SCIENTIFIC PAPERS, UNIVERSITY OF LATVIA, 2011. Vol. 770
COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES 68—89 P.

Computing Relations in the Quantum Query Model !

Alina Vasilieva, Taisia Mischenko-Slatenkova
Faculty of Computing, University of Latvia
Raina blvd. 29, LV-1459, Riga, Latvia
Alina.Vasiljeva@gmail.com, Taisia. Miscenko@gmail.com

Query algorithms are used to compute mathematical functions. Classical version of this model is
also known as decision trees. Quantum counterpart of decision trees — quantum query model — has
been actively studied in recent years. Typically, query model is used to compute Boolean functions.
In this paper, we consider computing mathematical relations instead of functions. A relation is a
set of ordered pairs and the difference from a function is that each element from a domain set may
be mapped to multiple elements from a range set. We demonstrate that quantum query model is
well suited for computing relations. We present examples of quantum query algorithms that are
more efficient than the best possible classical algorithms for computing specific relations.

Keywords: quantum computing, quantum query algorithm, algorithm complexity, mathematical
relation.

1 Introduction

Query model is a popular, elegant and rather simple model of computation. The
goal is to compute the value of a well-known function for an arbitrary hidden input. The
complexity of a query algorithm is measured by the number of questions it asks about
the input variables on the worst-case input. The classical version of this model is known
as decision trees [1].

Quantum computing is an alternative way of computation based on the laws of
quantum mechanics. Quantum algorithms can solve certain problems faster than classical
algorithms. The most exciting examples are Shor’s [2] and Grover’s algorithms [3].
This branch of computer science is developing rapidly; various computational models
exist and we consider one of them. Many impressive quantum query algorithms have
been developed in a query model in recent years [4-8]. An important task in complexity
theory is to find examples with a large gap between classical and quantum algorithm
complexity of the same computational problem.

! This work has been supported by the European Social Fund within the project ,,Support for Doctoral
Studies at University of Latvia”.

Alina Vasilieva, Taisia Mischenko-Slatenkova. Computing Relations in the Quantum Query .. 69

Most often query model is used to compute Boolean functions. However, it is
possible to apply query model to functions with larger domain and range as well. In
this paper, we consider even more uncommon case — computing mathematical relations
instead of functions. A binary relation is more general type of problem than a function.
A relation is a set of ordered pairs that associates values from a domain set with values
from a range set. Difference from a function is in element mapping: each element from
a domain set may be mapped to multiple elements from a range set. So, a function is
simply a special case of a relation, where each value from a domain set is mapped to no
more than one value from a range set. Alternative way is to consider relations as multi-
valued functions.

The study of query complexity of relations has been inspired by the book on
communication complexity by Kushilevitz and Nisan [9]. The main part of this book
discusses communication complexity of functions, but Chapter 5 is devoted exactly to
the communication complexity of relations.

We apply traditional query model to compute relations. In classical deterministic
settings, however, it does not seem to be possible to employ the difference between a
relation and a function to obtain new interesting results. A deterministic decision tree
always follows one and the same fixed path for each certain input and outputs one and
the same value each time. The situation is different in the quantum case. Quantum state
before the measurement is in a superposition of the basis states, so it is not determined
to which exactly basis state quantum system collapses after the measurement.

Various computational problems may be represented in terms of relations. Let
us consider, for instance, an online reservation system for a large renting company.
Company provides various products for rent, for example, cars, flats, TV-sets etc. User
fills in a reservation form on the Web page and submits it. According to user’s request
parameters (relation input) system has to find a set of satisfying and available items
(value set for that input) and display them to user for further selection or even perform
selection automatically. By designing an efficient algorithm for computing this kind of
relation we are able to speed-up processing significantly. Nowadays, in heavy-loaded
systems with huge amount of concurrent requests, a lot of resources could be saved by
performance improvement at the moment of selecting appropriate value set.

Significant difficulty in designing quantum query algorithm is making it exact (i.e.
make it output correct result always with probability p = 1). The largest complexity
separation between classical deterministic and quantum exact query algorithm
complexity for the same total function known for today is N versus N/2. However, in the
case of relation, we are allowed to output values from a fixed set instead of one fixed
value for a certain input. We assert that in such case the task of designing a non-trivial
exact quantum query algorithm is achievable more easily. That could help to construct
examples, where number of queries required by quantum algorithm is more than two
times less than required by classical algorithm.

In this paper, we adapt the query model for computing relations. First, we give the
definitions related to mathematical relations. We define several types of query algorithms
that may compute relations in different manners. Then we demonstrate examples of
computing relations in classical and quantum query models, where quantum algorithm
achieves a speed-up comparing to classical algorithm. Finally, we discuss the prospects
of'achieving good results in enlarging the complexity gap between classical and quantum
query complexity for relations.

70 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

2 Preliminaries

This section contains definitions and provides theoretical background on the subject.
First, we define classical decision tree. Next, we provide a brief overview of the basics
of quantum computing. Finally, we describe the quantum query model.

2.1 Classical Decision Trees

The classical version of the query model is known as decision trees [1]. Definition
of Boolean function is known to everybody, but the input X = (xa, Xy X n) is hidden
in a black box, and can be accessed by querying x, values. Algorithm must be able to
determine value of the function correctly for arbitrary input. Complexity of the algorithm
is measured by number of queries on the worst-case input. For more details, see the
survey by Buhrman and de Wolf [1].

