
Effi ciency Measurements of Self-Testing

Edgars Diebelis

University of Latvia, Raina blvd. 19, Riga, Latvia, edgars.diebelis@di.lv

This paper is devoted to efficiency measurements of self-testing, which is one of
smart technology components. The efficiency measurements were based on the
statistics on incidents registered for eight years in a particular software develop-
ment project: Currency and Securities Accounting System. Incident notification
categories have been distributed into groups in the paper: bugs that would be
identified, with appropriately located test points, already in the development en-
vironment, and bugs that would not be identified with the self-testing approach
neither in the development, testing or production environments. The real mea-
surements of the self-testing approach provided in the paper prove its efficiency
and expediency.

Keywords. Testing, Smart technologies, Self-testing.

Introduction

Self-testing is one of the features of smart technologies [1]. The concept of smart
technologies proposes to equip software with several built-in self-regulating mech-
anisms, for examples, external environment testing [2, 3], intelligent version up-
dating [4], integration of the business model in the software [5] and others. The
necessity of this feature is driven by the growing complexity of information systems.
The concept of smart technologies is aiming at similar goals as the concept of au-
tonomous systems developed by IBM in 2001 [6, 7, 8], but is different as for the
problems to be solved and the solution methods. Autonomic Computing purpose
[9] is to develop information systems that are able of self-management, in this way
taking down the barriers between users and the more and more complex world of
information technologies. IBM outlined four key features that characterise auto-
nomic computing:

• Self-configuration. Automated configuration of components and systems fol-
lows high-level policies. Rest of system adjusts automatically and seamlessly.

• Self-optimization. Components and systems continually seek opportunities
to improve their own performance and efficiency.

• Self-healing. System automatically detects, diagnoses, and repairs local-
ized software and hardware problems.

SCIENTIFIC PAPERS, UNIVERSITY OF LATVIA, 2012. Vol. 787
COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES 7–26 P.

LURaksti787-datorzinatne.indd 7LURaksti787-datorzinatne.indd 7 23.10.2012 12:02:2723.10.2012 12:02:27

• Self-protection. System automatically defends against malicious attacks or
cascading failures. It uses early warning to anticipate and prevent system-
wide failures.

With an aim similar to an autonomic computing, the smart technologies ap-
proach was offered in 2007 [1]. It provided a number of practically implementable
improvements to the functionality of information systems that would make their
maintenance and daily use simpler, taking us nearer to the main aim of autonomic
computing. The main method offered for implementing smart technologies is not
the development of autonomous universal components but the direct implementa-
tion of smart technologies in particular programs.

The first results of practical implementation of smart technologies are avail-
able. Intelligent version updating software is used in the Financial and budget
report (FIBU) information system that manages budget planning and performance
control in more than 400 government and local government organisations with more
than 2000 users [4]. External environment testing [3] is used in FIBU, the Bank of
Latvia and some commercial banks (VAS Hipotēku un zemes banka, AS SEB banka
etc.) in Latvia. The third instance of the use of smart technologies is the integra-
tion of a business model and an application [5]. The implementation is based on
the concept of Model Driven Software Development (MDSD) [10], and it is used in
developing and maintaining several event-oriented systems.

Self-testing provides the software with a feature to test itself automatically prior
to operation. The purpose of self-testing is analogical to turning on the computer:
prior to using the system, it is tested automatically that the system does not contain
errors that hinder the use of the system.

The article continues to deal with the analysis of the self-testing approach. Pre-
vious papers [11, 13, 14] have dealt with the ideology and implementation of the
self-testing approach. As shown in [11, 12], self-testing contains two components:

• Test cases of system’s critical functionality to check functions which are
substantial in using the system;

• Built-in mechanism (software component) for automated software testing
(regression testing).

In order to ensure development of high quality software, it is recommendable
to perform testing in three phases in different environments: development, test,
production [11]. Self-testing implementation is based on the concept of Test Points
[13, 14]. A test point is a programming language command in the software text,
prior to execution of which testing action commands are inserted. A test point en-
sures that particular actions and field values are saved when storing tests and that
the software execution outcome is registered when tests are executed repeatedly.
Key components of the self-testing software are: test control block for capturing
and playback of tests, library of test actions, test file (XML file) [13, 14].

