A project of implementing TFM4MDA
as a TFM Tool is suggested to enable artifi cial intelligence in system analysis and software
development. The main components of the tool are a TFM Fetcher for system’s informal
description analysis, TFM Editor and TFM Transformer for TFM to UML transformation. This
paper discusses the specifi c text analysis tasks at the beginning of MDA life cycle and the
implementation challenges of the TFM Fetcher component.

Keywords: Topological Functioning Model, Model Driven Architecture, Language Processing,
Meta-Object Facility, Query/View/Transformation

1 Introduction
Software development is a complex process. Every software development project

is unique. However in most cases the abstractions or models of the information systems
to be developed may be at least similar if not the same. Software developers are often
busy with coding similar structures and procedures; the development process becomes
somewhat ineffi cient. Moreover software development is expensive and there are many
risks that stakeholders have to take in account. The industry of software development
has been approaching and dealing with these issues in different ways.

Model Driven Architecture (MDA) proposes software development to abstract from
the code as the uppermost of the functionality of the information system to the model
of the information system [1]. That means that fi rst an information system’s model is
developed and then it is transformed into a ready-to-use information system or at least
a ready-to-implement framework of the system. Changes and additions also are made

SCIENTIFIC PAPERS, UNIVERSITY OF LATVIA, 2010. Vol. 757
COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES 11–22 P.

LUR-757-makets-A.indd 11LUR-757-makets-A.indd 11 15.06.2010. 9:02:3415.06.2010. 9:02:34

12 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

using the model. The purpose of MDA is to enable software development using the
models of an application and generating the source code from these models.

MDA is a software development framework which defi nes 3 layers of abstraction for
system analysis: Computation Independent Model (CIM), Platform Independent Model
(PIM), and Platform Specifi c Model (PSM). MDA is based on 4 level architecture and the
supporting standards: Meta-Object Facility (MOF), Unifi ed Modeling Language (UML),
and XML Metadata Interchange (XMI) [2]. Moreover, Query/View/Transformation
(QVT) is a standard for model transformation, which is also a critical component of
MDA [3].

TFM offers a formal way to defi ne a system by describing both the system’s functional
and topological features [3]. TFM is represented in the form of a topological space (X,
Θ), where X is fi nite set of functional features of the system under consideration, and Θ
is the topology that satisfi es axioms of topological structures and is represented in the
form of a directed graph [5]. TFM represents the system in its business environment and
shows how the system is functioning, without details about how the system is constructed.
TFM4MDA method suggested in [5] and developed in Riga Technical University allows
system’s TFM to be composed by having knowledge about the complex system that
operates in the real world. This paper suggests using TFM as CIM by composing it using
TFM4MDA; acquiring a mathematically formal and thus transformable CIM.

This paper analyses the specifi c text analysis tasks at the beginning of MDA life
cycle and provides solutions to these tasks. The fi rst task is defi ning a formal data
structure for the knowledge about the system. TFM4MDA assumes that this knowledge
can be presented as an informal description of the system with text in natural language.
But such an informal description is far too complex and redundant for a formal analysis.
Another task is to create a formal method or an algorithm for constructing a TFM
by analyzing this knowledge about the system. The basic building blocks of the data
structure representing the knowledge about the system will be a sentence in natural
language, so language processing methods will have to be applied.

The long-term goal of this work is to improve TFM4MDA method and to develop
a TFM Tool which would fully implement this method. MDA tools mainly focus on
requirements gathering, domain modeling, and code generation [6], not offering a way
for defi ning a formal CIM. This tool starts a new direction of MDA tools by offering
construction of a formal CIM and applying elements of artifi cial intelligence for system
analysis and software development. The development of such a tool is a complex and a
large scale project, which requires dealing with several issues. This paper talks about the
issues related to the task of implementing a TFM Tool.