Deterministic decision tree is a tree with internal nodes labeled with variables x,
arrows exiting internal nodes labeled with possible variable values and leafs labeled
with function values. Deterministic decision tree always follows the same path for each
input and produces the correct result with probability p = 1. Deterministic complexity of
a function fis denoted by D(f).

Probabilistic (randomized) decision tree may contain internal nodes with
probabilistic branching, i.e., multiple arrows exiting from the same node, each one
labeled with a probability for algorithm to follow that way. The total probability to
obtain the result after execution of an algorithm on certain input X equals to the sum of
probabilities for each leaf labeled with 7 to be reached. Total probability of an algorithm
to produce the correct result is the probability on the worst-case input.

2.2 Quantum Computing

We briefly outline basic notions of quantum computing here that are necessary to
define the quantum query model. For more details, see [5, 6, 10].
An n-dimensional quantum pure state is a unit vector in a Hilbert space. Let |0),|1),.,

n-1 R
In-1) be an orthonormal basis for C”. Then, any state can be expressed as |y)= Zi:O a; | l>
aely (2
for some a; € C. The norm of |y) is 1, so we havezl_:ol|ai| = L. States |0),|1),...,|n-1)

are called basis states. Any state of the form Z:“a ;|2 =11is called a superposition of
0),...,|n-1). The coefficient a; is called the amplitude of |i).

The state of a system can be changed by applying unitary transformation. Unitary
transformation U is a linear transformation on C” that maps each vector of unit norm to
a vector of unit norm. The franspose of an m x n matrix A is the n x m matrix 4; = 4,
for 1 <i<n, 1 <j <m. H denotes the Hadamard gate.

We use the simplest case of quantum measurement: the full measurement in the
computational basis. Performing this measurement on state |w)=a/|0)+...a |n-1)
produces outcome i with probability |a|*. Measurement changes the state of the system

to |i) and destroys the original state.

Alina Vasilieva, Taisia Mischenko-Slatenkova. Computing Relations in the Quantum Query .. 71

2.3 Quantum Query Model

The quantum query model is the quantum counterpart of the decision tree model
and is intended for computing Boolean functions. For a detailed description, see [4-6].
A quantum computation with 7 queries is a sequence of unitary transformations:

Uo, QO: Ula an see s UT—17 QT—I: UT

U s can be arbitrary unitary transformations that do not depend on input bits. O‘s

are query transformations. Computation starts in the initial state ’6> Then we apply U,
Qp-r Op» Uy and measure the final state.

We use the following definition of a query transformation: if the input is a state

’{//) = Ziai |i>, then the output is:

’Vi> = zi(_l)(pi a; |i>, where ¢, € {x,, ..., x,, 0,1}.

For each query, we may arbitrarily choose a variable assignment @, for each basis
state. If the value of the assigned variable ¢, € {x, ..., x,} is “1”, then the sign of the i-th
amplitude a; changes to the opposite.

Each quantum basis state corresponds to an algorithm‘s output. We assign a value
of the function to each output. The probability of obtaining the result j after executing
the algorithm on input X equals to the sum of squared modulus of all amplitudes that
correspond to outputs with value ;.

Definition 1 [1]. A quantum query algorithm computes fexactly if the output equals
f(x) with probability p = 1, for all x € {0,1}~. Complexity is O ,(}).

3 Mathematical Relations

The main object which is studied in this paper is mathematical relations.

Definition 2 [11]. 4 relation R from a set A to a set B is a subset of Cartesian
product A x B — a collection of ordered pairs (a, b) with first components from the set A
(domain) and second components from the set B (range).

In other words, relation associates each value from the domain set with a subset
of values from the range set. We call each value from the domain set — an input
X =(x}, X,,..., X,). We call each x; —a variable. We call a set of associated values from
the range set — a result set for input X and denote it by R(X). We consider left-total
relations only, when the result set is not empty for each domain set element. Relation
can actually be considered a multi-valued function.

A function is a special case of relation and it uniquely associates each value from
the domain set with one value from the range set. Fig. 1 graphically demonstrates this
difference.

72 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

N

S50 D=6
@ ©

(©
@
Relation R Function F e Func(R)

Fig. 1. Example of a relation and a function

Various functions can be selected in such a way from a single relation. We denote by
Func(R) the set of all total functions that can be selected from relation R.

Example. The graph on the left side of Fig. 1 defines the relation:
R={ (1La)(1,0.2.b).3,a)3.b)(4.0) }.
The set Func(R) consists of four total functions that may be selected as a subset of
the relation:

Func(Ry= { fi={ (1,2),(2,b),(3,a),(4,¢) }, 2= { (1,),(2,b),(3,b),(4.0) },
Si=1(1,0),(2,b),(3,2),(4,0) }. /2= { (1,),(2,b),(3,b),(4.0) }}.

4 Computing Relations in a Query Model

It is well known how to compute functions in a query model. Algorithm simply has
to output the function value with certain probability. But what does it mean to compute
a relation in a query model? We propose three different options to describe that a query
algorithm computes a relation and define three types of query algorithms based on these
options.

Definition 3. Query algorithm computes relation R in a definite manner, if for each
X it outputs one certain correct value from a result set with probability p = 1. Classical
query complexity is denoted by C,(R). Quantum query complexity is denoted by O ,(R).

The type of classical decision tree that computes a relation in a definite manner is
deterministic decision tree. In the quantum version, corresponding algorithm type is an
exact quantum query algorithm.

Definition 4. Query algorithm computes relation R in a randomly distributed manner,
if for each X it outputs arbitrary values from a result set with arbitrary probabilities (for
each value, such probability has to be positive) and never outputs an incorrect value.
Classical query complexity is denoted by C,,(R). Quantum query complexity is denoted
by Qpp(R).