This paper analyses the efficiency of self-testing. Since it is practically impos-
sible to test a particular system with various methods and compare them (e.g. manual

8 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti787-datorzinatne.indd 8LURaksti787-datorzinatne.indd 8 23.10.2012 12:02:2723.10.2012 12:02:27

Edgars Diebelis. Efficiency Measurements of Self-Testing

tests, tests using testing support tools with various features) with tests performed using
the self-testing approach, another methodology for evaluating the efficiency has been
used. The implementation of a comparatively large system was selected, and an expert
analysed what bugs have been detected and in what stage of system development they
could be detected, assuming that the self-testing functionality in the system would had
been implemented from the very beginning of developing it. The analysis was based
on the statistics of incident notifications registered during the system development
stage, in which testing was done manually. The paper contains tables of statistics and
graphs distributed by types of incident notifications, types of test points and years;
this makes it possible to make an overall assessment of the efficiency of self-testing.

The paper is composed as follows: Chapter 1 briefly outlines the Currency
and Securities Accounting System in order to give an insight on the system whose
incident notifications were used for measuring the efficiency of the self-testing ap-
proach. Chapter 2 deals in more detail with the approach used for measuring the
efficiency of self-testing. Chapter 3 provides a detailed overview of the measure-
ment results from various aspects, and this makes it possible to draw conclusions
on the pros and cons of self-testing.

1. Currency and Securities Accounting System (CSAS)

Since the paper’s author has managed, for more than six years, the maintenance
and improvement of the Currency and Securities Accounting System (CSAS), it was
chosen as the test system for evaluating the self-testing approach. The CSAS, in
various configuration versions, is being used by three Latvian banks:

• SEB banka (from 1996);
• AS Reģionālā investīciju banka (from 2007);
• VAS Latvijas Hipotēku un zemes banka (from 2008),

The CSAS is a system built in two-level architecture (client-server), and it
consists of:

• client’s applications (more than 200 forms) developed in: Centura SQL
Windows, MS Visual Studio C#, MS Visual Studio VB.Net;

• database management system Oracle 10g (317 tables, 50 procedures,
52 triggers, 112 functions).

The CSAS consists of two connected modules:
• securities accounting module (SAM);
• currency transactions accounting module (CTAM).

1.1. Securities Accounting Module (SAM)

The software’s purpose is to ensure the execution and analysis of transactions
in securities. The SAM makes it possible for the bank to register customers that

9

LURaksti787-datorzinatne.indd 9LURaksti787-datorzinatne.indd 9 23.10.2012 12:02:2723.10.2012 12:02:27

hold securities accounts, securities and perform transactions in them in the name
of both the bank and the customers. Apart from inputting and storing the data, the
system also makes it possible to create analytical reports.

The SAM ensures the accounting of securities held by the bank and its custom-
ers and transactions in them. Key functions of the SAM are:

• Inputting transaction applications. The SAM ensures the accounting of the
following transactions: selling/buying securities, security transfers, trans-
actions in fund units, securities transfers between correspondent accounts,
deregistration of securities, repo and reverse repo transactions, encum-
brances on securities, trade in options;

• Control of transaction application statuses and processing of transactions
in accordance with the determined scenario;

• Information exchange with external systems. The SAM ensures information
exchange with the following external systems: the bank’s internet banking
facility, fund unit issuer’s system, the Latvian Central Depository, the Riga
Stock Exchange, the bank’s central system, Bloomberg, SWIFT, the Asset
Management System (AMS);

• Registration and processing of executed transactions;
• Calculation and collection of various fees (broker, holding etc);
• Revaluation of the bank’s securities portfolio, amortisation and calculation

of provisions;
• Control of partner limits;
• Comparing the bank’s correspondent account balances with the account

statements sent by the correspondent banks;
• Making and processing money payment orders related to securities. The

SAM ensures the accounting of the following payments: payment of div-
idends (also for deregistered shares), tax collection/return, coupon pay-
ments, principal amount payments upon maturity;

• Making reports (inter alia to the Financial and Capital Market Commission,
the Bank of Latvia, securities account statements to customers).

The SAM ensures swift recalculation of securities account balances based on
transactions. The SAM is provided with an adjustable workplace configuration.

1.2. Currency Transactions Accounting Module (CTAM)

The purpose of the software is to account and analyse currency transactions
(currency exchange, interbank deposits etc). The system accounts currency trans-
actions and customers who perform currency transactions. Apart from data ac-
counting, the system provides its users with analytical information on customers,
currency transactions and currency exchange rates.

