
Renārs Liepiņš
lQuery: A Model Query and Transformation Library

Scientific Papers, University of Latvia, 2011. Vol. 770
Computer Science and Information Technologies	 27–45 P.

lQuery: A Model Query and Transformation Library

Renārs Liepiņš
Institute of Mathematics and Computer Science

University of Latvia, Raina boulevard 29
Riga, LV-1459, Latvia

renars.liepins@lumii.lv

Transformation languages make it easy to work with models, but they are bound to one particular
data store. That makes them hard to adopt in projects where data is stored in a different repository,
which hinders more widespread use of transformations. Instead of adopting a transformation
language to a new data store, we propose to build a query and transformation library for the
general-purpose language that is already used in the project. We demonstrate how it can be done
by implementing such a library for EMOF-like data store in a Lua scripting language.

Keywords: model transformations, model query.

1 Introduction
Model-driven engineering (MDE) has shown the usefulness of models and model

transformations in software development. Its advent has fostered development of
numerous languages specifically tailored for model transformations. Although these
languages have largely solved the problem of working with models, there are still
some problems that hinder wider use of transformations. The main difficulty is that
each transformation language works only with a specific repository, and can be easily
extended (if at all) only with a specific general purpose language. Consequently if we
want to use a transformation language with another data store we need to either import/
export our data to the data store that is supported by the transformation language or
we need to write a wrapper for our data store so that the transformation language can
work with it. This is problematic because the import/export approach can work only in
situations where the transformations can work in a batch mode. Writing a wrapper is even
worse because it requires detailed knowledge about the implementation of the desired
transformation language. Another problem with existing transformation languages
is extensibility, i.e. if we need some new primitive operation that the transformation
language does not have, then how to add it? In principle, there are a few options: we
can either extend the transformation language compiler or runtime ourselves, ask the
transformation language developers to do it for us, or find a workaround. Neither of

28 Computer Science and Information Technologies

these options is satisfactory: first two are too time-consuming, the last one would defeat
the purpose of using a domain specific language.

To avoid these problems, we propose an alternative approach: instead of adopting
an existing transformation language to the new data store, let us build a new query
and transformation library in the general-purpose language we are already using in
our project. We assume that the general-purpose language has lambda expressions. We
think that it is justified because most mainstream languages either already have lambda
expressions or will add them in the next major revision. Although, at first it may seem
that it is unfeasible to build a library with the same expressive power as a domain specific
language, it is actually quite doable using ideas from combinatorial parsing [1].

We will show how this can be done by developing a query library in the Lua
scripting language [2] for working with an EMOF-like [3] data store. We chose Lua
because it has first-class functions, C-like syntax, and very few core constructs, so it can
be easily explained and understood. And we chose an EMOF-like data store because
most transformation languages work with such data stores and that in turn makes it
easier to compare the library features and expressiveness with existing transformation
languages.

2 lQuery Library
The lQuery library is a set of functions for querying and modifying models stored in

a model repository. It is implemented in the Lua scripting language and has been used for
building meta-case tools as well as specific modeling tools in GRAF platform [4]. Before
going into details about lQuery we will first give a brief overview of the Lua scripting
language and the API of the model repository for which the library is implemented.

2.1 Brief Overview of Lua

Lua is dynamically typed scripting language, i.e. variables do not have types, but
each value carries its own type. Comments, in Lua, start with double hyphens (‘--’) and
run till the end of the line. In the following examples, we will use comments starting
with ‘-->’ to indicate the result of preceding code.

Lua has only a couple of primitive value types: nil, strings, numbers, booleans,
and functions. And there is only one data structure: an associative array, commonly
called table. The indices and values in a table can be any Lua value: strings, numbers,
booleans, functions, or other tables. Lua has a special syntax for creating tables: {}
creates an empty table, and {x=1, y=”a”} creates a table where index “x” has value
1 and index “y” has value “a”. There are two syntaxes for getting the value that is
associated to a given key in a table: t.y and t[“y”], the former is just a syntactic sugar
for the later:

t = {x=1, y=”a”}

print(t.x)	 --> 1

print(t[“y”])	 --> “a”

Lua has a standard set of control structures: if for conditions and for for iterations.
All control structures have an explicit terminator: end.