This definition is more natural and takes into account the essence of relation as a
mathematical object. In a classical query model, probabilistic decision trees should be
used to produce the described behavior. Quantum query algorithms seem to be better
suited for computing relations in a distributed manner because of the superposition
principle. To achieve the goal, we need to bring quantum system in such a superposition,
where only basis states associated with values from the result set have non-zero amplitude
values. After the measurement, quantum system collapses to one of these basis states
with a probability determined by its amplitude value.

Alina Vasilieva, Taisia Mischenko-Slatenkova. Computing Relations in the Quantum Query .. 73

Definition 5. Query algorithm computes relation R in uniformly distributed manner,
if for each X it outputs each value from a result set with equal probability and never
outputs an incorrect value. Classical query complexity is denoted by C, (R). Quantum
query complexity is denoted by O, ,(R).

This definition adds a serious constraint to design of a query algorithm. However, in
our opinion, this definition is the most reasonable in a sense of computing a relation.

Each definition may be applied for solving specific real-world computational
problems. We are most interested in comparing complexity of computing relations in
the same manners in classical and quantum query models. Our goal is to analyze special
features and differences of algorithm implementation to produce examples with large
difference between classical and quantum query complexity.

5 Examples of Computing Relations

In this section, we present examples of computing relations in both classical and
quantum query models. In all our examples, we achieve a speed-up in quantum algorithm
complexity comparing to the best possible classical analogue.

5.1 First Example of Computing a Relation

Let us consider an online banking client service system. To receive specific kind
of bank’s services, client sends a request to the system. System has to analyze client’s
request, determine a set of appropriate agents and assign a request to some agent from
this set.

In our example, we assume four agents: Alice (id = 1), Bob (id = 2), Carol (id = 3)
and Daren (id = 4). There are three factors that determine a set of appropriate agents for
each client — location, client status and loan history.

Table 1 describes these parameters. Second column contains a reference to the
system function that has to be invoked to calculate parameter value. Invocation of each
function can be interpreted as querying a black box and internal calculations may involve
various database requests and other costly operations. Third column contains possible
parameter values; fourth column contains corresponding numeric value returned by
each function.

Table 2 defines the three-variable relation with Boolean domain and four-valued
range - R1: {0,1}° — {1, 2, 3, 4}.

Table 1
Parameters that determine an agent that is able to serve client’s request
Parameter Value
Description System function Actual Numeric
. Saldus 0
Client location getLocation (client id) :
- Ventspils 1
. . . . Normal 0
Client status isVIP(client id)
VIP 1
i N
Does c.llent have an hasLoan(client id) © 0
active loan? - Yes 1

74 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

Rows of Table 2 have to be interpreted as the following statements:

e If a request is received from an ordinary client from Saldus, which does not
have an active loan (X = 000), then a request should be served by either Alice
or Carol;

e Ifarequestisreceived from an ordinary client from Saldus, which has an active
loan (X =001), then a request should be served by either Alice or Daren;

e Ifarequest is received from a VIP client from Saldus, which does not have an
active loan (X'= 010), then a request should be served by either Bob or Daren;

e ctc.
Table 2
Definition of the relation R1
X R1 (LX) X R1(X)
000 (1,3} 100 (2,41
001 (1,4} 101 (2,3}
010 (2,3} 110 (1,4}
011 {2,4} 111 {1,3}

Now, let us discuss the computational complexity of relation R1.

5.2 Definite Query Complexity of Relation R1

When computing a relation in definite manner, algorithm has to output one certain
correct value from a result set with probability p = 1. It means that we are just aware of
that client’s request is not forwarded to incompetent agent, but we do not care about the
work distribution among the competent agents.

Theorem 1. C,(R1) = 2.

Proof. It is casy to see that one query is not enough to compute this relation
classically in a definite manner. However, two queries are sufficient to reach the goal —
we only need to know the values of the first two variables. Deterministic decision tree
is shown in Fig. 2.

Actually, what we need is to compute XOR of the first two bits. If XOR(x,, x,) = 0,
algorithm outputs “1”. Otherwise, algorithm outputs “2”. o

Fig. 2. Deterministic decision tree that computes R1 in a definite manner
]

Theorem 2. O, (R1) = 1.

Proof. It is well known that XOR of two bits can be computed exactly in the
quantum query model by asking one query. It immediately implies that relation R1 can

Alina Vasilieva, Taisia Mischenko-Slatenkova. Computing Relations in the Quantum Query .. 75

be computed with one query in a quantum query model in a definite manner. Quantum
algorithm is shown in Fig. 3 and described below.

0)1—~e— 4

g 1
oo & B0 ¥ [2]

Fig. 3. Quantum query algorithm that computes R1 in a definite manner

Algorithm uses one-qubit quantum system. Each horizontal line corresponds to
the amplitudes of the basis states |0) and |1). Large rectangles correspond to the 2 x 2
Hadamard matrices. Single query Q, is defined by the unitary matrix:

DT o
0 (-1)?

Query matrix specifies how the signs of amplitudes of basis states change depending
on variable values. Measurement is performed after the last unitary transformation.
Finally, two small squares at the end of each horizontal line define the output value for
each basis state. O

The problem with such implementation of work distribution algorithm is that all
requests will be forwarded to Alice and Bob only, but Carol and Daren will be bored
without work.