This paper is organized as follows. Section 2 analyzes related work, discussing
the TFM4MDA method and other approaches dealing with the transformation of an
informal description of a system to a formal model. Section 3 describes the specifi c
text analysis tasks at the beginning of MDA life cycle. Section 4 provides a solution
for representing the knowledge about a system in a formal way and shows an example.
Section 5 addresses the task of retrieving functional features from use cases by applying
language processing methods. Section 6 defi nes a method for retrieving topology from
use cases and demonstrates it. Conclusions summarize the work done and explain the
signifi cance of further research.

LUR-757-makets-A.indd 12LUR-757-makets-A.indd 12 15.06.2010. 9:02:3415.06.2010. 9:02:34

13Armands Slihte. The Specifi c Text Analysis Tasks at the Beginning of MDA Life Cycle

2 Related Work
This work continues research on computation independent modeling and specifi cally

on TFM4MDA started in [3], [5], [7] and [8]. As stated in [5] an informal description of
the system in textual form can be produced as a result of system analysis. TFM4MDA
proposes an approach for transforming this system’s informal description into a TFM
of the system. The concept of the TFM Tool is described in author’s earlier work [9].
A MOF-compatible metamodel of the TFM and the development of a TFM Editor
component is also described in [9].

TFM4MDA consists of the following steps: 1) retrieving the system’s objects and
functional features by analyzing the informal description of a system; 2) constructing a
TFM’s topological space using the retrieved system’s objects and functional features;
3) constructing a TFM’s topological graph using its topological space; 4) verifying the
functional requirements by mapping them to the corresponding functional features; 5)
transforming TFM to UML (a specifi c formal UML profi le). The approach described in
[5] still defi nes some structure of the informal description, thus making it semi-formal.
This paper will introduce more formalism into TFM4MDA’s conception of an informal
system’s description.

There have been other attempts to transform an informal description of a system to
a formal model. Approach proposed in [10] suggests generating implementation from
textual use cases. This approach uses statistical parser on use cases and by analyzing
the parse trees compose so called Procases for further use in implementation generation.
Procases can be thought of as a formal model of requirements.

Another approach ReDSeeDs [11] defi nes software cases to support reuse of
software development artifacts and code in a model driven development context. This
approach is very formal and it depends on writing the software cases very precisely by
adding specifi c meaning to every word or phrase of software case sentences.

The Use Case Driven Development Assistant (UCDA) tool’s methodology follows
the IBM Rational Unifi ed Process (RUP) approach to automate the class model generation
[12]. It starts with analyzing the requests of stakeholders and identifi es actors and use
cases. From there the tool can generate the system’s use case diagram, class diagram,
collaboration diagram, and other artifacts. The tool uses natural language parsing to
achieve this. This methodology deals only with identifying use cases, but not how they
operate. The steps of the main scenario or the basic fl ow of events have to be defi ned
manually.

Linguistic Assistant for Domain Analysis (LIDA) processes text to help the analyst
identify the objects and model elements. By also providing a model editing environment
the model elements are refi ned through a validation process [13]. This approach provides
a very handy toolset for a system analyst, but the models still have to be manually
constructed.

Approach suggested in this paper provides a way to automatically acquire a formal
model from knowledge about the system. Defi ning this knowledge and then validating
the model are done manually by the system analyst. TFM4MDA is devised to enable
artifi cial intelligence methods in software development; after defi ning the knowledge
about a system TFM4MDA would derive its meaning automatically by constructing
a TFM.

LUR-757-makets-A.indd 13LUR-757-makets-A.indd 13 15.06.2010. 9:02:3415.06.2010. 9:02:34

14 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

This paper also suggests textual use cases to be used for defi ning requirements and
as input for text analysis from which a TFM could be composed. Approach described
in [10] uses their generated implementation for verifying software requirements and
also to use the implementation as a platform to proceed with the development of the
software.