29Renārs Liepiņš. lQuery: A Model Query and Transformation Library

if a < 2 then

	 print(“a less than 2”)

else

	 print(“a greater than 2”)

end

t = {“a”, 100, true}

for i, v in ipairs(t) do

	 -- i is index, v is value, .. is concatenation operator

	 print(“the value of index ” .. i .. “ is “ .. v)

end

Functions in Lua are first-class values meaning that functions can be constructed at
runtime, assigned to variables, passed as arguments, and returned as results from other
functions. All functions in Lua are anonymous. The statement function (x) ...
end is a function constructor, just as {} is a table constructor. For example, to create a
function that adds one to its argument, we write:

add_one = function(n)

 return n + 1

 end

add_one(3) --> 4

Here, add_one is a variable to which we assign the constructed anonymous function.
Tables can also be used as objects. To make it more convenient, there is a special

syntax for calling methods: obj:foo(args). It gets the anonymous function stored at
key “foo” in the table obj and calls it passing the table itself as the first argument. In
this case, the table plays the role of self or this from other object oriented languages.

2.2 Overview of a Model Repository API

lQuery, like other model transformation languages, works on a model repository.
The repository can be divided into two parts (Fig. 1): the schema part (upper three
boxes) and the data part (lower three boxes). The data part is the actual part with which
lQuery works, and the schema part is like annotations that help to understand what each
data item means. The schema part consists of three things: classes, attributes, and links.
Classes are used to group objects together, and the super/sub relation between classes is
used to state that if an object belongs to a subclass then it also belongs to the superclass.
Attributes are used as keys for associating string values to objects. Links are used
for associating objects with other objects. The data part consists of: objects, attribute
values, and link assertions. Objects are the actual values that are stored in repository.
Each object has exactly one class. Attribute values are strings that are associated to some
object with a particular attribute. Each object can have at most one attribute value for
a particular attribute. Link assertions are a collection of objects that are associated to a

30 Computer Science and Information Technologies

particular object for a particular link. An example of a repository content is given in the
next chapter.

1
object

★ attr
outgoing ★

1..★ dom

incoming ★
1..★ range

class 1..★

incoming ★

outgoing ★

1 type 1 type 1 type

0..1 inv
Class

className : String {key}

Attr

attrName : String {key}

Link

linkName : String {key}

AttrValue

value : String

Object LinkAssert★

attrValue

1 source
1 target

★ ★ ★

0..1 super
★

sub

0..1 inv

Fig. 1 Model Repository Metamodel

Each schema entity has a unique string id, and there is an API function to get an
entity with a specific id. There are also functions to get all objects that belong to a
specific class, check whether an object belongs to a specific class, create an object,
delete an object, get the value of an object attribute, set the value of an object attribute,
get linked objects, add link between two objects, and delete link between two objects.
The repository API functions are listed in the Appendix 1.

Theoretically, these functions are sufficient to write any transformation, but the
resulting code would be very repetitive, i.e. some patterns would repeat again and again,
e.g. navigation through multiple link chains, or filtering by some condition. To make the
transformations more readable, the redundant parts need to be abstracted away. lQuery
functions help to do it.

2.3 Example Model

In Fig. 2 we can see a simple model and an instance diagram. We will use it
throughout the rest of the paper for demonstrating lQuery constructs. The model is on
the left side, it consists of two classes: Person and Animal. Person has name and age
attributes and associations to other persons that are his parents and children, and
an association to Animals that are his pets. On the right side we can see a couple of
instances of this model.

31Renārs Liepiņš. lQuery: A Model Query and Transformation Library

parent
*

child
*

pet *

owner 0..1

pet

owner

parent

child

parent

child

Person

name:String
age: Integer

Animal

age:Integer

John:Person

name = "John"
age = 31

dog:Animal

age = 2

Mary:Person

name = "Mary"
age = 32

Bill:Person

name = "Bill"
age = 7

Fig. 2 Example model and instances

Typical queries that we would like to make on this model are: get instances of
a particular class (e.g. all persons), get instances with a specific attribute value (e.g.
persons with name “John”), or get all pets of a person’s children. If we needed to
perform these queries using only the repository API, then the code would mostly contain
iterator constructs. For example, to get persons that are 42 years old, we would need to
write:

persons_with_age_42 = {} --empty table for storing
results

for i, o in ipairs(allObjects()) do --iterate over all
objects

 --check that object is a person and the value of age is
42

 if isKind(o, “Person”) and getAttrVal(o, “age”) == 42
then

 --insert person into results table

 insert(persons_with_age_42, o)

 end

end

It is far from readable, even for such a simple query, especially if we compare
it with path expressions from XPath language [5], where it would look something
like “.Person[@age=42]”. Our goal is to create a query language where selector
expressions would be as compact as that. One way to do it is to create a function that
receives an XPath-like selector string and returns the resulting object collection, but this