Oy =

5.3 Uniformly Distributed Query Complexity of Relation R1

Now, let us consider computing R1 in uniformly distributed manner, which seems
to be much more practical. This time algorithm has to output each value from the result
set with equal probability and should never output incorrect value.

Obviously, one query is not enough in the classical case. However, this time again,
two queries suffice.

Theorem 3. C,,(R1) = 2.

Proof. Classical probabilistic decision tree that computes R 1 in uniformly distributed
manner is shown in Fig. 4. 0

Fig. 4. Probabilistic decision tree that computes R1 in uniformly distributed manner

76 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

Theorem 4. O (R1) = 1

Proof. Quantum query algorithm Q1, which computes R1 in the same uniformly
distributed manner with one query, is presented in Fig. 5 and described below.

uo Q0 ug
loo)— 14112 112 112 1;2-@@*—"\%#,;= o o H1
[o1)—> 04172 -172 112 -1;2@%.\% ?_ 2_ A
[10)— 0112 112 -112-112[&) o Z 7z -z]
[11)= 04172 112 -112 12Hx3*{ 0 0 = = H4]

Fig. 5. Quantum query algorithm Q1 for computing R1 in uniformly distributed manner

Algorithm Q1 uses two-qubit quantum system. Each horizontal line corresponds
to the amplitude of the basis state. Large rectangles correspond to the 4 x 4 unitary
matrices. Four small squares at the end of each horizontal line define the output value
for each basis state.

Single query @, is defined by the unitary matrix:

" o 0 0
R G) 0
G- 0 o (T o
0 0 0o (-1)°

Computational process for each input X is shown in Table 3. o

r Pr(“17)=1/2
Pr(“3”)=1/2

Table 3
Computation process of the quantum query algorithm Q1
X State after the query State before the measurement Output
o | (3333 o %o Poc2
o iy Eeo s by 12
0| a1 P e
on | rai PEod) Py 12
w| (314 PEod) P
o (11 PEF) e
o (344 oo P 1
[)

11 [_1 R _ijT
2 2 2 2

Alina Vasilieva, Taisia Mischenko-Slatenkova. Computing Relations in the Quantum Query .. 77

This time all work items are equally distributed among agents.

With this basic example we have demonstrated query algorithms for computing
relations in action. We have shown that even in such a simple case of relation with three
Boolean variables it is possible to obtain a gap between classical and quantum query
complexity. In the next subsection, we demonstrate how to enlarge the complexity gap
in uniformly distributed case.

5.4 Generalizations of the Relation R1

In this subsection, we demonstrate two extensions of the relation R1 with a bigger
number of variables and more impressive complexity separation between classical and
quantum algorithms.

Definition 6. Relation R2:{0,1}" — {1, 2, ..., 2(N-1)} associates each input
element from the domain set with (N-1) output elements from the range set according to
the following rule:

V1<i<N:if(x, ®x,=0), then(X,2(i-1)-1) e R2
otherwise (X, 2(i—1)) € R2

It turns out that it is possible to compute relation R2 classically in uniformly
distributed manner using two queries.

Theorem 5. C,,(R2) =2

Proof. Classical probabilistic decision tree is demonstrated in Fig. 6. O

v

N-1 ‘ 5 ‘ N—l N1 e, N-1

M'=2(N-1)-1 M=2(N-1)

Fig. 6. Classical query algorithm for computing R2 in uniformly distributed manner

Theorem 6. O, (R2) = 1

Proof. To compute relation R2 in a quantum query settings, we extend algorithm
01 to query all N relation variables in a single query. To be able to handle all variables,

78 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

we extend quantum system to have 2(N-1) basis states. Fig. 7 shows quantum algorithm
02, which is an extended version of the algorithm Q1. H is the 2x2 Hadamard
transformation, @ denotes matrix tensor product operation. Quantum system consists of
A qubits, where 4 = (10g2(2(N -1

14 -
0 -
0 e
0 — ~ ~
29]ZA'1®H

0+ T

3= Bl IR N E

J
-
.

U
—

0 :
0 .

:
EEECLLLE

Fig. 7. Quantum query algorithm Q2 for computing R2 in uniformly distributed manner

Important moment is that variable x, is assigned to all odd amplitudes, but remaining
variables x,, ..., x,; are sequentially assigned to even amplitudes. O

In this example, we enlarged the number of relation variables, but did not succeeded
yet in enlarging the gap between classical and quantum query complexity.

Next, we demonstrate another generalization of the relation R1. This time we
achieve a gap 2N versus N between classical and quantum query complexity.

Definition and behavior of relation R3 is similar to relation R2 — it associates each
input element with (N-1) output elements from the range set. But this time more variables
are involved in the condition of the rule, which defines the relation.

Definition 7. Relation R3: {O,I}N2 - {1, 2, ..., 2(N-1)} associates each input
element from the domain set with (N-1) output elements from the range set according to
the following rule:

VI<iSN:if((x, ®x,®..0x,)® (x(l.flw+I ®x(i—l)N+2

then (X, 2(i-1)-1) € R3
otherwise (X, 2(i—1)) € R3

® .. DX,) =0)

To compute relation R3 in a classical query model, 2NV queries are required.

Alina Vasilieva, Taisia Mischenko-Slatenkova. Computing Relations in the Quantum Query .. 79

Theorem 7. C,(R3) = 2N.

Proof. In order to determine which range set element to include into the result set,
it is necessary to know values of all 2V variables involved into condition of the rule. A
part of classical decision tree is depicted in Fig. 8. All sequentially queried variables are
joined into one common query represented in the diagram by ellipses. Multiple arrows
corresponding to common query outcomes are exiting these ellipses. O

v

M'=2(N-1)-1 M=2(N-1)

Fig. 8. Classical query algorithm for computing R3 in uniformly distributed manner

Theorem 8. O, (R3) = N.

