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Abstract. Wireless sensor networks (WSN) consist of a number of low-
power spatially distributed autonomous nodes equipped with means of
communication. Developing software for WSN is challenging; operating
system (OS) support is required. In this paper we present MansOS, a
portable and easy-to-use WSN operating system that has a smooth learn-
ing curve for users with C and UNIX programming experience. The OS
features a configuration model that allows to reduce application binary
code size and build time. In contrast to other WSN OS, MansOS by de-
fault provides both event-based and threaded user application support,
including a complete although lightweight implementation of preemptive
threads.
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1 Introduction

Few areas of embedded system programming require OS support more than
WSN programming does. Networks formed by autonomous small-scale devices
with tight resource and energy constraints are systems of great complexity. De-
veloping fully application-specific solutions without using middleware or OS is
not an option for majority of users. MansOS is an open-source operating system
designed to serve their needs.

WSN programming is challenging because it brings together complexity of
embedded device programming and complexity of networked device program-
ming. Therefore an easy-to-use OS with a smooth learning curve is needed.
Since a lot of system programmers have experience with C programming and
UNIX-like concepts, it makes sense to adapt these concepts to WSN program-
ming. MansOS is written in plain C, aims to be user-friendly and use familiar
concepts.

In contrast to their desktop counterparts, embedded hardware architectures
and platforms come in great variety and are often specially adapted to con-
crete applications. Therefore portability is a critical requirement for embedded
software. MansOS is portable and runs on several WSN mote platforms.
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The design and implementation of a feature complete WSN OS is not a quick
or easy task. In some form, MansOS has been under development since 2007. It
started off as a LiteOS clone: an attempt to bring portability to this WSN OS.
During the development, MansOS has been influenced by ideas from Contiki and
Mantis.

Existing WSN OS in some cases use unnecessarily heavy technologies and
suboptimal implementations. For example, OS support for threads can be sim-
plified and optimized by taking into account traits specific to WSN OS software:
the low number of total threads expected and cooperativeness of user threads.
Moreover, code of existing WSN OS is often bloated by forcing the use of un-
necessary resources and components. MansOS brings these simplifications and
optimizations to WSN OS area, and allows smaller resource use granularity.

The paper starts with an overview of related work. Then a section is devoted
to description of MansOS architecture, and hardware design space. It then pro-
ceeds with a description and evaluation of selected components, and concludes
with a comparison of MansOS and competing solutions.

2 Related work

Multiple operating systems for sensor networks have been proposed previously,
focusing on different design aspects. Notable examples include TinyOS, Contiki,
LiteOS and Mantis.

2.1 TinyOS

TinyOS [11] is an actively supported and well tested WSN OS, has created a
wide contributor and user community, and can be considered de facto standard
for WSN programming. It is primarily targeted to sensor network researchers.

Compact, reactive scheduler is used (core system uses 400 bytes of program
memory). Source code is written in nesC' language, a C dialect processed by
a nesC parser and pre-compiled into a single C source file. This single file is
then compiled into a firmware image and takes advantages of static compiler
optimizations.

TinyOS is a highly modular system, consisting of components, wired to-
gether using specified interfaces. Each component provides a particular service
and interfaces describe commands for starting a service and events for signalling
completion of a service routine. Inside components low-priority tasks are sched-
uled, using non-preemptive, run-to-completion FIFO task queue. High-priority
event handlers are used for time-critical section execution. Optional preemptive
scheduler can be used, implemented as an add-on, called TOSThreads [10].

Although TinyOS is portable, it has a steep learning curve for novice WSN
developers. The main reasons of TinyOS complexity are:

e event-driven nature of TinyOS. Event-based code flow is more complex for
programmers to design and understand, as state machine for split-phase
operation of the application has to be kept in mind;
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e nesC language concepts, unfamiliar even to experienced C and embedded
system programmers.

These limitations are in the system design level, and there is no quick fix
available. The most convenient alternative is to implement middleware on top
of TinyOS for simplified access to non-expert WSN programmers.

2.2 Contiki

Contiki is a lightweight operating system with support for dynamic loading and
replacement of individual programs and services. It is built around an event-
driven kernel and provides optional preemptive multithreading [6]. Contiki is
written in C language and has been ported to a number of platforms, including
TelosB and Zolertia Z1, having different CPU architectures: Atmel AVR, Texas
Instruments MSP430 and others.