3 Specifi c Text Analysis Tasks
For a demonstration of the TFM4MDA method an example library system

described in [5] is considered. This example will be used throughout the paper. For
using TFM4MDA as described in [5] fi rst we need an informal description of a system.
Let us consider this fragment: “The librarian checks out the requested book from the
book fund to a reader, if the book copy is available in the book fund.” This fragment is
from [5]. Then the system analyst identifi es system’s objects and composes functional
features. The following system’s objects can be identifi ed: a librarian, a book copy (a
synonym is a book), a book fund, a reader. Every functional feature consists of an object
action, a result of this action, an object involved in this action, a set of preconditions of
this action, an entity responsible for this action, and subordination.

Using the given fragment of an informal description we can compose the following
functional feature: 1) the action is checking out; 2) the result of this action is a book
copy is checked out for a reader; 3) the object involved in this action is a book copy;
4) a precondition of this action is that a book copy has to be available; 5) the entity
responsible for this action is a librarian; 6) subordination is inner. These attributes of a
functional feature are proposed in [5], but for an algorithm to retrieve them it is necessary
for all these attributes to be represented in the informal description. It is possible that
some of these attributes are absent – a result of the action or object involved in the
action. For this reason attributes object action, a result of this action, an object involved
in this action, are merged into one attribute – action. This makes the task of retrieving
functional features by text analysis a little but easier.

Next step of the method is to construct a topological space of TFM, meaning that
the analyst has to identify the cause-effect relations between the composed functional
features, defi ne the main functional cycle and verify functional requirements.

TFM Tool will support this process by providing a TFM Fetcher component for
retrieving functional features automatically and allowing the user to correct initial
functional features and cause-effect relations. In addition the tool will enable the user
to manually point to the main functional cycle, defi ne functional requirements, and
check their conformity to the functional features. TFM Tool has to support a number
of iterations back and forth between description and TFM Fetcher until the analyst has
verifi ed every functional requirement and set the main functional cycle. The user of the
tool will be able to see the mapping between the description and TFM, and then correct
any incompleteness, redundancy or inconsistency.

Where does an informal description of the system come from? The main idea
is that this description contains the knowledge about the problem domain, but the
representation of it might vary. There are a lot of different methodologies to support
software development. All of them require some sort of requirements gathering process,
which usually provides software requirements expressed in textual and diagram form.

LUR-757-makets-A.indd 14LUR-757-makets-A.indd 14 15.06.2010. 9:02:3415.06.2010. 9:02:34

15Armands Slihte. The Specifi c Text Analysis Tasks at the Beginning of MDA Life Cycle

Some of these methodologies are more formal others less formal, but in most cases
textual and diagram requirements of the system can be considered as the knowledge
about the problem domain. Constructing a formal model from text analysis is not a
simple task. In a realistic case the description can probably be quite long, incomplete,
redundant and inconsistent. To make this task a little easier the description of the system
has to have some degree of formality. One of the most popular software development
approaches today is use case driven software development. Use case driven software
development provides a way to defi ne knowledge about the problem domain in a more
structured form than plain text. For this reason business use cases are considered as the
system’s informal description.

4 Use cases
Use cases are not normalized or standardized by any consortium, unlike UML use

case diagram by Object Management Group. Moreover, there are many different use
case templates and the structure of a use case can be adjusted depending on the situation
and the development team [14]. Usually use case structure can consist of the following
or similar sections: use case identifi er, description, actors, assumptions, steps, variations
and non-functional requirements.

Fig. 1. Use cases for a library. This shows an example of business use cases for a library:
arriving, registering, requesting a book and returning a book.

LUR-757-makets-A.indd 15LUR-757-makets-A.indd 15 15.06.2010. 9:02:3415.06.2010. 9:02:34

16 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

In context of TFM Tool textual business use cases are considered the representation
of knowledge about the system. The following structure of use case is considered:
1) use case title, 2) actors, 3) pre-conditions, 4) main scenario, 5) extensions, and 6)
sub-variations. Use case title shortly describes the use case; actors are a list of actors
involved in the use case; pre-conditions defi ne the conditions that must be in place before
this use case starts; main scenario lists the specifi c steps (written in natural language)
that take place to complete the use case; extensions and sub-variations list deviations
from the main success scenario - branch actions, with the difference that extensions are
performed in addition to extended action, but sub-variations are performed instead of
the extended action. This use case structure is very similar to that proposed in [10].