Proof. General structure of the algorithm remains the same, but we add more
queries. Algorithm Q3 is presented in Fig. 9. Again, odd amplitudes all have the same set
(x,5 ..., X)) of queried variables assigned. Remaining variables are sequentially assigned
to even amplitudes. O

80 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

2(N-1)
/"'

BN e mmpdes

A=[log>(2(N -1))]

14 |G- G]
0- - - G 2]
0- rXO-XD 3]
0 o 4 (e Ha]
o 77 | @ a1 © 1|
0- ED-ED D 16
6_ - - ~ - -
@D 20N-1)_]

)

Fig. 9. Quantum query algorithm Q3 for computing R3 in uniformly distributed manner

In this subsection, we demonstrated approach for extending relations to a larger
number of variables. As a result we obtained a complexity separation N versus 2N, which
is the same as the largest separation between quantum exact and classical deterministic
query algorithm for total functions known for today. During computing relations correct
result is obtained with probability p = 1 as well (algorithm always outputs some correct
value from the result set). However, the structure of considered relations is based on
XOR operation. All examples of N versus 2N separations for functions, that we are
aware of, are directly based on XOR as well. We are interested to find different cases,
where XOR is not involved in obtaining a speed-up.

5.5 Second Example of Computing a Relation

Let us consider some TV company that offers minimal package and four more
supplementary packages: movies, sports, social talk-shows and cartoons. Every client is
free to choose any number of supplementary packages he is interested in. Company is
willing to make a present for each client according to client’s choice of packages. There
are four different types of gift, let us mark them “17, 27, “3”, “4”,

Rule 1.1f a client has one or three packages besides minimal package, company has
to choose one from “17, “2”, “3”, “4” (probability to choose any gift from the scope has
to be equally distributed between options, each having p = % to be selected).

Rule 2. 1f a client has only the minimal package or all four supplementary packages,
company presents a gift of type “1”.

Rule 3. 1f a client has chosen movies and social talk-shows or sports and cartoons,
company presents a gift of type “2”.

Rule 4. 1f a client has chosen movies and sports or social talk-shows and cartoons,
company presents a gift of type “3”.

Rule 5. 1f a client has chosen movies and cartoons or social talk-shows and sports,
company presents a gift of type “4”.

Alina Vasilieva, Taisia Mischenko-Slatenkova. Computing Relations in the Quantum Query .. 81

Table 4 defines relation with Boolean domain and four-valued range: %4 : {0,1}*—
{1,2,3,4}. Let us assign an index to each type of packages: 1 for movies, 2 for sports,
3 for social talk-shows and 4 for cartoons. Each bit in the input string X gives the
information whether i-th package is chosen by the client. 0000 means that only the
minimal package is chosen, 1111 — full and so on.

Table 4
Definition of the relation 34

X R4 (X} X R4 (X}
0000 {1} 1000 {1,2,3.4}
0001 {1,2,3,4} 1001 {4}
0010 {1,2,3,4} 1010 {2}
0011 (3} 1011 (1,2,3.4}
0100 {1,2,3,4} 1100 {3}
0101 {2} 1101 {1,2,3,4}
0110 {4} 1110 (1,2,3.4}
0111 {1,2,3,4} 1111 {13}

5.6 Uniformly Distributed Query Complexity of Relation R4

Now, let us discuss the complexity of relation R4. We consider computing R4 again
in the same uniformly distributed manner.

Theorem 9. C, (R4) = 3.

Proof. Proof of this fact consists of two steps. First, we show that it is not possible
to build a classical randomized decision tree of depth d = 2, which computes R4 in
uniformly distributed manner. Second, we present a tree, which computes R4 using
three queries.

Lemma 1. It is not possible to build a classical randomized decision tree of depth
d = 2, which computes R4 in uniformly distributed manner.

Proof. Let us assume there exists a tree where all paths from root to leaves contain
no more than two variables. When executing algorithm on input X = 0000 result “1”’
should be output with probability p = 1. It means that there exists a path from root
to leaf with value ”1”, which goes through some two variables: x, = 0 and x; = 0.
This path is depicted in Fig. 10. The fact is that it is not possible to select A and B to
avoid contradictions with other inputs. Table 5 shows all possible selections of A and B,
together with such input Y, which has the same values in positions A and B as X' = 0000.
For these inputs, algorithm goes the same path as for X'= 0000 and finishes in a leaf with
value “1”, which is incorrect for Y, thus causing a contradiction with a correct output
value for Y. So, it is not possible to build a classical randomized decision tree of depth
d =2, which computes R4 in uniformly distributed manner. o

82 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

Fig. 10. Path for input X=0000 in a potential classical randomized decision tree of
depth d =2 for computing R4 in uniformly distributed manner

Table 5
All possible selections of A and B, each causing a contradiction
A B Inp}lt Y, for which algorithm goes through the same path (Fig. 10), R4 (X)
which contradicts with X=0000 in output value
1 2 0011 {3}
1 3 0101 {2}
1 4 0110 {4}
2 3 1001 {4}
2 4 1010 12}
3 4 1100 {3}

Lemma 2. There exists a classical randomized decision tree, which computes R4 in
uniformly distributed manner using three queries.

Proof. Classical probabilistic decision tree that computes R4 in uniformly
distributed manner is shown in Fig. 11.