The only abstractions provided by Contiki kernel are CPU multiplexing and
dynamic program and service loading. Additional abstractions are provided by
libraries with full access to underlying hardware. Loadable programs are im-
plemented, using modified binary format containing relocation information and
performing run-time relocation.

Contiki provides proto-threads abstraction: ability to write thread-like pro-
grams with blocking calls on top of event-driven kernel [7]. Each proto-thread
requires only two bytes of memory, and has no separate stack. As an alterna-
tive to cooperative proto-threads, Contiki provides preemptive threading model
implemented as optional library. It uses separate stacks for each thread and con-
text switching, which must be implemented for every CPU, if used. However, to
the best of our knownledge, there are no platforms whose implementations of
threads support preemption.

Process is either an application or a service — a process implementing func-
tionality used by multiple applications. Both applications and services may be
replaced at run-time. Communication between services is implemented using
event passing through kernel.

The porting of Contiki consists of writing platform-specific boot up code, de-
vice drivers, architecture specific dynamic program loading and context switch-
ing for preemptive multithreading. The kernel and service layer are platform-
independent.

Contiki programs are relatively heavy-weight, as they usually use several
kilobytes of RAM and have program code more than 10 kilobytes in size. Core
routines of the system are sometimes duplicated between platforms, for example,
timer interrupt handlers are custom for every MCU architecture. Architecture-
independent scheduler of preemptive threads is a desired feature that is not
included in the OS by default.

2.3 LiteOS

LiteOS is a multithreaded operating system that provides Unix-like abstractions
for wireless sensor networks [4]. It offers hierarchical file system, remote shell,
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dynamic application loading, preemptive scheduler for multithreaded applica-
tions and and object oriented programming language LiteC++ — a subset of C++.
LiteOS has been implemented on MicaZ and Iris mote platforms, both with AVR
microcontrollers.

LiteOS utilizes a specific binary image format containing relative addresses
to provide dynamic application loading.

LiteOS includes a hierarchical, UNIX-like file system, called LiteF'S, for stor-
age of application sensor data and application binary images. All files, includ-
ing device drivers, provide unified POSIX-compatible access functions: fopen(),
fclose(), fseek(), fread(), fwrite(), etc. Therefore also all sensor node de-
vices are included in the file system accessible from remote shell.

Split phase operations, such as sending a radio message and waiting for end
of transmission, are implemented as blocking calls. External events, such as
reception of a radio message or external pin interrupt, were implemented as
callback function handlers in the first versions of LiteOS, but were transformed
to blocking calls later. Therefore LiteOS provides fully threaded programming
with blocking calls, and no event callback handling.

To access kernel functions from user threads, system calls or call gates are
used. Therefore function implementations can be changed at run-time, and kernel
image updated without modification of user application.

The source code is 8-bit AVR platform-specific and significant changes are
required to port LiteOS to other platforms with other microcontrollers.

2.4 Mantis

Mantis is a multithreaded cross-platform embedded operating system for wire-
less sensor networks, supporting complex tasks such as compression, aggregation
and signal processing, implemented in a lightweight RAM footprint that fits in
less than 500 bytes of memory, including kernel, scheduler, and network stack [3].
Mantis is implemented on multiple platforms, including PCs and PDAs, allowing
to create hybrid networks consisting of real sensor nodes and virtual ones, simu-
lated on top of one or multiple PCs. Written in C language, Mantis OS translates
to a separate API on the PC platform, which can be augmented by any other
required functionality — graphical user interface, data bases, web services.

Mantis provides preemptive, time-sliced thread scheduling and synchroniza-
tion using semaphores. Each thread occupies a separate stack. Each context
switch is performed by the kernel task scheduler in timer interrupt handler, and
uses only approximately 120 instructions. All other interrupts besides timer are
handled by device drivers directly.

Additional abstraction layer is implemented in the kernel, providing blocking
call interface for external event waiting (radio or UART packet reception). Data
buffer pool is used to share buffers between all communication layer services.

Mantis kernel code is platform-independent. However, platform- and chip-
level code is mixed, there are no TelosB or MicaZ platforms, only MSP430 and
AVR code, which is microcontroller (MCU) or architecture specific. Separation
of MCU architectures, specific chips and platforms would improve portability.
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3 MansOS architecture

In the first part of this section the MansOS hardware abstraction model is speci-
fied. After that, the design space of a portable WSN OS is outlined, by describing
the specific architectures and hardware modules we chose to support.