32 Computer Science and Information Technologies

approach is too limiting because there are common queries that cannot be adequately
represented as strings, e.g. getting objects with a link to a specific instance because in
our repositories an instance does not have an externally accessible id, so it cannot be
encoded in a string. That is way we will take another approach: we will define selector
functions, and function combinators, so that we can easily reference objects and object
collections by passing them as arguments to those functions. For the common cases,
where string expressions would suffice, we will define an XPath-like selector shorthand
notation (string expressions) that can be easily mixed with selector functions and
combinators. The result will be the lQuery library.

2.4 lQuery Core

The core of lQuery is a single function: query. It has two arguments: an ordered
collection of repository objects and a selector. The selector specifies what will be the
result of the query operation on the source collection. There are two types of selectors:
filters and navigators. Filters are used to return a subset of the initial collection based on
some condition. Navigators are used to get a new ordered collection of objects from the
initial collection. Examples of filter selectors are: filter by class membership, or filter by
attribute value. Examples of navigation selectors are: getting the collection of objects
that are reachable from current collection by a given role name, or getting the collection
of values of some attribute. For each of these primitive selectors, there is a constructor
function that creates it. Constructor function names have been chosen to maximize
readability when used as arguments in query calls. The list of built-in primitive selector
constructors is given in Table 1. For example, to get all persons from Fig. 2 that are 42
years old we would write:

persons = query(allObjects(), kind(“Person”))

query(persons, hasAttrValue(“age”, 42))

Table 1

Primitive Selector Constructors

Selector Constructor Description

kind(className) returns a filter selector that will match only
those elements that are instances of a class with
id className or instances of some class in its
subclass chain

hasAttrValue(attrName, attrValue) returns a filter selector that will match only
those objects that have an attribute with id
attrName whose value is equal to attrValue

linked(roleName) returns a navigator selector that will match all
those objects that are reachable by a link with
id roleName

attrValue(attrName) returns a navigator selector that will return
a collection of values that are associated to
attribute with id attrName

33Renārs Liepiņš. lQuery: A Model Query and Transformation Library

It is much more concise than the same query written using the base repository API
and an explicit for loop (see previous chapter). But there are still some problems, e.g.
we needed to introduce a temporary variable: persons, and we have to call the query
function twice. It would be better if we could combine the two query steps into one then
we do not have to introduce a temporary variable, and we can call the query function
only once.

Another problem is how to perform filters on more complex conditions. Currently,
there are only two primitive filters: filter by kind, and filter by attribute value. If we need
to make a more complex query, e.g. select persons that have at least one child, we have
to resort to an explicit iterator.

parents = {}

for p in query(allObjects(), kind(“Person”)) do

 children = query(p, linked(“child”))

 if #children > 0 then

 parents:insert(p)

 end

end

In the next chapter we will look at selector combinators that will address these
problems.

2.5 Selector Combinators

In the previous chapter, we introduced the query function and some primitive
selectors for filtering and navigation object collections, but they were not powerful
enough to cover many typical use-cases. To solve those problems, we will introduce
functions (selector combinators) for building new selectors from existing ones. They
will receive selectors as arguments and return a new selector that can be used elsewhere
as if it was a primitive. Let us look at a couple of selector combinators in more detail
(the complete list of selector combinators is shown in Table 2).

One of the most frequently used selector combinators is chain. It receives any
number of selectors as arguments, and returns a new selector that when evaluated in a
query function will apply the first selector to the initial collection, then pass the result
of that evaluation to the next selector and so on through all the selectors that where
passed to it. Thanks to it, we can write long selector expressions in a very readable way,
because we do not need to manually call query functions and pass them arguments. For
example, to get all persons and then to get all animals that are pets of those persons, we
can write:

query(allObjects(), chain(kind(“Person”), linked(“pet”))

Another frequently needed task is filtering not just by a predefined selector (like
filter by kind, or filter by attribute value), but by a result of another selector. For this
task, there are two selector combinators: has and hasNot. Selector combinator has
accepts a selector as an argument and creates a filter selector, that when applied to
collection of repository objects will return a new collection with only those objects
for which the passed selector returns a non-empty collection. The selector combinator