Fig. 11. Probabilistic decision tree that computes R4 in uniformly distributed manner

Alina Vasilieva, Taisia Mischenko-Slatenkova. Computing Relations in the Quantum Query .. 83

Theorem 10. O, (R4) = 1.

Proof. Quantum query algorithm Q4, which computes 34 in the same uniformly
distributed manner with one query, is presented in Fig. 12. 0

uo Q0 ui

loo)— 14112 172 172 172 @tuz 12 12 12H1]
[01)—0-41/2 -112 172 -172 -@L 12 =112 112 -112H2]
[10)- 04172 172 -1/2-1/2 4172 112 112 -112({3]
1) 0172 -1/2 -1/2_112(xa)q112 172 -1/2_112[{4]

=

Fig. 12. Quantum query algorithm Q4 for computing R4 in uniformly distributed manner

We would like to note that definition of the relation R4 and algorithm Q4 in some
sense look similar to the definition and solution of the well-known Deutsch-Jozsa
problem [12,13]. Careful reader could figure out this similarity by oneself. However, as
we demonstrate further, generalization of that relation is not of that kind anymore.

5.7 First generalization of the relation 34

Let us define the relation R, : {0,1}*V — {1, 2, 3, 4}. Imagine that 4N variables are
put on four vertical lines (v-lines) in such a way that:

Vie {0,. .N-1}, Vk e {1,2,3,4} : x,..,, belongs to v-line number «.

4ithk>

For example, x,, x;, x,, X, 5, ... are placed on the 1% v-line, x, x, X, X, ... — on the
2" and so on (see Fig. 13 for illustration).
The result set for each input X of the relation is defined as follows:
1. R, (X) = {1}, if all four v-lines of X contains either odd or even number of
”1”s. For example, for the next input strings, the relation’s result set is {1}:
— input string 00000000 has zero ”1”’s on each v-line
— input 00010001 has zero ”’1”’s on the first, second and third v-line and two 1”’s
on the fourth v- line
— input 00001111 has one ”1” on each v-line
—input 11111111 has exactly two ”’1”’s on each v-line
2. R, (X)={2},if 1" and 3 v-lines of X have odd number of ”1”’s and 2" and 4™
have even number of ’1”’s, or vice versa: 1% an 3" — even and 2" and 4% — odd.
For example, input strings 00000101, 00001010, 01011111, 11011000 have the
result set {2}.
3. R,y (X = {3}, if 1 and 2" y-lines of X have odd number of ”1”’s and 3" and
4t have even number of ’1”’s, or vice versa: 1% and 2™ — even and 3™ and 4t
— odd. For example, input strings 00000011, 00001100, 00111111, 10001011
have the result set {3}.
4. R, (X)= {4}, if I*' and 4™ v-lines of X have odd number of ”1”s and 2! and

84 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

3t have even number of ’1”’s, or vice versa: 1% and 4" — even and 2" and 3" —
odd. For example, input strings 00000110, 00001001, 00111010, 10011111
have the result set {4}.

5. Inall other cases, R,, (X) = {1,2,3,4}.

Theorem 11. O, (R,,) = N.

Proof. Quantum algorithm that computes relation in the uniformly distributed
manner is presented in Fig. 13. Each quantum query Q; is defined by the following
unitary matrix: O

(-D% 0 0 0
0 (=D%= 0 0 ,
Qi = N lE{O,...,N—l}
0 0 (_1)x4i+3 0
0 0 0 (=)
uo Qo QN-1 U1
loo)—> 14172 172 172 172 L =12 12 112 112

1]
lo1)= 012 -112 112 -2 ... —@—{112 112 112 -12HZ]
[10)» 04112 112 -112 112G ... —G@—{112 172 112 -172{3]

4]

[11)> 04112 112 <172 172 oo — G112 <172 <172 112

Ll

Fig. 13. Quantum query algorithm for computing R, in uniformly distributed manner

Theorem 12. O, (R,,) > 3N.

Proof. Let us assume there exists a classical decision tree that computes relation X,
by asking 3N—1 questions. We use all zeros input X = 0 to demonstrate a contradiction.
Suppose we queried arbitrary 3N—1 variables, N+1 variables remain unquestioned.

On 4N-zeros input X = 0 algorithm has to output value ”1” because all v-lines
contain zero number of ”1”s. Then, we consider only such inputs that have ”0” in all
queried 3N—1 variables and exactly two ”’1”’s among remaining unquestioned variables.
For all such inputs, algorithm will follow the same path and will finish in the same
leaves with output value 1.

However, all N+1 unquestioned variables cannot be located on one v-line, simply
because each v-line consists of N variables. So, there is an input for which two ”1”’s
among unquestioned variables are located on different v-lines. As we know, the result
set in such case is {2} or {3} or {4}. Thus, algorithm outputs incorrect value for this

input, this fact contradicts with the initial assumption and implies Q,,(R,,) > 3N. 0

Alina Vasilieva, Taisia Mischenko-Slatenkova. Computing Relations in the Quantum Query .. 85

5.8 Second generalization of the relation R4

Suppose we are given a relation of N variables R, : {0,1}N — {1,2,...,N}, where N
is power of 2. This time, we do not provide full definition of the relation; it follows from
properties of quantum algorithm described below. We would only like to demonstrate
that such generalization is technically possible.

This time, we consider computing relation in a randomly distributed manner.
Algorithm is allowed to output any value from the result set with arbitrary probability,
but probability for each value has to be positive: p > 0.