As you can see in Fig. 1, extensions and sub-variations are numbered as follows 1a.,
1a1, 1a2, etc. First number represents the step that is being extended or sub-variated, and
the fi rst step of extension or sub-variation always has a condition (if) that has to be true
for the step to be executed.

Now a fromal data structure that can be used to represent the knowledge about
a system is defi ned. If there is a set of use cases that describe a working system, it is
possible to process them with purpose of retrieving functional features.

5 Retrieving Functional Features
Functional features are represented by a tuple consisting of action, a set of

preconditions of this action, an entity responsible for this action, and subordination [5].
As mentioned earlier an object action, a result of this action and an object involved in
this action are merged into action because of the complexity of text analysis. One of the
tasks of the TFM Fetcher component is to retrieve these functional features from use
cases.

Use cases are formed by sentences written in natural language. Every sentence,
except title and actors, in a use case can be considered as a representation of a functional
feature. Use case sentence can sometimes represent more than one functional feature.
This can happen when sentence consists of more than one result of the action or
objects involved in the action. Such an issue can be dealt with by analyzing sentence’s
coordinating conjunctions. For example in Fig. 1, if 2nd and 3rd steps of use case
“Requesting a book” are combined in one sentence “Librarian hands out a request form
and client fi lls the request form”. In this sentence the second reference to a request form
could be replaced by a pronoun “it”. This should be taken into account. Moreover, the
sentences of a use case should be written as simple and unambiguous as possible, but
in realistic case this is not always possible. In the examples used in this paper use case
step sentences are constructed to answer this question – who does what? For example,
“Librarian checks out the book from book fund”. The verb phrase of the use case step’s
sentence is considered the action. Moreover, use case’s actors will be considered as
objects involved in the action and entities responsible for the action. The title can partly
be considered as a functional requirement.

TFM Fetcher component has to be able to form the corresponding functional features
by analyzing the use case sentences. For this purpose natural language processing
methods have to be applied.

LUR-757-makets-A.indd 16LUR-757-makets-A.indd 16 15.06.2010. 9:02:3515.06.2010. 9:02:35

17Armands Slihte. The Specifi c Text Analysis Tasks at the Beginning of MDA Life Cycle

Concrete syntax tree, or parse tree for short, will be used for the analysis of use
case sentences. Parse tree is a tree that represents the syntactic structure of a sentence
according to some formal grammar [15]. Parse trees are usually output of parsers, which
can use different methods for fi nding the right parse tree for the specifi c sentence.
The most effi cient parsers are statistical parsers which associate grammar rules with
probability. For example, use case sentences “Librarian checks out the book from book
fund” and “Librarian creates a new reader account” will be parsed using The Stanford
Parser [16]; results are shown in Fig. 2 By exploiting statistical parser it is possible to
acquire the structure of the sentence, and thus analyze it.

Fig. 2. Parse trees of use case sentences. The abbreviations are Part-Of-Speech tags according
to [17]: S – sentence, NP – noun phrase, VP – verb phrase, NNP – proper noun, singular, VBZ
– verb, 3rd person singular present, DT – determinant (article), NN – noun singular or mass,

PP – prepositional phrase, TO – “to”, PRT – particle phrase, RP – particle, IN – subordinating
conjunction, JJ – adjective.