10 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti787-datorzinatne.indd 10LURaksti787-datorzinatne.indd 10 23.10.2012 12:02:2723.10.2012 12:02:27

Edgars Diebelis. Efficiency Measurements of Self-Testing

Key functions of the CTAM are:
• Inputting transactions. The CTAM ensures the accounting of the following

transactions: interbank FX, FX Forward, SWAP (risk, risk-free), interbank
depositing, (in/out/extension); customer FX, FX Forward, SWAP (risk,
risk-free), interbank depositing, (in/out/extension), floating rate, interbank
order, customer order, interest rate swaps, options, State Treasury transac-
tions, collateral transactions, currency swap transactions;

• Control of transaction status and processing of transactions in accordance
with the determined scenario (workflow);

• Information exchange with external systems. The CTAM ensures informa-
tion exchange with the following external systems: bank’s central system,
Reuter, UBS TS trading platform, SWIFT;

• Maintaining currency positions (bank’s total position, positions per port-
folios);

• Setting and controlling limits;
• Importing transactions from Reuter and Internet trading platforms (TS,

UBS TS etc);
• Importing currency exchange rates and interest rates from Reuters;
• Margin trading;
• Nostro account balances;
• Making reports.

The CTAM is provided with an adjustable workplace configuration.

2. Self-testing Effi ciency Measurements Approach

All incident notifications (1,171 in total) in the CSAS in the period from July
2003 to 23 August 2011 retrieved from the Bugzilla [15] incident logging sys-
tem were analysed. Since the incident logging system is integrated with a work
time accounting system, in the efficiency measurements not only the quantity of
incidents registered but also the time consumed to resolve incidents was used.
Every incident notification was evaluated using the criteria provided in Table 1.
As it can be seen in the table, not all incident notifications have been classified
as bugs. Users register in the incident logging system also incidents that, after
investigating the bug, in some cases get reclassified as user errors, improvements
or consultations.

11

LURaksti787-datorzinatne.indd 11LURaksti787-datorzinatne.indd 11 23.10.2012 12:02:2723.10.2012 12:02:27

Table 1
Types of Incident Notifi cations

Type of Incident Description
Unidentifiable bug Incident notifications that described an actual bug in the

system and that would not be identified by the self-testing
approach if the system had a self-testing approach tool
implemented.

Identifiable bug Incident notifications that described an actual bug in the
system and that would be identified by the self-testing
approach if the system had a self-testing approach tool
implemented.

Duplicate Incident notifications that repeated an open incident
notification

User error Incident notifications about which, during resolving, it was
established that the situation described had occurred due to
the user’s actions.

Improvement Incident notifications that turned out to be system
functionality improvements.

Consultation Incident notifications that were resolved by way of
consultations.

For measuring the efficiency of the self-testing approach, the most important
types of incident notifications are Identifiable Bug and Unidentifiable Bug.
Therefore, these types of incident notifications are looked at in more detail on the
basis of the distribution of incidents by types provided in the tables below (Table 2
and Table 3).

Table 2
Unidentifi able Bug; Distribution of Notifi cations by Bug Types

Bug type Description
External interface bug Error in data exchange with the external system
Computer configuration
bug

Incompliance of user computer’s configuration with the
requirements of the CSAS.

Data type bug Inconsistent, incorrect data type used. Mismatch between
form fields and data base table fields

User interface bug Visual changes. For example, a field is inactive in the form
or a logo is not displayed in the report.

Simultaneous users actions
bug

Simultaneous actions by multiple users with one record in
the system.

Requirement interpretation
bug

Incomplete customer’s requirements. Erroneous
interpretation of requirements by the developer.

Specific event Specific uses of the system resulting in a system error.

12 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti787-datorzinatne.indd 12LURaksti787-datorzinatne.indd 12 23.10.2012 12:02:2723.10.2012 12:02:27

Edgars Diebelis. Efficiency Measurements of Self-Testing

Table 3
Identifi able Bug; Distribution of Notifi cations by Test Point Types

Test point that would
identify the bug

Description

File result test point The test point provides the registration of the values to be
read from and written to the file, inter alia creation of the
file.

Input field test point This test point registers an event of filling in a field.
Application event test point This test point would register any events performed in the

application, e.g. clicking on the Save button;
Comparable value test
point

This test point registers the values calculated in the system.
The test point can be used when the application contains
a field whose value is calculated considering the values
of other fields, the values of which are not saved in the
database.

System message test point This test point is required to be able to simulate the message
box action, not actually calling the messages.

SQL query result test point This test point registers specific values that can be selected
with an SQL query and that are compared in the test
execution mode with the values selected in test storing and
registered in the test file.

3. Results of Measurements

3.1. Distribution of Notifi cations by Incident Types and Time Consumed

Table 4 shows a distribution of all incident notifications by incident types and
the time consumed to resolve them in hours. The table contains the following col-
umns:

• Notification type – incident notification type (Table 1);
• Quantity – quantity of incident notifications
• % of total – percentage of a particular notification type in the total quantity

of incident notifications;
• Hours – total time consumed to resolve one type of incident notifications;
• % of total – percentage of the time spent to resolve the particular notifica-

tion type of the total time spent for resolving all incident notifications.