Theorem 13. There is a quantum query algorithm computing specific relation R in
a randomly distributed manner asking one question only: Q, (R,) = 1.

Proof. We add more qubits and sequentially assign variables to amplitudes. Given
N =2k ,k € N, quantum algorithm starts with k-qubit zero state |0), then applies N x N
Hadamard matrix, N-variable query and finally applies N x N Hadamard matrix once
again. Algorithm is depicted in Fig. 14. O

Hy Hy [O

Fig. 14. Generalization of the quantum query algorithm for computing Ry

Theorem 14. %+1£ Crp(Ry)SN.

Proof. Let us analyze the relation that is computable by the extended quantum
algorithm. Imagine the first element of the quantum algorithm result vector (amplitude
of the quantum basis state |0)) right before the quantum measurement. It can be described
by the formula:

DD DY
N .
If all x, = 0, then @, = 1, so for the input X' = 00...0, algorithm outputs ”1” with

oy

probability p = 1. Let us suppose exactly N/2 variables are ”1”’s and % are 70”s. In
this case, a, is precisely zero for all possible combinations. It means that probability to

observe result value ’1” for any such input is p = 0.

86 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

Classical algorithm has to behave in the same way: for input X = 00...0, value ”1”
has to be produced with probability p = 1, but for all inputs with exactly N/2 ”1”’s, result
value 17 is not allowed to be output at all. This implies we are unable to recognize
relation classically by asking only N/2 variable values, at least N/2+1 queries are
required. O

5.9 Third Example of Computing a Relation

In this section, we demonstrate our last example of computing a relation. We present
a quantum query algorithm that computes the relation asking two queries in uniformly
distributed manner; while classically at least five queries are necessary to compute the
same relation.

Important fact is that the structure of a relation and the algorithm for computing it
are not based on XOR operation. In the area of quantum query algorithms for computing
total functions, all examples, that we are aware of at the moment, where quantum query
complexity is two times less than classical query complexity are directly based on
utilization of XOR operation.

Another important moment is that in this example the result set for each input
consists of two elements and there is no input for which the result set consists of all
possible output values.

Relation R5 : {0,1}6 — {1,2,3,4} is defined by the following set of rules:
+ ifx, =x, & x,=0 & x, = x, , then R5(X) = {1,2};
e ifx, = x, & x; =0 & x, # x,, then R5(X) = {3,4};
 ifx, =x, & x; =1 & x, = x,, then R5(X) = {2,3};
o ifx, =x, &x,=1 & x, #x,, then R5(X) = {1,4};
o ifx, #x, & x; =0 & x, =x, & x, =0, then R5(X) = {1,4};
e« ifx, #x, &x; =0 & x, =x, & x, =1, then R5(X) = {2,3};
o ifx, #x, & x;=0&x, =x, & x;=0, then R5(X) = {2,3};
o ifx, #x, &x; =0 & x, #x, & x, = 1, then R5(X) = {1,4};
o ifx, #x, &x; =1 &x, =x, &x, =0, then R5(X) = {3,4};
o ifx, #x, &x;=1&x, =x, & x,= 1, then R5(X) = {1,2};
o ifx, #x, &x; =1 &x, #x, & x, =0, then R5(X) = {1,2};
o ifx, #x, &x; =1 &x, #x, & x, =1, then R5(X) = {3,4}.

Theorem 15. 5 < C,(R5) <6.

Proof. Let us assume there exists a classical randomized decision tree that computes
relation R5 by asking four queries. We analyze algorithm behavior for the certain input
X=010000. According to the definition of the uniformly distributed algorithm, decision
tree must output correct values from the result set for each input with equal probability.
It means that there has to be a path in the tree, which goes through at most four variable
nodes, follows arrows with variable values corresponding to values of X=010000 and
finishes in a leaf with the output value «4». On the other hand, for any choice of four

Alina Vasilieva, Taisia Mischenko-Slatenkova. Computing Relations in the Quantum Query .. 87

variables for that path, there exists another input X, which equals X in selected four
variables values, but does not have «4» among the result set values according to the
definition of relation R5. All such contradicting inputs are listed in Table 6. For any such
input, computation goes through the same path in the decision tree as for X=010000
and finishes in a leaf with incorrect value «4». It is a contradiction, so assumption is
wrong and classical randomized decision tree that computes relation R5 using only four
queries does not exist. O

Table 6
Proof of Theorem 15: contradictions in result set values
Path variables Input X” contradicting with X=010000 R5(X7)
X X5, X5,X,, 010010 {2,3}
X ;XX 5,X 010100 {2,3}
X (,X,,X X ¢ 010010 {2,3}
X 5X5X 15X 011001 {1,2}
XXX X g 010010 {2,3}
X X5, X, X ¢ 010100 {2,3}
X ,X5,X 4, X 000000 {1,2}
X, X5,X, X g 000000 {1,2}
XXX s,X g 000000 {1,2}
XXX, X g 000000 {1,2}
X,,X;3,X 4, X 000000 {1,2}
X,,X3,X 0, X ¢ 000000 {1,2}
X,,X5,X,X g 000000 {1,2}
XX X 5,X g 000000 {1,2}
X3,X X5, X 000000 {1,2}

Theorem 16. O, (R5) = 2.