3.1 Abstraction model

As one of our design goals is minimization of effort required to port the OS to
new WSN hardware platforms, MansOS provides modular architecture. Chip-
specific code is separated from platform-specific and platform-independent rou-
tines. Driver code is designed to be platform-independent where possible, there-
fore a single MansOS driver frequently is usable across multiple platforms.

Hardware abstraction model in MansOS (Fig. 1) is based on a key observa-
tion from [9]: due to requirements of energy efficiency in WSN it is not enough to
expose only a single, strictly platform-independent hardware abstraction layer.
The users should be allowed to exploit device-specific hardware features for in-
creased efficiency and flexibility.

In MansOS the user has access to all four hardware abstraction layers:

e device-specific code (placed in directory chips) — drivers for individual de-
vices and microcontrollers;

e architecture-specific code (directory arch) — code particular to a specific
architecture (such as MSP430 or AVR);

e platform-specific code (directory platforms) — code particular to a specific
platform (such as Arduino, TelosB or Zolertia Z1).

e platform independent code, including the hardware interface layer (HIL),
directory hil.

The HIL code provides unified device interface for kernel and user applica-
tions. Wiring, function binding and platform or architecture-specific constants
are defined at arch and platform levels. To take an example, radio driver’s
interface is defined in the HIL level. During compilation time, the interface is
bound to a specific implementation, which is chosen at the platform level, con-
taining the glue code. For TelosB platform, CC2420 radio driver is chosen, and
SO on.

The model explicated here is similar to the one found in Contiki: platforms
directory in MansOS roughly corresponds to platforms directory, arch to cpu
in Contiki, chips to core/dev, and the rest of MansOS system (kernel, hil,
and 1ib) to the rest of core folder in Contiki. The chief difference between these
systems is better organization of chip- and platform-specific code in MansOS;
for example, the periodic timer interrupt handler code (the “heartbeat” of the
system) is unified and shared by all platforms. Another difference is function
binding: in MansOS it is done earlier, at compile time. This design decision allows
reducing both binary code size and RAM usage, as well as run-time overhead. To
take a concrete example, in Contiki the radio driver is accessed through function
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Fig.1: MansOS components and abstraction layers

pointers in struct radio_driver structure. The structure itself takes twenty
bytes in RAM. Furthermore, indirect function calls have to be used, which adds
two byte flash usage overhead for each call, as well as CPU run-time overhead,
because an extra mov instruction is generated. The extra mov takes two CPU
cycles to execute, because on MSP430 instruction execution takes an extra CPU
cycle for each memory access. In MansOS all calls are direct (glued by inline
functions or macros), therefore extra resources are not used.

Similar parallels can be drawn between MansOS and TinyOS, although the
latter lacks explicit separation of architecture-specific code: platforms in MansOS
maps to platforms in TinyOS, chips to chips, hil to interfaces, kernel to
system, 1ib to 1ib. A notable difference is the impossibility of direct hardware
component access in TinyOS application code. It could be argued that this re-
striction leads to a better code organization, but we feel that it is too limiting
to the user.

As the analysis shows (Table 1), approximately half of total MansOS code
is hardware-independent. Since the amount of hardware-dependent code varies
greatly with the number of hardware platforms supported, comparison is more
fair when a specific platform is fixed. When TelosB is selected as the platform,
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Table 1: Source code size breakdown with regard to MansOS components, lines
of code (excluding comments and empty lines)

All platforms TelosB
Chip-specific code 7132 34.61% 2657 19.86%
Architecture-specific code 2063 10.01% 582 4.35%
Platform-specific code 1482 7.19% 208 1.56%

Interface layer code 1814  8.8% 1814 13.56%
Kernel code 1240 6.02% 1240  9.27%

Network protocol code 3683 17.87% 3683 27.53%
File system code 1384 6.72% 1384 10.35%
Library code 1809 8.78% 1809 13.52%

Total device-independent code 9930 48.19% 9930 74.23%
Total code 20607 100% 13377 100%

only a quarter of the code turns out to be chip- or platform-specific. Most of the
hardware-dependent code is plain C; ASM is used only in a few, specific places,
such as thread context switching.