34 Computer Science and Information Technologies

hasNot works similarly, but returns the objects for which the passed selector returns an
empty collection. For example, to select persons that have children

query(allObjects(), chain(kind(“Person”),

 has(linked(“child”)))

Another pair of selector combinators is union and intersect. Both receive
one or more selectors and return a new selector. In the case of union, the returned
selector returns a union of object collections (multi set) of all the results of applying
each selector to the initial collection. The intersect selector returns an intersection of
object collection that are returned by all of the passed selectors. For example, let us say
a person is responsible for someone, if that someone is either its child, or its pet. To get
all persons that are responsible for someone we would use a filter and union:

query(allObjects(), chain(kind(“Person”),

 has(union(linked(“child”),

 linked(“pet”))))

The selector combinators chain and intersect can be interchanged in some
situations, but in general they are different. When combining selectors with chain,
each selector will be performed on the result of the previous selector, but when they are
combined with intersect then all selectors are performed on the original collection
and only then the results are intersected. When all the selectors are filters, chain and
intersect can be interchanged and chain is actually the preferred, because it will be
more efficient, i.e. every subsequent selector will be applied to a smaller collection of
objects. But they will return a completely different result, if some of the selectors are
navigators, because then the intersect will perform each selector in the context of
source collection, but the chain will navigate through the chain of links. For example,
intersect(linked(“children”), linked(“pet”)) will return objects that are
children and pets at the same time, while

chain(linked(“children”), linked(“pets”)) will return children’s pets.
The final combinator is closure. It receives one selector and returns a new selector

that when applied to a repository object collection will return a new collection with all
the objects from the initial collection together with objects that can be found by repeated
application of the passed selector to the resulting collection until no new objects are
found. It is impossible to go into an infinite loop, because closure will notice cycles
and will not evaluate the passed selector on them again. A typical example for closure
is to get all descendants of a person (here we assume that each person is a descendant
of himself, in the next section we will see how to implement a combinator closure_plus
that will not have this problem). The closure will first find all person’s children, then
find all his children’s children, and so on, until no more children can be found. It can be
written as follows, assuming that p is a collection of persons for whom we want to find
all descendants:

query(p, chain(kind(“Person”),

 closure(linked(“child”)))

Combinator closure can be used not only with simple selectors like linked, but
also with more complex selectors: like chain of links, or links followed by filters. For

35Renārs Liepiņš. lQuery: A Model Query and Transformation Library

example, if the class Person had an attribute gender, then we could create a selector
for getting only male descendants by writing:

closure(chain(linked(“child”),

 hasAttrValue(“gender”, “Male”)))

Table 2

Selector Combinators

Selector Combinators Description
chain(sel1, sel2, ..., selN) creates a selector that applies each of the

supplied selectors in order, first selector gets
applied to the initial collection, and each
subsequent selector is applied to the result of
the previous selector

has(sel) creates a selector that filters initial collection
based on the result of supplied selector: if the
result is a non-empty collection or a non-false
value, then the object will be in the result
collection, otherwise it will be dropped

hasNot(sel) creates a selector that returns the complement
of the one has selector would have returned

union(sel1, sel2, ..., selN) creates a selector that returns a union of all
supplied selector results

intersect(sel1, sel2, ..., selN) creates a selector that returns an intersection
of all the selector results

closure(sel) returns a transitive closure of repeatedly
applying the selector to the initial collection
and then to each of results until no new object
is added (checks for cycles and is not applied
repeatedly if an object is found multiple
times)

2.6 Selector Reuse and Custom Selector Combinators

When building any reasonably complex application, there usually are some selector
patterns that repeat again and again, e.g. the compound selector from previous chapter
for getting persons that are responsible for someone, i.e. that have a child or a pet. One
way to avoid the repetition is to create this selector once and assign it to a variable.
Later, when we need to use that selector, we can pass the variable instead of building it
from scratch, like this:

responsible_persons = chain(kind(“Person”),

 has(union(linked(“child”),

 linked(“pet”)))

query(allObjects(), responsible_persons)

36 Computer Science and Information Technologies

This works if the pattern is constant, but what if the pattern is like a template? For
example, we could want to get all objects that are reachable though a selector chain with
length at least one. We can use functions to create these selectors for us. In a way, the
selector combinators from previous chapter did just that. For example, to define a new
selector combinator (closure_plus) that will receive a navigation selector and return
a new selector that will match all objects that are reachable through a navigation chain
with length at least 1, we write:

function closure_plus(selector)

 return chain(selector, closure(selector))

end

Now we can use this new selector combinator just as if it was a library primitive.
In real life tasks, this allows the programmer to build a task-specific selector library on
top of the primitive selectors and selector combinators that is tailored for his problem
domain.