Proof. Quantum query algorithm that computes RS with two queries is presented in
Fig. 15. Sign “+” inside question circle signifies that none variable impacts the value of
corresponding amplitude. O

U Qo U Q: Uy
loo)— 14172 112 112 1:2-@{%‘% 0 0 KP4z 12 12 12H1]
lo1)— 04172 172 172 -1;2@%.\% t13_ 2_ HxayH1/2 =112 112 -112H2]
[10)> 0172 172 <1212/ o o 7 & ez 112 -112-112H3]
[11)- 04112 112 <172 12K F) 00 & o [WxeyH1/2 112 -112_1/2}{4]

Fig. 15. Quantum query algorithm Q5 for computing RS in uniformly distributed manner

88 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

6 A Note on Computing Relations in a Definite Manner

In this section, we discuss the first type of query algorithms for relations, which
compute relations in a definite manner. Are there prospects to obtain a large separation
between classical and quantum complexity?

According to the definition, for each input X, such algorithm always outputs one
definite value. The only condition is that this value should be from the result set assigned
to that input by relation R. It actually means that a definite query algorithm for relation
R computes a function, which is a subset of relation.

When designing a query algorithm to compute relation R in a definite manner,
we may choose some arbitrary function from a set Func(R), which is better suited for
computing in a query model, and construct an algorithm for that function. So, classical
and quantum query complexities for computing relation definitely are expressed by
formulas:

D®)= min (D(f)) Op(M) = fe min m)(QE "9)

feFunc(R) Func(

It appears that the task of enlarging the gap between classical and quantum query
complexity to compute relations in a definite manner is completely the same as when
computing usual functions in a query model. Even more, the interesting moment is that
the functions selected from the set Func(R) for computing in classical and quantum
cases may also be different. Unfortunately, it does not give us additional tool to enlarge
the complexity gap when computing relations instead of functions, quite contrary. For
that reason, computing relations in a distributed manner looks much more interesting.

7 Conclusion

In this paper, we considered computing mathematical relations instead of Boolean
functions in a query model. Various general computational problems and tasks of certain
type in software engineering may be represented in terms of relations. We proposed
three types of a query algorithm for computing relations with different output behavior.

We demonstrated several examples of computing relations in classical and quantum
versions of a query model.

In the first example, the definition of relation is based on XOR operation. We
generalized the basic relation and obtained an example, when quantum query algorithm
computes relation with N? variables using N queries, while 2N queries are required in
the classical case. This result repeats the largest separation between quantum exact and
classical deterministic query complexity for functions that is known for today.

In the second example, a quantum query complexity for relation is more than two
times less than classical query complexity for the same relation. However, the considered
relation has a property of having inputs for which the result set consists of all range set
elements.

In the third example, we considered finite six-variable relation, which is not based
on XOR operation and there are no inputs for which result set consists of all range set
elements. These properties make this relation very interesting. For this relation, quantum
query complexity is also more than two times less than classical query complexity.

Alina Vasilieva, Taisia Mischenko-Slatenkova. Computing Relations in the Quantum Query .. 89

Finally, we discussed the specifics of computing relations in a definite manner and
concluded that the task of computing relations in a distributed manner is more promising
for enlarging the gap between classical and quantum query complexity.

Results presented in this paper build a foundation for further investigation. The
main goal, which we are looking to achieve, is to construct examples with larger
complexity separation between classical and quantum query algorithm complexity. The
most important work direction is to develop a technique for proving complexity lower
bounds for computing relations in a classical query model.

8 Acknowledgments

We would like to thank our supervisor Rasin$ Freivalds for familiarizing us with
quantum computation and for permanent support and advising.

This work has been supported by the European Social Fund within the project
,»Support for Doctoral Studies at University of Latvia”.

References

1. Buhrman, H., de Wolf, R.: Complexity Measures and Decision Tree Complexity: A Survey. Theoretical
Computer Science, v. 288(1): 21-43 (2002)

2. Shor, P. W.: Polynomial time algorithms for prime factorization and discrete logarithms on a quantum
computer. SIAM Journal on Computing, 26(5):1484-1509 (1997)

3. Grover L.K.: From Schrodinger‘s equation to quantum search algorithm, American Journal of Physics,
69(7): 769-777 (2001)de Wolf, R.: Quantum Computing and Communication Complexity. University of
Amsterdam (2001)

4. Ambainis, A.: Quantum query algorithms and lower bounds (survey article). In Proceedings of FOTFS
111, Trends on Logic, vol. 23, pp. 15-32 (2004)

5. Kaye, R., Laflamme, R., Mosca, M.: An Introduction to Quantum Computing. Oxford (2007)

6. Ambainis, A., Childs, A., Reichardt, B., Spalek, R., Zhang, S.: Any AND-OR formula of size N can be
evaluated in time O(N”{1/2+epsilon}) on a quantum computer. SIAM J. Comput. Volume 39, Issue 6, pp.
2513-2530 (2010).

7. Vasilieva, A., Mischenko-Slatenkova, T.: Quantum Query Algorithms for Conjunctions. Proc. of the UC
2010, Lecture Notes in Computer Science, Springer Berlin / Heidelberg, vol. 6079/2010, ISBN: 978-3-
642-13522-4, pp. 140-151 (2010)

8. Kushilevitz, E., Nisan, N.: Communication complexity. Cambridge University Press, (1997)

9. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press
(2000)

10. Weisstein, E. W.: Relation. From MathWorld - A Wolfram Web Resource. http://mathworld.wolfram.com/
Relation.html

11. D. Deutsch and R. Jozsa: Rapid solutions of problems by quantum computation. In Proceedings of the
Royal Society of London, volume A 439, pp. 553-558 (1992)

12. R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca: Quantum algorithms revisited. In Proceedings of the
Royal Society of London, volume A 454, pp. 339-354 (1998)