3.2 Hardware support

A wireless sensor network consists of a number of distributed devices that are
not only small and low-cost, but also have to be powered from relatively low
capacity batteries. Therefore computing power limitations are extremely tight.
Typical WSN mote resources include ten to a few hundreds kilobytes of program
memory, a few kilobytes of RAM, no memory protection or mapping support.
The microcontroller usually has a few MIPS of computing power and features
several lower energy consumption modes. A WSN OS has to make good use of
the limited resources available. Energy efficiency is of paramount importance:
the OS has to provide options for low duty cycling.

Among typical architectures used in for WSN sensor motes and resource
constrained embedded devices, Texas Instruments MSP430 and Atmel AVR are
prominent.

MSP30 [14] is a 16-bit, low-power microcontroller using MIPS architecture.
The device features a number of peripherals useful for a WSN device. Digital
and analog I/O pins are provided, as are multiple hardware timers, including
pulse-width modulation (PWM), and watchdog. Analog inputs can be sampled
using the built-in ADC circuitry, while digital pins allow specific data transfer
protocols to be used, for example, U(S)ART, SPI, and I2C access. Notable plat-
form examples are TelosB-compatible motes, such as Tmote Sky [13], as well as
newer developments like Zolertia Z1 [16].

Atmel AVR [2] is an 8-bit modified Harvard architecture RISC microcon-
troller. Integrated ADC, watchdog and multiple timers with PWM are present
as well, as are digital and analog I/O ports. One difference between the two
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architectures is related to flash memory access: MSP430 use unified memory
address space for RAM and flash, while in AVR macros have to be used for pro-
gram memory access. Equivalently powerful AVR chips use more energy than
MSP430, therefore they are better suited to application domains where energy
requirements are less stringent, such as automotive applications or building au-
tomation. Notable platform examples include Arduino [1] and Waspmote [12],
both using Atmega series MCU.

Several peripherals (sensors and actuators) are usually present on the mote.
The OS therefore has to provide support for digital data transfer bus protocols
(UART, SPI, 12C) typically used for communication with the peripherals. At
least, API to the MCU built-in hardware support has to be provided. However,
hardware-only support is not sufficient for all times, as our experience shows.
For example, several slightly different I2C protocol versions are used on different
peripheral devices (such as light sensors). The hardware support for I2C on
MSP430 fails to take into account these differences. Therefore, a configurable
software implementation of the protocol has to be provided by the WSN OS in
order to properly communicate with these devices. Finally, platform-independent
API for the most popular sensors (voltage, light, humidity and temperature) can
be expected.

Time accounting is an essential feature of the WSN OS, since WSN users
often require sensor measurements to be timestamped. As real time clock (RTC)
chips are seldom present on WSN motes, the OS has to emulate one using MCU
hardware timers.

Finally, support for at least wireless communication has to be included in
the OS, since it is by far the most popular form of communication used in sensor
networks. A frequently encountered design option is IEEE 802.15.4 compatible
transceiver chips using 2.4 GHz frequency band. Support of such a chip can be
expected from the WSN OS. Support for IEEE 802.15.4 MAC layer is optional,
as WSN applications typically use WSN-specific MAC protocols.

4 MansOS components and features

This section describes selected MansOS components in detail, namely the config-
uration mechanism, kernel, threads, file system, and the reprogramming mech-
anism. The section is concluded with a technical discussion about usability and
portability. Although interesting, the description of MansOS network stack goes
beyond the scope of this paper. This custom stack has support for network ad-
dressing, MAC protocols, multi-hop routing, and pseudo-sockets. IPv6 support
is available as an external third-party library by using ulPv6 [8].

4.1 Configuration mechanism

Many users are worried that using a WSN OS as opposed to writing all code in
application-specific way leads to bloated code sizes and ineflicient resource usage.
MansOS configuration mechanism is designed to deal with these problems. As
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non-intrusiveness is one of our design goals, MansOS provides reduced program
sizes and seamless OS integration with application code. In fact, no MansOS
services are required to be used — the OS can function as a simple library of
frequently used routines.

MansOS configuration mechanism is a key feature of the system, underlying
whole component selection and implementation. The mechanism is based on
observation that the need for run-time re-configuration or WSN applications is
small. In contrast to desktop systems, where threads and processes are created
and die constantly, on small resource-constrained systems resource allocation is
usually static. Consequently, the allocation can be done at compile time.