Let us analyze the fi rst sentence in Fig. 2. First an action of the corresponding
functional feature has to be identifi ed. In this case it is the verb phrase (VP tag) of
the sentence – “checks out the book from book fund”. It consists of the object action
(checks), the result of the action (book) and object involved in the action (book fund).
The responsible entity for the action can be determined by comparing the actors list of
the use case and the noun phrase (NP tag). In this case the noun phrase is “Librarian”
and there is “Librarian” in the actors list as well, so the entity responsible for the action
probably is “Librarian”. Preconditions can be determined by analyzing the fi rst steps of
use case’s sub-variations and extensions. If the current functional feature is represented
as the fi rst step of use case main scenario, then one additional precondition will match the
precondition of the use case itself. If current step has a sub-variation, then the functional
feature represented by the next step will have a precondition that is the opposite of
the sub-variation condition. For example, sub-variation “If book is not available in the
book fund, librarian denies the book request form” will result in a precondition “Book
is not available in the book fund” for functional feature “denies the book request form”,
but an opposite precondition for functional feature “checks out the book from book
fund”. Use case extensions defi ne their own precondition; obviously the condition in

LUR-757-makets-A.indd 17LUR-757-makets-A.indd 17 15.06.2010. 9:02:3515.06.2010. 9:02:35

18 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

the extension’s sentence is the precondition of the functional feature represented, but
the opposite precondition for the next step. Functional feature’s subordination can be
determined only by the user of the TFM Tool.

By analyzing use case sentences it should be possible to derive functional features.
It is important that TFM Fetcher considers functional features the same if they are
represented by the same tuple. This means that no duplicate functional features are
created and two or more use cases can include the representation of the same functional
features.

6 Retrieving Topology
Once there is a set of functional features it is necessary for TFM Fetcher to retrieve

the topology of TFM or cause-effect relations between functional features. The structure
of use cases will help with this task.

First of all, every use case’s main scenario is an ordered sequence of functional
features. Additionally, by analyzing the extensions and sub-variations it is possible to
detect branching in a TFM. Extension adds an effect to the functional feature represented
by the step referenced by the extension. On the other hand, sub-variation adds an
effect to the functional feature represented by the previous step referenced by the sub-
variation. Therefore, the setting of cause-effect relations between functional features
represented within the same use case is very straightforward. As you can see in Fig. 3
the 4 main sequences of functional features come from main scenarios of use cases. As
a demonstration of use case extension and sub-variation analysis consider functional
features number 1 and 11. Functional feature number 1 has an additional effect because
of the sub-variation 2a, but functional feature 11 has an additional effect because of the
extension 4a.

A different task is setting the cause-effect relations between functional features
fetched from different use cases. Precondition section of use cases are used to defi ne
this relation, because it contains the use case step which is the cause of the particular
functional feature. For example, use case’s “Requesting a book” precondition is
“Librarian authorizes reader status”, which is the 3rd step of use case’s “Arriving”
main scenario. Moreover, as different use case sentences represent the same functional
feature if their tuples conform, relation between different use cases can be fetched from
extensions and sub-variations, too.

Fig. 3 shows the compliance between the steps of use cases and the fetched TFM.
By analyzing the use cases it is possible to derive a TFM. TFM Tool will support several
iterations back and forth between description and TFM Fetcher until the system analyst
can verify every functional requirement. The mapping between use case sentences,
functional features and TFM should be intuitively illustrated and easily editable, so
that any incompleteness, redundancy or inconsistency could be corrected. The main
functioning cycle must be defi ned and set by the analyst. Cause-effect relation between
functional features 13 and 2 in Fig. 3 is set by the system analyst for the completeness
of main functioning cycle. It cannot be determined automatically.

LUR-757-makets-A.indd 18LUR-757-makets-A.indd 18 15.06.2010. 9:02:3515.06.2010. 9:02:35

19Armands Slihte. The Specifi c Text Analysis Tasks at the Beginning of MDA Life Cycle

Fig. 3. This shows the topology use case steps in compliance with cause-effect relations between
functional features. The bold arrows represent the main functioning cycle of TFM. Functional

features of this example will not be listed in this paper.