13

LURaksti787-datorzinatne.indd 13LURaksti787-datorzinatne.indd 13 23.10.2012 12:02:2723.10.2012 12:02:27

Table 4
Distribution of All Notifi cations by Incident Types and the Time Consumed to Re-

solve Them

Application type Quantity % of total Hours % of total
Duplicate 68 5.81 23.16 0.47
User error 43 3.67 67.46 1.37
Unidentifiable bug 178 15.2 1,011.96 20.52
Identifiable bug 736 62.85 3,293.74 66.79
Improvement 102 8.71 241.36 4.89
Consultation 44 3.76 293.92 5.96
Total: 1,171 100 4,931.6 100

Duplicate
5.81%

User error
3.67% Unidentifiable

bug
15.20%

Identifiable bug
62.85%

Improvement
8.71%

Consultation
3.76%

F igure 1. Distribution of All Notifications by Incident Types

Identifiable bug
66.79%

Consultation
5.96%Improvement

4.89%
Unidentifiable

bug
20.52%

User error
1.37%

Duplicate
0.47%

Figure 2. Distribution of All Notifications by the Time Consumed to Resolve per Incident
Type

14 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti787-datorzinatne.indd 14LURaksti787-datorzinatne.indd 14 23.10.2012 12:02:2723.10.2012 12:02:27

Edgars Diebelis. Efficiency Measurements of Self-Testing

Considering the information obtained, the author concludes that:
• Of the total quantity of incident notifications (1,171), if the self-testing

approach had been implemented in the CSAS, 62.85% (736 notifications,
3,293.74 hours consumed for resolving) of all the incident notifications
registered in nearly nine years would had been identified by it already in
the development stage. It means that developers would had been able to
identify and repair the bugs already in the development stage, which would
significantly improve the system’s quality and increase the customer’s trust
about the system’s quality. Measurements similar to [16] show the advan-
tages of systematic testing compared to manual.

• As mentioned in many sources [17], the sooner a bug is identified, the
lower the costs of repairing it. The differences mentioned reach to ten and
even hundred times. The time spent for repairing bugs as provided in Table
4 would be definitely lower if the bugs had been identified already in the
development stage. Assuming that the identification of bugs in the devel-
opment stage would allow saving 50% of the time consumed for repairing
all the bugs identified by the customer, about 1,650 hrs, or about 206 work-
ing days, could have been saved in the period of nine years.

• Of the total quantity of incident notifications, the self-testing approach in
the CSAS would not be able to identify 15.2% of the bugs (178 notifica-
tions, 1,011.74 hours consumed for repairing) of the total number of inci-
dent notifications.

• Of the total quantity of incident notifications, 78.05% (914 notifications,
4,305.7 hours consumed for repairing) were actual bugs that were repaired,
other 11.95% (257 notifications, time consumed for repairing 625.9 hours)
of incident notifications were user errors, improvements, consultations and
bug duplicates that cannot not be identified with testing.

• The time consumed for repairing bugs in percentage (87.31%) of the to-
tal time consumed for incident notifications is higher than the percentage
(78.05%) of bugs in the total quantity of incident notifications. This means
that more time has been spent to repair bugs proportionally to other inci-
dent notifications (improvements, user errors, consultations to users and
bug duplicates).

3.2. Distribution of Notifi cations by Bug Types

As mentioned in the previous Chapter, there are two types of incident notifica-
tions that are classified as bugs: Unidentifiable Bugs and Identifiable Bugs, and
they are analysed in the next table (Table 5). The table columns’ descriptions are
the same as in the previous Chapter.

15

LURaksti787-datorzinatne.indd 15LURaksti787-datorzinatne.indd 15 23.10.2012 12:02:2723.10.2012 12:02:27

Table 5
 Distribution of Bugs by Bug Types

Bug Type Quantity % of total Hours % of total
Unidentifiable bug 178 19.47 1011.96 23.5
Identifiable bug 736 80.53 3293.74 76.5
Total: 914 100 4305.7 100

Identifiable
bug; 80.53

Unidentifiable
bug; 19.47

Figure 3. Distribution of Bugs by Bug Types

Unidentifiable
bug; 23.5

Identifiable
bug; 76.5

Figure 4. Distribution of Bugs by Bug Types per Time Consumed

Considering the information obtained, the author concludes that:
• The self-testing approach would identify 80% of all the bugs registered in

the CSAS.
• The time consumed for repairing the bugs identified by the self-testing

approach in percent (76.5%) of the total time consumed for resolving is
lower than the percentage (80.53%) of these bugs in the total quantity of
bugs. This means that less time would be spent to repair the bugs identified
with the self-testing approach proportionally to the bugs that would not be
identified with self-testing.