The benefits of rich compile-time configuration include:

code size reduction by explicitly selecting used and unused components;

more flexible resource usage by providing custom, more compact versions of

the code for most frequenctly used scenarios, and for cases when resources

are severely constrained. For example, a simplified scheduler is used in the
default case of only two threads;

e application code complexity reduction, because run-time reconfiguration sup-
port in applications becomes less important. Run-time adaptation to re-
source allocation is often not necessary, since the compile-time system is
flexible enough;

e run-time overhead reduction by compile-time binding. This allows both re-

ducing processing overhead, since direct function calls are cheaper than calls

by pointer, and reducing RAM & flash usage overhead, since there is no need
to store device driver structures for indirect access.

The objective of the configuration mechanism is to achieve the modularity
and heavy optimizations made possible by using nesC in TinyOS, but without
the complexity of having to learn a new programming language. Therefore, the
challenge is to emulate specific features of component-oriented programming
using plain C and GNU make.

The interactive part of the configuration mechanism is implemented using
configuration files. The files are hierachical: a system-wide default configura-
tion template is used as the base, to which platform-specific, site-local, and
application-specific changes are added. Relations between components are pos-
sible: there can be either a dependence relation (A requires B) or conflict relation
(A cannot be used together with B).

The non-interactive part is implemented using GCC and GNU binutils sup-
port. The optimization has two independent stages. First, after the compilation
process all object files are sorted in two sets: the set reachable (via function calls)
from user code and the set unreachable from user code. Only the reachable files
are passed to the linker. The second stage is based on a linker feature which
allows to discard unused code sections. The method can be used only when each
function has been put in separate code section by the compiler, but provides
finer-grained optimization if active.
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4.2 Kernel

In an embedded operating system, the two main functions of OS kernel are the
initialization of the system and execution of the main loop. The kernel should
be as small and non-intrusive as possible and feature energy saving support.

Initialization MansOS components are initialized in the main () function. First,
for platform-specific initialization, initPlatform() routine is called. This rou-
tine is custom for each platform. Second, generic component initialization is
done, as the latter can depend on the former. The next action taken after all ini-
tialization is completed, depends on programming model used. For event-based
execution, appMain() is called. For threaded execution, two threads (user and
kernel) are created and OS scheduler started.

Alternatively, by specifying a configuration option, the user can completely
disable kernel code. The only requirement in that case: all components used
should be properly initialized from user code.

Execution models Two application execution models are used in WSN OS:

e event-based (asynchronous);
e thread-based (synchronous).

Event-based model is simpler and requires less resources: scheduler code is
not included in the OS, and thread stacks do not use extra RAM. On the other
hand, this model is more challenging for the programmer, especially for one who
is developing lenghty applications. For event based execution, program flow is not
reflected in the source code. In this way event-based programming is similar to
using goto operator, as in both cases the user has to keep in mind a complicated
mental model of program’s states.

The benefits of thread-based model can be observed in application code, as
it becomes easier to write and understand. On the other hand, this approach is
not only more heavyweight, but application execution becomes more difficult to
trace, stack overflow errors as well as race conditions become possible, and the
OS kernel becomes more challenging to implement correctly. Taking all this into
account, MansOS offers both models and lets the user choose.

Event-based execution This is the default implementation used in MansOS.
In event-based execution model, the user registers callbacks and writes code for
callback handler functions.

Take software timers (named alarms in MansOS) as an example. Alarm call-
back function pointers are put in a global list, ordered by alarm firing time. The
list is processed in the periodic timer interrupt handler, executed 100 times per
second (user-configurable value). Therefore, timers with precision up to 10ms
are available by default.

Similar callbacks can be registered for packet reception, whether serial or
radio. User callbacks are executed immediately after hardware signals arrival of



Atis Elsts, Girts Strazdins, et al. Design and Implementation of MansOS: a Wireless .. 89

new data, therefore delay is the smallest possible. However, user callback code is
executed in the interrupt context and can cause problems: either if the execution
blocks for too long, or if the user code re-enables interrupts. In the first case,
the result is a completely blocked system. In the second case, nested interrupts
become possible, so all of OS code has to be reentrant.

Energy efficiency in this model can be achieved by calling one of sleep()
family functions in application’s main loop.