7 Solution
This paper analyses the specifi c text analysis tasks at the beginning of MDA life

cycle: 1) defi ning a formal data structure for the knowledge about the system; 2)
retrieving functional features for TFM; 3) retrieving topology or cause-effect relations
between functional features, thus constructing a TFM for the system.

As discussed earlier, business use cases with a specifi c template are used to defi ne
the knowledge about the system. This is a promising solution because use case driven
development is widespread approach in software development. Another advantage is
that a MOF compatible metamodel can be created for this use case template using XMI,

LUR-757-makets-A.indd 19LUR-757-makets-A.indd 19 15.06.2010. 9:02:3515.06.2010. 9:02:35

20 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

as well as for a TFM, which already is defi ned in [9]. A statistical parser can be used for
analyzing the sentences of use cases, and thus retrieving functional features for a TFM
of the system. This is a straightforward task as long as the sentences of use cases are kept
as simple as possible and in simple present tense. This is not always possible, so it is the
task of system analyst to prevent incompleteness, redundancy or inconsistency of use
case sentences. At last, for retrieving the cause-effect relations between these functional
features the structure of the use cases is exploited.

Fig. 4. This shows a scheme of the transformation between a set of use cases that describe
a system and a TFM. The defi nition of transformation itself is usecases2tfm which conforms

to QVT.

So we have a metamodel of use cases (a set of use cases), a metamodel of TFM
and a set of methods to transform use cases of a system into a TFM for that system.
At this point MDA’s standard for model transformation QVT comes into the picture.
The solution for the tasks defi ned earlier can be expressed as an exogenous model
transformation [3] with the help of QVT. QVT provides the necessary domain-specifi c
languages to defi ne the transformation between use cases and TFM, including a QVT/
BlackBox mechanism for integrating existing non-QVT libraries or transformations like
a statistical parser. The scheme of transformation is presented in Fig. 4. There are some
workable implementations of QVT like Eclipse M2M.

8 Conclusions
This paper discusses the specifi c text analysis tasks at the beginning of MDA life

cycle in context of TFM4MDA method like defi ning the knowledge about a system in
a formal data structure, challenges of retrieving a formal model from this knowledge
represented by use cases, implementing a workable transformation between a set of
system’s use cases and its TFM.

LUR-757-makets-A.indd 20LUR-757-makets-A.indd 20 15.06.2010. 9:02:3615.06.2010. 9:02:36

21Armands Slihte. The Specifi c Text Analysis Tasks at the Beginning of MDA Life Cycle

Nowadays software developers often are occupied with similar pattern application
coding. MDA proposes to abstract from application source code to the model of the
application as the main artifact in software development. Until now in MDA context
everyone has his own opinion about what is a CIM. This paper suggests that TFM
should be considered as the CIM of a system and proposes data structures and methods
for fetching a TFM from system’s use cases. Thus a mathematically formal and
transformable CIM of a system is acquired.

Further research is related to the evolution of the TFM Tool bringing its functionality
closer to TFM4MDA. First thing in queue is implementing the TFM Fetcher. It has to be
able to automatically retrieve functional features from its use cases by using a statistical
parser and then by the use of model transformation transform use cases to a TFM of the
system. For this task a metamodel for a set of these use cases have to be developed and
a model transformation conformable to QVT.

Next task is to develop a TFM Transformer component which would transform
TFM to UML conforming to TFM4MDA. As mentioned before it will probably be a
special UML profi le to keep all the valuable information of the TFM. So fi rstly there
is a need for a specifi c TFM UML profi le. Secondly Eclipse offers UML2 and UML2
Tools which can be applied for dealing with TFM Tool’s problem of TFM to UML
profi le transformation. From this point it should be possible to generate some part of
the system’s code.

With advancements of this TFM Tool research the completeness of MDA will
improve. TFM4MDA provides a formal CIM and new horizons by partially automating
and improving system analysis.