2.7 Custom Primitive Selectors

Although the ability to create higher-level selector combinators is very powerful, it
is not enough, because we are still bound by the primitives that came with the library.
There are situations when we need a genuinely new kind of selector that cannot be
expressed with the existing primitives, e.g. get all persons from Fig. 2 whose name starts
with a letter ‘B’. Of course, we can always resort to explicit for loops, but the downside
of this approach is that we cannot use them in our selector chains, i.e. we will have to
split our chains in parts: till the for loop, and after it. The situation is even worse if we
want to use that selection in the closure combinator, because there is no way to do it,
and we would be forced to re-implement closure specifically for this case. To alleviate
these problems, there is a mechanism for constructing new primitive selectors. In fact,
all of the primitive selectors have been implemented through it.

There are two primitive selector constructor functions (Table 3). First operates in
the context of one repository object, like primitive selectors returned by linked and
kind constructors. The second operates in the context of repository object collection.
The closure selector is implemented through it.

New selectors with single object context can be created with a function
soloSelector that accepts a one-argument function as an argument (remember that
functions are first-class objects in Lua, and can be passed as arguments—see section
2.1). When the resulting selector will be used in a query invocation, it will apply the
passed function to each element from the initial object collection. It is expected that the
function will return either a repository object, an object collection, or a boolean. If it
returns an object or a collection, then all results are collected in a list that is flattened
afterwards. If the functions returns a boolean, then it acts as a filter, i.e. only those
objects for which it returned true are included in the result collection.

For example, if we were working with the repository that is shown Fig. 2 and needed
to get all persons who have underage children, then we would have a problem, because

37Renārs Liepiņš. lQuery: A Model Query and Transformation Library

there is no selector for checking if an attribute value is less than a given integer, and
would have to introduce an explicit for loop. But now we can construct a selector and
use it with other combinators:

underage = soloSelector(function(p)

 age = getAttrValue(p, “age”)

 if age < 18 then

 return true

 else

 return false

 end

 end)

query(allObjects(), chain(kind(“Person”),

 has(chain(linked(“child”),

 underage)))

Actually, all of the primitive selectors are implemented through soloSelector.
For example, the primitive selector kind(className) is implemented like this:

function kind(className)

 return soloSelector(function(o)

 return isKindOf(o, className)

 end)

end

The second primitive selector constructor creates a selector from a one-argument
function that will work on all of the initial collection at once, thus its only argument will
be the initial object collection. The result of the passed function on the initial collection
is the result of the whole selector. This selector constructor is useful for creating custom
selectors that must have the whole object collection, e.g. getting the first object from
a collection, getting the number of objects in a collection, or checking if an object
collection contains a specific object. For example, to get the first child of every person
we would first define a new primitive selector first (it is universal and can be used in
other situations) and then use it to get the first child:

first = collSelector(function(coll)

 return coll[1] -- table value by index

 end)

query(allObjects(), chain(kind(“Person”),

 chain(linked(“child”),

 first))

38 Computer Science and Information Technologies

Table 3

Custom Primitive Selector Constructors

Custom Selector Constructors Description

soloSelector(fn) creates a selector from a one-argument function;
when the selector is used, the function will be
applied to each element in the collection; if it
returns an object or an object collection, then
all the results will be collected and flattened; if
it returns a boolean then it will act as a filter

collSelector(fn) creates a selector from a one-argument function,
in contrast to soloSelector, the whole object
collection is passed to the function; the result
of the function is the result of the selector

2.8 Shorthand Notation

The primitive selectors and selector combinators allow us to write complex query
expressions in a modular and readable way, but in cases where the selector is constant
and simple, the combinator approach is a bit longer than the analogous expressions in
OCL [6] or XPath. To reach the maximum compactness and readability, we introduce
a shorthand string notation for most common primitive selectors and combinators.
The string form can be used anywhere in place of a selector: when the query function
gets a string in place of a selector it will compile it to the corresponding primitive
selector constructor or selector combinator calls. This allows us to mix the shorthand
string notation together with ordinary selectors to achieve maximum compactness
and expressiveness. Currently, there is no way to introduce shorthand notation for
custom defined selectors and selector combinators, except for redefining the compile
function.