Threaded execution Thread implementation in a WSN OS can be simplified
if two observations are taken into account. First, the number of threads typically
required by a WSN application is small. In most of cases, as single user thread
is sufficient, if blocking function calls are allowed in it. Second, in contrast to
desktop OS, threads in WSN OS can be expected to be cooperative. The first
observations motivates the OS to provide simpler scheduler version by default,
supporting only two threads. The second allows to forget about time-slicing and
similar fairness guarantees.

Correct locking is a big issue in multithreaded software architectures. If the
locking is not correct, race-conditions can lead to corrupt data, or deadlocks can
occur. Even if the locking is correct, significant code size overhead still remains.
The locking in a WSN OS kernel can be simplified by making the kernel thread
to run with higher priority. MansOS thread implementation is hierarchical: user
threads are one hierarchy level below the kernel thread. The kernel thread is used
for system event processing only and cannot be interrupted by user threads, while
user threads can interrupt each another.

At least two threads are always created: a user thread and the kernel thread.
Multiple user threads are optionally available. In the latter case, two scheduling
policies are available: round-robin, in which the least recently run user thread is
always selected, and priority-based, in which the thread with the highest priority
is always selected (from all threads that are ready to run).

Mutexes are available as means of synchronization. Sequential execution of
two threads can be implemented using a mutex.

Listing 1 Thread stack guard

#define STACK_GUARD() do {
/* declare a stack pointer variable */
MemoryAddress_t currentSp;
/* read the current stack pointer into the variable */
GET_SP(currentSp) ;
/* compare the current stack pointer with stack bottom, */
/* and abort in case of overflow */
ASSERT_NOSTACK (currentSp >= STACK_BOTTOMQ));

} while (0)

PP A e
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Stack overflow is a nasty and hard-to-detect problem when threads with small
and constant-sized stacks are used. To alleviate the detection of this problem,
MansOS includes stack guards (Listing 1) — code fragments that can be put in
functions most likely to be in the bottom of the call chain. The guard immediately
aborts program execution in case an overflow is detected.

Energy efficiency using threaded execution can be achieved by calling one of
sleep() functions in the main loops of every user thread. The system will enter
low power mode if no threads (including the kernel thread) are active.

4.3 File system

A typical task for a WSN node is data logging for later relaying and analy-
sis, since immediate transmission is not possible in all cases. Most WSN nodes
include a flash chip for this purpose. However, using these chips directly by low-
level device commands is non-trivial. Often it is needed to distinguish amongst
several logical data streams and dynamically allocate space between them, as
well as deal with the chips’ hardware limitations. A WSN operating system
should therefore provide a clean and easy interface to the data storage and deal
with the hardware details.

MansOS features a simple file system that abstracts the physical storage
as a number of logical files or streams. Following the MansOS philosophy, the
file system interface is synchronous (UNIX-like) and thread-safe. In addition to
basic file commands, the system has non-buffering and integrity-checking modes.
On the low level, the system is designed for flash chips that have very large
segments and don’t contain integrated controllers that handle data rewrites and
wear levelling.

A flash memory segment is the minimal unit of memory cells that can be
erased at once (flash memory cells need to be erased before repeated writes).
Segments can be several hundred kilobytes big depending on the flash type and
model.

Data organization The file system divides physical storage — flash memory —
in data blocks of fixed size. A file is a linked list of data blocks; new blocks are
allocated on demand. Contrary to the contiguous storage approach used by some
WSN file systems (Coffee [15]), this allows for dynamic file sizes at no cost. The
next block’s number is stored at the end of the current one.

The size of a data block is chosen so that there is low overhead from traversing
and allocating blocks, yet so that there isn’t much space loss from incomplete
blocks. One flash segment contains a small number of data blocks, so that there is
smaller chance for multiple files to occupy one segment. On the TelosB platform,
which has a flash with 64 KB big segments, they are divided in four 16 KB data
blocks, giving the total of 64 data blocks chip-wide.

For integrity checking, data blocks are further divided into data chunks, which
fit into the WSN node’s memory and have a checksum appended. This allows
to detect errors without reading the data twice. The overall division of flash
memory into smaller elements is shown in Fig. 2.
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Fig. 2: Structural elements in the flash memory

Flash memory limitations on rewriting individual cells make the naive ap-
proach of updating a file’s contents in-place impractically slow. Some imple-
mentations use log-structured file system approach to solve this (the ELF file
system [5]). But, since sensor data are sequential, the benefit of data rewrites
may not justify the complexities they incur. Following the “keep it simple” prin-
ciple, the MansOS file system disallows data rewrites completely; data can only
be appended to a file.