16 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti787-datorzinatne.indd 16LURaksti787-datorzinatne.indd 16 23.10.2012 12:02:2723.10.2012 12:02:27

Edgars Diebelis. Efficiency Measurements of Self-Testing

3.3. Distribution of Notifi cations by Years

T he next table (Table 6) shows the distribution of incident notifications by
years. The table contains the following columns:

• Notification type
 - quantity of incident notifications by type (Table 1) per years;
 - % of total – percentage of a particular notification type in the total

quantity of incident notifications per year;
• 2003-2011 – years analysed;

Table 6
Distribution of Notifi cations by Years

 Notifi cation
type 2003 2004 2005 2006 2007 2008 2009 2010 2011
Duplicate 1 1 13 22 7 10 7 5 2
% of total 3.23 1.3 13.13 10.19 4.9 5.29 3.45 3.85 2.41
User error 2 6 3 10 1 7 5 3 6
% of total 6.45 7.79 3.03 4.63 0.7 3.7 2.46 2.31 7.23
Unidentifiable
bug 2 7 11 19 19 37 38 23 22
% of total 6.45 9.09 11.11 8.8 13.29 19.58 18.72 17.69 26.51
Identifiable bug 17 51 59 138 98 110 141 79 43
% of total 54.84 66.23 59.6 63.89 68.53 58.2 69.46 60.77 51.81
Improvement 9 12 13 25 11 11 6 11 4
% of total 29.03 15.58 13.13 11.57 7.69 5.82 2.96 8.46 4.82
Consultation 0 0 0 2 7 14 6 9 6
% of total 0 0 0 0.93 4.9 7.41 2.96 6.92 7.23
Total: 31 77 99 216 143 189 203 130 83

From the table it can be seen that:
• In some years, there are peaks and falls in the number of some incident

notification types; also, consultation-type incident notifications have been
registered as from 2005, but their proportional distribution by years match
approximately the total proportional distribution of notifications.

• In any of the year’s most of the bugs notified could be identified with the
self-testing approach.

3.4. Distribution of Bugs by Years

The next table (Table 7) shows the distribution of bugs separately. The table
contains the following columns:

• Year – years (2003-2011) analysed;

17

LURaksti787-datorzinatne.indd 17LURaksti787-datorzinatne.indd 17 23.10.2012 12:02:2823.10.2012 12:02:28

• Udentifiable bug – number of udentifiable bugs by years;
• % of total – quantity of udentifiable bugs as a percentage of the total num-

ber of udentifiable bugs;
• Identifiable bug – number of identifiable bugs by years;
• % of total – quantity of identifiable bugs as a percentage of the total num-

ber of identifiable bugs;
• Total – totals of bug quantities.

Table 7
Distribution of Bugs by Years

Year
Unidentifi -
able bug % of total

Identifi able
bug % of total Total

2003 2 1.12 17 2.31 19
2004 7 3.93 51 6.93 58
2005 11 6.18 59 8.02 70
2006 19 10.67 138 18.75 157
2007 19 10.67 98 13.32 117
2008 37 20.79 110 14.95 147
2009 38 21.35 141 19.16 179
2010 23 12.92 79 10.73 102
2011 22 12.36 43 5.84 65
Total 178 100 736 100 914

2
17

7

51

11

59

19

138

19

98

37

110

38

141

23

79

22

43

0

20

40

60

80

100

120

140

160

180

2003 2004 2005 2006 2007 2008 2009 2010 2011

Unidentifiable bug Identifiable bug

Figure 5. Distribution of Bugs by Years

18 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti787-datorzinatne.indd 18LURaksti787-datorzinatne.indd 18 23.10.2012 12:02:2823.10.2012 12:02:28

Edgars Diebelis. Efficiency Measurements of Self-Testing

1.12

3.93

6.18

10.67 10.67

20.79 21.35

12.92 12.36

2.31

6.93
8.02

18.75

13.32
14.95

19.16

10.73

5.84

0

5

10

15

20

25

2003 2004 2005 2006 2007 2008 2009 2010 2011

Unidentifiable bug Identifiable bug

Figure 6. Distribution of Bugs in Percent by Years

Considering the information obtained, the author concludes that:
• The self-testing approach would identify most of the bugs registered in the

CSAS.
• Changes, by years, in the percentages of the bugs identified and not identi-

fied with the self-testing approach are not significant.
• In the first five years, the weighting of the bugs that could be identified

with the self-testing approach is higher, but later the weighting of the bugs
that could not be identified with the self-testing approach becomes higher.
This shows that the “simpler” bugs are discovered sooner than the “non-
standard” ones.