The shorthand notation is adapted from the XPath navigation language. Function
compile(shorthand_string) compiles a shorthand string into the corresponding
selectors. It works as follows: string that starts with a dot followed by an alphanumeric
string, e.g. “.ClassName”, is compiled to the selector constructor kind(“ClassName”),
string that starts with a slash, e.g. “/roleName”, is compiled to linked(“roleName”),
and string that starts with brackets followed by ‘@’ and a name, e.g. “[@attrName =
value]”, is compiled to hasAttrValue(“attrName”, “value”). The shorthand
notation for selector combinators is as follows: “:has(sel)” is compiled to selector
combinator has(compile(“sel”)). The complete list of shorthand notation is given
in Table 4.

39Renārs Liepiņš. lQuery: A Model Query and Transformation Library

Table 4

Selector Shorthand Notation

Shorthand Notation Equivalent Form

“.ClassName” kind(“ClassName”)

“/roleName” linked(“roleName”)

“[@attrName = value]” hasAttrValue(“attrName”, “value”)

“:has(sel)” has(compile(“sel”))

“sel1 sel2 ... selN” chain(compile(“sel1”), compile(“sel2”), ..., 	
 compile(“selN”))

“sel1, sel2, ..., selN” union(compile(“sel1”), compile(“sel2”), ..., 	
 compile(“selN”))

Let us look at how some of the examples from previous chapters can be rewritten
using the shorthand notation. The very first example was, get all persons that are 42
years old. Using shorthand notation we can write:

query(allObjects(), “.Person[@age=42]”)

The shorthand notation can also be used in selector combinators. For example to get
the descendants of person collection p, we write:

query(p, closure(“/child”))

In that way, we can use the shorthand where possible, but fall back to selector
combinators or custom selectors when the shorthand is not expressive enough.

2.9 Manipulation with Whole Sets of Objects

Selection of repository objects is only one part of the model interpretation task. The
other, is actually doing something with the selected objects. Usually, the doing and the
selection is intertwined, i.e. we select some objects, do something with them, and then
use that collection to find next set of objects and do something with them. Because the
repository API has functions only for manipulating one object at a time, we would have to
use explicit iterators for manipulation and it would break up the selection-manipulation-
selection chain into multiple statements that in turn would hinder readability. To avoid
this problem, we define a number of methods for repository object collection that will
allow us to manipulate sets of objects at once and intermix selection and manipulation
steps. The list of methods is given in Table 5. We use the Lua object notation, where ‘:’
is used for method invocation (see section 2.1 for details). Let us look at each method
in more detail.

There are three manipulation methods: setFeatures, deleteLinks, and delete.
Method setFeatures receives a Lua table as an argument. Each key in the table is a
feature (attribute or link) name and the corresponding value is either a string for an
attribute value, or an object or a object collection for a link value. The method adds the
given features to each object in the source collection. In case of an attribute value, the

40 Computer Science and Information Technologies

current value is replaced with the given value. In case of a link, new link assertion is
created for the given object, or for each object in the object collection. For example, to
set the attribute “age” of all persons from Fig. 2 to 18 and add a link “pets” to some
object p, we would write:

p = createObject(“Animal”) -- create a new animal

query(allObjects(), “.Person”)

 :setFeatures({

 age = 18,

 pets = p

 })

Method deleteLinks receives a Lua table as an argument, where each key is a
link name and the corresponding value is either a single repository object or a repository
object collection. The method deletes link assertions that correspond to the given key
from each object in source collection to the corresponding key value. If there are no link
assertions, then nothing is done. The result of this method call is the same collection on
which it was called, so that further selection or modification operations can be done. For
example, to delete the link “child” from all persons in Fig. 2 to persons whose name is
“Bill”, we would write:

persons_with_name_bill = query(allObjects(),

 “.Person[@name = Bill]”)

query(allObjects(), “.Person”)

 :deleteLinks({

 child = persons_with_name_bill

 })

Method delete removes all objects that are in the source collection from the
repository and returns an empty collection.