References
1. Frankel, D.S.: Model Driven Architecture: Applying MDA to Enterprise Computing. Wiley, Indianapolis

(2003)
2. Gasevic, D., Djuric, D., Devedzic V.: Model Driven Architecture and Ontology Development. Springer,

Heidelberg (2006)
3. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification, http://www.omg.org/cgi-bin/

doc?ptc/07-07-07.pdf (02.05.2010)
4. Osis, J.: Topological Model Of System Functioning (in Russian). In: Automatics and Computer Science,

J. of Acad. of Sc., pp. 44--50, Zinatne, Riga (1969)
5. Osis, J., Asnina, E., Grave A.: Computation Independent Representation of the Problem Domain

in MDA. J. Software Eng. vol. 2, iss. 1, 19--46, http://www.e-informatyka.pl/e-Informatica/Wiki.
jsp?page=Volume2Issue1 (2008)

6. Kontio, M.: Architectural manifesto: Choosing MDA tools, http://www.ibm.com/developerworks/library/
wi-arch18.html (2005)

7. Asnina, E.: The Formal Approach to Problem Domain Modeling within Model Driven Architecture.
In: 9th International Conference on Information Systems Implementation and Modelling, pp. 97 – 104.
Prerov, Czech Republic, Ostrava (2006)

8. Osis, J., Asnina, E.: Enterprise Modeling for Information System Development within MDA. In: 41th
Annual Hawaii International Conference on System Sciences, pp. 490. HICSS, USA (2008)

9. Šlihte, A.: The Concept of a Topological Functioning Model Construction Tool. In: 13th East-European
Conference, ADBIS 2009, Associated Workshops and Doctoral Consortium, Local Proceedings, pp. 476-
-484. JUMI, Riga, Latvia (2009)

10. Francu, J., Hnetynka, P.: Automated Generation of Implementation from Textual System Requirements.
In: Proceedings of the 3rd IFIP TC 2 CEE-SET, pp. 15--28. Brno, Czech Republic, Wroclawskiej (2008)

11. Structural Requirements Language Definition, Defining the ReDSeeDS Languages, http://publik.tuwien.
ac.at/files/pub-et_13406.pdf (May 2010)

LUR-757-makets-A.indd 21LUR-757-makets-A.indd 21 15.06.2010. 9:02:3615.06.2010. 9:02:36

22 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

12. Subramaniam, K., Liu, D., Far, B., Eberlein, A.: UCDA: Use Case Driven Development Assistant Tool for
Class Model Generation. In: Proceedin of the 16th SEKE. Banff, Canada, http://enel.ucalgary.ca/People/
eberlein/publications/SEKE-Kalaivani.pdf (2004)

13. Overmyer, S., Lavoie, B., Rambow, O.: Conceptual Modeling through Linguistic Analysis Using LIDA,
In: Proceedings of the 23rd International Conference on Software Engineering, pp. 401--410. Toronto,
Ontario, Canada (2001)

14. Malan, R., Bredemeyer, D.: Functional Requirements and Use Cases, http://www.bredemeyer.com/pdf_
files/functreq.pdf (May 2010)

15. Jurafsky, D., Martin, J.H.: Speech and Language Processing: An Introduction to Natural Language
Processing, Computational Linguistics, and Speech Recognition. Pearson Education (2000)

16. The Stanford Parser: A statistical parser. The Stanford Natural Language Processing Group, http://nlp.
stanford.edu/software/lex-parser.shtml (May 2010)

17. Part-Of-Speech Tagging Guidelines for the Penn Treebank Project (3rd revision, 2nd printing), http://
www.ldc.upenn.edu/Catalog/desc/addenda/LDC1999T42/TAGGUID1.PDF (May 2010)

LUR-757-makets-A.indd 22LUR-757-makets-A.indd 22 15.06.2010. 9:02:3615.06.2010. 9:02:36

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 330
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 330
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