3.5. Ratio of the Bug Volume to the Improvement Expenses Distributed by
Years

The next table (Table 9) shows the ratio of the quantity of bugs to the volume of
improvement expenses by years. The table contains the following columns:

• Year – years analysed;
• Quantity of bugs – quantity of bugs registered in the CSAS by years;
• % of total – distribution of the quantity of bugs in percent by years;
• Improvement expenses in % of total – percentage of the amount spent for

improvements by years;

19

LURaksti787-datorzinatne.indd 19LURaksti787-datorzinatne.indd 19 23.10.2012 12:02:2823.10.2012 12:02:28

Table 8
Ratio of the Bug Quantity to the Improvement Expenses Distributed by Years

Year
Quantity of
bugs % to total

Improvement expenses in %
of total

2003 31 2.65 2.86
2004 77 6.58 12.38
2005 99 8.45 15.25
2006 216 18.45 15.13
2007 143 12.21 11.04
2008 189 16.14 21.62
2009 203 17.34 9.77
2010 130 11.1 6.24
2011 83 7.09 5.71
Total: 1,171 100 100

2.65

6.58
8.45

18.45

12.21

16.14
17.34

11.1

7.09

2.86

12.38

15.25 15.13

11.04

21.62

9.77

6.24 5.71

0

5

10

15

20

25

2003 2004 2005 2006 2007 2008 2009 2010 2011

Quantity of Notifications Improvement Expenses

Figure 7. Ratio of the Quantity of Notifications to the Improvement Expenses

The information looked at in this Sub-chapter does not directly reflect the ef-
ficiency of the self-testing approach, but it is interesting to compare changes in
the quantity of notifications (%) and in the improvement expenses (%) during the
nine years. Considering the information obtained, it can be concluded that, as the
improvement volumes grow, also the bug volumes grow. The conclusion is a rather
logical one, but in this case it is based on an actual example.

20 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti787-datorzinatne.indd 20LURaksti787-datorzinatne.indd 20 23.10.2012 12:02:2823.10.2012 12:02:28

Edgars Diebelis. Efficiency Measurements of Self-Testing

3.6. Distribution of the Bugs Unidentifi able by the Self-Testing Approach
by Types

The next table (Table 9) shows the distribution of bugs unidentifiable by the
self-testing approach by bug types. The table contains the following columns:

• Bug type – one of seven bug types;
• Quantity – quantity of bugs of the type;
• % of total – percentage of the bug type in the total quantity of bugs.

Table 9
Distribution of the Bugs Unidentifi able by the Self-Testing Approach by Types

Bug type Quantity % of Total
External interface bug 5 2.81
Computer configuration bug 12 6.74
Data type bug 7 3.93
User interface bug 25 14.04
Simultaneous actions by users 5 2.81
Requirement interpretation bug 41 23.03
Specific event 83 46.63
Total: 178 100

Specific event
46.63%

Requirement
interpretation bug

23.03%

Simultaneous
actions by users

2.81%

User interface bug
14.04%

Data type bug
3.93%

Computer
configuration bug

6.74%

External interface
bug

2.81%

Figure 8. Distribution of the Bugs Unidentifiable by the Self-Testing Approach by Types

Conclusions:
• Most (nearly 50%) of the bugs that the self-testing approach would not

be able to identify are specific cases that had not been considered when
developing the system. For example, the following scenario from a bug de-
scription: “I enter the login, password, press Enter, press Enter once again,
then I press Start Work, in the tree I select any view that has items under
it. And I get an error!”. As it can be seen, it is a specific case that the

21

LURaksti787-datorzinatne.indd 21LURaksti787-datorzinatne.indd 21 23.10.2012 12:02:2823.10.2012 12:02:28

developer had not considered. To test critical functionality, a test example
that plans that Enter is pressed once would be made, and this test example
would not result in a bug. Furthermore, a scenario that plans that Enter is
pressed twice would not be created since it is a specific case not performed
by users in their daily work. The self-testing approach is not able to iden-
tify bugs that occur due to various external devices. For example, when a
transaction confirmation is printed, the self-testing approach would not be
able to detect that one excessive empty page will be printed with it.

• One fifth of the total quantity of the bugs that the self-testing approach
would be unable to identify are requirement interpretation bugs. Bugs of
this type occur when system additions/improvements are developed and
the result does not comply with the customer’s requirements because the
developer had interpreted the customer’s requirements differently. To the
author’s mind, the quantity of hours (41) during the nine-year period is
small and is permissible.

• The self-testing approach is unable to identify visual changes in user inter-
faces, data formats, field accessibility and similar bugs.

• A part of the registered bugs are related to incompliance of the user com-
puter’s configuration with the system requirements. The self-testing ap-
proach would be able to identify bugs of this type only on the user com-
puter, not on the testing computer that has been configured in compliance
with the system requirements.