There is also a higher-order method each(fn, args), i.e. a method that receives
a function as an argument. It can be used to call some function on each object from the
source collection for its side-effects, like making some changes in repository. The result
of the method each is the same collection on which it was called. This allows us to
make multiple such calls one after another. The supplied function fn will be called on
each object in the source collection: its first argument will be the current object, and the
rest arguments will be args, which where passed to the method each. For example, if
we have defined a function for incrementing the attribute age by a given number, then
we can make every person two years older as follows:

function increment_age (person, n)

 current_age = getAttrValue(person, “age”)

 setAttrValue(person, “age”, current_age + n)

end

query(allObjects(), “.Person”):each(increment_age, 2)

41Renārs Liepiņš. lQuery: A Model Query and Transformation Library

To allow mixing manipulation and selection steps, there is a method find(selector)
that returns the result of the function query on the given collection and selector, i.e.
p:find(sel) is equivalent to query(p, sel). In addition the method creates a selection
stack, so that each collection that is a result of the find method remembers from which
collection it was derived. This information is used by a method back, to return the
collection from which the current collection was derived. These two methods together
with manipulation methods provide a very readable way to write tree-like visitors. To
see these methods in action, let us consider a somewhat contrived example: we want to
find all persons in Fig. 2, then increment the age of their children by one year and the age
of their children‘s pets by two years, then we want to go back to the children and find a
child with the name “Bill” ,rename him to “Bob”, and delete his pets. To perform these
actions, in the given order, we would write:

allObjects()

 :find(“.Person”)

 :find(“/child”)

 :each(increment_age, 1)

 :find(“/pet”)

 :each(increment_age, 2)

 :back()

 :find(“[@name = Bill]”)

 :setFeatures({name = “Bob”})

 :find(“/pet”)

 :delete()

Note that allObjects() returns an object collection, so we can use the method
find on it. We use indentation to make the traversal more readable, i.e. after each find
we increase the indentation to signify that we have a new object collection, after each
back call we decrease the indentation to signal that we have returned to the previous
collection. Also note that the result of methods each and setFeatures is the same
collection they were called on (this style of methods is inspired by fluent interface
approach to API design).

Although all of the previous examples used the shorthand selector notation in the
find method, it is by no means the standard situation. In real life tasks, we would use
custom selector combinators or predefined patterns, because in any complex task we
would have built a domain specific selector language on top of the primitives.

42 Computer Science and Information Technologies

Table 5

Object Collection Methods

Object Collection Method Description

coll:find(selector) returns a new object collection that is the
result of applying query function to coll and
selector

coll:back() returns the collection from which the coll
was derived

coll:setFeatures(feature_table) feature_table is a table where each key
corresponds to a feature name and each
value corresponds to the new value of the
feature; this method sets these values for
each object in coll and returns the same
collection coll

coll:deleteLinks(feature_table) feature_table is a table where each key
corresponds to a link name and value
corresponds to the objects to whom the link
must be deleted; the method deletes those
links and returns the same collection coll

coll:delete() deletes all objects that are in coll from
repository, and returns an empty collection

coll:each(fn, args) for each object in coll a function fn is called;
first argument is the current object and the
rest arguments are args; returns the same
collection coll

3 Related Work
As far as we know, there are no libraries built specifically for model interpretation,

i.e. optimized for selecting object collections, traversing them and making minor
modifications, so we will compare lQuery to transformation languages, specifically the
path expressions that are used in transformation languages, and to EMF Model Query
library [7].

Transformation languages, as the name suggests, are optimized for matching patterns
in source model and creating corresponding patterns in target model. Because navigation
is not the most important problem in those tasks, transformation languages have either
only one-step navigations through role names [8], or navigation expressions that have
been inspired by OCL, like in languages ATL [9] and QVT [10]. But none of these

43Renārs Liepiņš. lQuery: A Model Query and Transformation Library

languages treat navigation expressions as first-class values, and thus it is impossible to
build or change navigation expressions at runtime, or pass them as arguments to other
functions. This makes them less usable in situations where the task at hand requires a
construct that the language designers did not anticipate. For example, if lQuery did not
have the closure combinator built-in as a primitive, it would be possible to add it as
a user defined function, and later use it just as if it was a language primitive. Also, this
ability allows a programmer to define a new higher-level selector language that will be
tailored for his domain and thus abstract away from the specific details of the metamodel
structure. This has two advantages: firstly, the code becomes more readable because the
selectors are tailored for the problem, and secondly, if the structure of the metamodel
changes, we only need to update our domain-specific selectors but all the logic can
remain the same, because it is built on top of custom selectors.