• A part of the bugs that the self-testing approach would be unable to identify
are data type bugs that include:

 - checking that the window field length and data base table field
length match;

 - exceeding the maximum value of the variable data type.
• The self-testing approach is unable to identify bugs that result from the

data of external interfaces with other systems. The self-testing approach
is able to store and execute test examples that contain data from external
interfaces, but it is unable to create test examples that are not compliant
with the requirements of the external system (e.g. a string of characters in-
stead of digits is given by the internal interface). Of course, it is possible to
implement a control in the system itself that checks that the data received
from the external interface are correct.

• The self-testing approach is unable to identify bugs that result from trans-
action mechanisms incorrectly implemented in the system, e.g. if several
users can simultaneously modify one and the same data base record.

22 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti787-datorzinatne.indd 22LURaksti787-datorzinatne.indd 22 23.10.2012 12:02:2823.10.2012 12:02:28

Edgars Diebelis. Efficiency Measurements of Self-Testing

3.7. Distribution of the Bugs Identifi able by the Self-Testing Approach by
Test Point Types

The next table (Table 10) shows the distribution of bugs identifiable by the
self-testing approach by bug types and time consumed to resolve them. The table
contains the following columns:

• Test point – test point that would identify the bug;
• Quantity – quantity of bugs that the test point would identify;
• % of total – percentage of the bugs that would be repaired by the test point

in the total quantity of bugs that would be repaired by all test points;
• Hours – hours spent to resolve the bugs that the test points could identify;
• % of total – percentage of hours in the total number of hours consumed to

repair the bugs that could be identified by test points.

Table 10
Distribution of the Bugs Identifi able

by the Self-Testing Approach by Test Point Types
Test point Quantity % of total Hours % of total
File result test point 59 8.02 150.03 4.56
Entry field test point 146 19.84 827.14 25.11
Application event test point 105 14.27 364.24 11.06
Comparable value test point 28 3.8 93.53 2.84
System message test point 11 1.49 58.84 1.79
SQL query result test point 387 52.58 1,799.96 54.65
Total: 736 100 3,293.74 100

File result test
point; 8.02SQL query result

test point; 52.58

Entry field test
point; 19.84

Application event
test point; 14.27

Comparable value
test point; 3.8

System message
test point; 1.49

Figure 9. Distribution of the Bugs Identifiable by the Self-Testing Approach by Test Point
Types

23

LURaksti787-datorzinatne.indd 23LURaksti787-datorzinatne.indd 23 23.10.2012 12:02:2823.10.2012 12:02:28

Conclusions:
• More than a half of all the registered bugs could be identified with the SQL

query result test point. At the test point, data are selected from the data
base and compared with the benchmark values. The explanation is that
the key purpose of the CSAS is data storing and making reports using the
stored data.

• One fifth of the bugs that could be identified with the self-testing approach
would be identified by the input field test point. The test point compares
the field value with the benchmark value.

4. Conclusions

In order to present advantages of self-testing, the self-testing features are in-
tegrated in the CSAS, a large and complex financial system. Although efforts are
ongoing, the following conclusions can be drawn from the CSAS experience:

• Using the self-testing approach, developers would have been able to iden-
tify and repair 80% of the bugs already in the development stage; accord-
ingly, 63% of all the received incident notifications would have never oc-
curred. This would significantly improve the system’s quality and increase
the customer’s trust about the system’s quality.

• A general truth is: the faster a bug is identified, the lower the costs of
repairing it. The self-testing approach makes it possible to identify many
bugs already in the development stage, and consequently the costs of re-
pairing the bugs could be reduced, possibly, by two times.

• Most of the bugs that the self-testing approach would be unable to identify
are specific cases of system use.

• The SQL query result test point has a significant role in the identification
of bugs; in the system analysed herein, it would had identified more than a
half of the bugs notified.

From the analysis of the statistics, it can be clearly concluded that the im-
plementation of self-testing would make it possible to save time and improve the
system quality significantly. Also, the analysis has shown that the self-testing ap-
proach is not able to identify all system errors. On the basis of the analysis provided
herein, further work in evolving the self-testing approach will be aimed at reducing
the scope of the types of bugs that the current self-testing approach is unable to
identify.

24 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti787-datorzinatne.indd 24LURaksti787-datorzinatne.indd 24 23.10.2012 12:02:2823.10.2012 12:02:28

Edgars Diebelis. Efficiency Measurements of Self-Testing

IEGULDĪJUMS TAVĀ NĀKOTNĒ

This work has been supported by the European Social Fund within the project «Support for Doctoral Studies at
University of Latvia».

References

1. Bičevska, Z., Bičevskis, J.: Smart Technologies in Software Life Cycle. In: Münch, J., Abraha-
msson, P. (eds.) Product-Focused Software Process Improvement. 8th International Conference,
PROFES 2007, Riga, Latvia, July 2-4, 2007, LNCS, vol. 4589, pp. 262-272. Springer-Verlag,
Berlin Heidelberg (2007).

2. Rauhvargers, K., Bicevskis, J.: Environment Testing Enabled Software - a Step Towards Execution
Context Awareness. In: Hele-Mai Haav, Ahto Kalja (eds.) Databases and Information Systems,
Selected Papers from the 8th International Baltic Conference, IOS Press vol. 187, pp. 169-179
(2009).

3. Rauhvargers, K.: On the Implementation of a Meta-data Driven Self Testing Model. In: Hruška,
T., Madeyski, L., Ochodek, M. (eds.) Software Engineering Techniques in Progress, Brno, Czech
Republic (2008).

4. Bičevska, Z., Bičevskis, J.: Applying of smart technologies in software development: Automated
version updating. In: Scientific Papers University of Latvia, Computer Science and Information
Technologies, vol .733, ISSN 1407-2157, pp. 24-37 (2008).

5. Ceriņa-Bērziņa J.,Bičevskis J., Karnītis Ģ.: Information systems development based on visual
Domain Specific Language BiLingva. In: Preprint of the Proceedings of the 4th IFIP TC 2 Cen-
tral and East Europe Conference on Software Engineering Techniques, CEE-SET 2009, Krakow,
Poland, Oktober 12-14, 2009, pp. 128-137.

6. Ganek, A. G., Corbi, T. A.: The dawning of the autonomic computing era. In: IBM Systems Jour-
nal, vol. 42, no. 1, pp. 5-18 (2003).

7. Sterritt, R., Bustard, D.: Towards an autonomic computing environment. In: 14th International
Workshop on Database and Expert Systems Applications (DEXA 2003), 2003. Proceedings, pp.
694 - 698 (2003).

8. Lightstone, S.: Foundations of Autonomic Computing Development. In: Proceedings of the
Fourth IEEE international Workshop on Engineering of Autonomic and Autonomous Systems,
pp. 163-171 (2007).

9. Kephart, J., O., Chess, D., M. The Vision of Autonomic Computing. In: Computer Magazine, vol.
36, pp.41-50 (2003).

10. Barzdins, J., Zarins, A., Cerans, K., Grasmanis, M., Kalnins, A., Rencis, E., Lace, L., Liepins,
R., Sprogis, A., Zarins, A.: Domain Specific languages for Business Process Managment: a Case
Study Proceedings of DSM’09 Workshop of OOPSLA 2009, Orlando, USA.

11. Diebelis, E., Takeris, V., Bičevskis, J.: Self-testing - new approach to software quality assurance.
In: Proceedings of the 13th East-European Conference on Advances in Databases and Informa-
tion Systems (ADBIS 2009), pp. 62-77. Riga, Latvia, September 7-10, 2009.

12. Bičevska, Z., Bičevskis, J.: Applying Self-Testing: Advantages and Limitations. In: Hele-Mai
Haav, Ahto Kalja (eds.) Databases and Information Systems, Selected Papers from the 8th Inter-
national Baltic Conference, IOS Press vol. 187, pp. 192-202 (2009).

25

LURaksti787-datorzinatne.indd 25LURaksti787-datorzinatne.indd 25 23.10.2012 12:02:2823.10.2012 12:02:28

13. Diebelis, E., Bičevskis, J.: An Implementation of Self-Testing. In: Proceedings of the 9th In-
ternational Baltic Conference on Databases and Information Systems (Baltic DB&IS 2010),
pp. 487-502. Riga, Latvia, July 5-7, 2010.

14. Diebelis, E., Bicevskis, J.: Test Points in Self-Testing. In: Marite Kirikova, Janis Barzdins (eds.)
Databases and Information Systems VI, Selected Papers from the Ninth International Baltic Con-
ference. IOS Press vol. 224, pp. 309-321 (2011).

15. Bugzilla [Online] [Quoted: 20.05.2012] http://www.bugzilla.org/
16. Bičevskis, J.: The Effictiveness of Testing Models. In: Proc. of 3d Intern. Baltic Workshop “Data-

bases and Information Systems”, Riga, 1998.
17. Pressman, R.S., Ph.D., Software Engineering, A Practitioner’s Approach. 6th edition, 2004.

26 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti787-datorzinatne.indd 26LURaksti787-datorzinatne.indd 26 23.10.2012 12:02:2923.10.2012 12:02:29