EMF Model Query is a model query library that is part of Eclipse Modeling
Framework [11]. It treats selectors as objects and can build them at runtime. But the
resulting queries are in the style of SQL, i.e. select-from-where, where from and
where clauses accept a structure that is similar to a lQuery selector. However, we think
that XPath-like navigation paths, where navigation and filtering can be intermixed, are
more readable.

4 Conclusions
We have shown how to build a query and transformation library for an EMOF-like

data store in the Lua language. The library has just as readable selector expressions
as transformation languages and in addition it can be easily extended with custom
selectors using the full power of the host language. Also, the new custom selectors are
indistinguishable from the ones that came with the library. In addition, the whole library,
including the parser for shorthand notation, took less than 1000 lines of Lua code to
implement. It shows that the library can be easily ported and that the amount of work
could be comparable to writing a wrapper for an existing transformation language to
work on a new repository.

Although the library is implemented in Lua, it could be just as easily ported to any
other language that has first-class functions. The same can be said about data store:
although the current library is implemented for an EMOF-like data store, it could be
similarly implemented for a different structure, e.g. XML. The only thing that would
change is the primitive selectors.

For the future work, we plan to explore how to make the compiler for shorthand
notation extendable, so that shorthand can also be added for custom selectors and
selector combinators.

Acknowledgements
This work has been supported by the European Social Fund within the project

«Support for Doctoral Studies at University of Latvia».

44 Computer Science and Information Technologies

References
 1.	 Hutton, G.: Higher-Order Functions for Parsing. In: Journal of functional programming, Cambridge Univ

Press (1992)
 2.	 Ierusalimschy, R.: Programming in Lua, second edition (2006)
 3.	 Meta Object Facility (Mof™) Core 2.0, http://www.omg.org/spec/MOF/2.0/, January 2006
 4.	 Sproģis, A., Liepiņš, R., Bārzdiņš, J., Čerāns, K., Kozlovičs, S., Lāce, L., Rencis, E., Zariņš, A.: GRAF:

a Graphical Tool Building Framework. In: ECMFA 2010 Tools and Consultancy track, France (2010)
 5.	 XML Path Language (XPath) Version 1.0, http://www.w3.org/TR/xpath/, November 1999
 6.	O bject Constraint Language (Ocl) 2.2, http://www.omg.org/spec/OCL/2.2, February 2010
 7.	 EMF Model Query Developer Guide, http://help.eclipse.org/helios/index.jsp?nav=/22, May 2011
 8.	 Kalnins, A., Barzdins, J., Celms., E.: Model Transformation Language MOLA. In: Proceedings of

MDAFA 2004, 14–28 (2004)
 9.	 Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., Valduriez, P.: ATL: a QVT-like transformation language.

In: Companion to the 21st ACM SIGPLAN symposium on Object-oriented programming systems,
languages, and applications, New York, NY, USA (2006)

10.	 Meta Object Facility (MOF) 2.0 Query/View/Transformation, V1.1, http://www.omg.org/spec/QVT/1.1,
January 2011

11.	 EMF: Eclipse Modeling Framework, http://www.eclipse.org/emf/, May 2011

45Renārs Liepiņš. lQuery: A Model Query and Transformation Library

Appendix: Model Repository API

Object Collection Method Description

getEntity(entityId) returns the schema entity with the given id

allObjects() returns a list of all objects that are in the
repository

isKindOf(object, class) returns true if the object is a member of the
given class or a member of any class in the
class‘ subclass chain

createObject(class) returns a new object that is a member of the
given class

deleteObject(object) deletes the given object from the repository
together with all its attribute values and link
assertions

getAttrValue(object, attr) returns the attribute value string that is
connected to the given object and the given
attribute

setAttrValue(object, attr, value) replaces the string value of attribute value of
the given object

getLinkedObjects(object, link) returns a list of objects that are connected to
the given object through the given link

existsLink(src_obj, link, trg_obj) returns true if there exists the given link type
between the source object and the target
object

createLink(src_obj, link, trg_obj) creates a new link assertion between the
source object and the target object with
the given link type; if the link type has an
inverse, another link assertion is created in
the opposite direction

deleteLink(src_obj, link, trg_obj) deletes the link assertion that was between the
source object and the target object; if there
is an inverse link assertion in the opposite
direction, it is also deleted