Data block management Information about data blocks is held in the block
table, a bitmap containing the current state of each data block (Fig. 3). The
block table is small enough to be stored in the WSN node’s EEPROM memory,
where it can also be easily updated.

01 Free block
10 Allocated block
00 Available after erase

Fig. 3: Block table format

A data block can be in one of the three states: 1. free; 2. allocated; 3. available
after erase (the erase operation needs to be performed on the block before it is
usable again). After first time initialization, all blocks are in state 3.

The data block allocation procedure searches for usable blocks in the block
table and assigns them to files on demand. It also attempts to decrease the
number of blocks in state 3 that share a segment with another file (and cannot



92 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

be readily used) and to equalize the number of erases each data block is subjected
to, thus performing flash memory wear levelling.

For this, free data blocks are probed in the following sequence, until one is
found:

1. free blocks in the same segment as the previous data block of the file in
question;

2. blocks in an empty segment;

3. blocks in an empty segment that needs to be erased before use;

4. other free blocks.

At each step, the block to allocate is chosen randomly from all available.

In the worst case, for steps 2-4 the procedure has to look at all data blocks
in all segments. This can be improved by bit-packing data block states in one
segment into one machine word and using bitmasks to determine the overall
state of each segment.

Control structures File entries are kept in the root directory, which is also
stored in the EEPROM memory. A file entry contains file name, first block
number, file size and other fields. To keep the code size smaller, there is no
support for hierarchical directory structure.

In-memory, open files are represented by two-tier structures, where a common
part contains a file entry cache, reference count and a synchronization mutex,
while the per-thread parts store file positions and read/write buffers. The use of
buffers allows the flash chip to be in low-power mode most of the time.

4.4 Run-time management and reprogramming

Management Occasionally WSN applications require interactive management
of specific resources, whether sensors, actuators, or software variables. Manage-
ment interface is also a useful tool to non-programmers; it gives them a hands-on
experience with the network.

In order to perform run-time management an efficient protocol (named SSMP)
is implemented. Each available resource on the mote is assigned an object ID,
which uniquely identifies the resource in mote-local scope. The object IDs form
a hierarchical space; for example, object ID for LEDs is a prefix for object ID for
red LED. In this way, multiple resources can be accessed at once, by specifying
only the common prefix of their object IDs.

A command line shell is implemented to provide user access to the man-
agement interface (Fig. 4). The shell can be used both interactively and non-
interactively from scripts. The shell allows to access arbitrary object IDs, al-
though shortcuts for the most frequently used are present, for example led
(LED control and status) and sense (sensor status). The shell can function in
broadcast or unicast modes; in the first, all reachable motes in the network are
accessed; in the second, only a single mote specified by its address is queried.
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@ shell: shell
File Edit Wiew Bookmarks Settings Help
atis@atis-desktop:~/work/mansos/tools/shell$ ./shell

(<
0
(x

d >

Mans0S command shell; version 0.1 (built Apr 10 2012)

5 help

available commands:

1= —— list all motes

led (red|green|blue) [on|off] —— control LEDs

sense —— read sensor values

get <0ID> —— get a specific 0OID value from all motes

set <0ID> <type> <value> —— set a specifiec 0ID to <value>

select [<address>] —— select a specific mote (no args for broadcast)
load [<file>] —— leoad an ihex file (neo args for clear existing)
program [<address>] —— upload code (from ihex file) on a specific mote
reboot —— reboot mote

quit —— exit program

help —— show this help

§ 1s

Listing all motes...

A mote with:

Mote type: "0" (Tmote Sky)

PAN address: "0x03b0"

<>C_1

IEEE address: "00:12:75:11:6e:de:ed:01"

= shell: shell J

Fig. 4: MansOS shell

Reprogramming The need for run-time reprogramming support in WSN OS

is apparent. For example, in our environmental monitoring use case, reprogram-

ming just nine motes in outdoor conditions took more than two hours. Using

over-the-air reprogramming reduces time requirements by an order of magnitude.
Run-time reprogramming in MansOS is performed in four stages:

. binary code is read from file on disk and sent out to the WSN;
. the code is transported through the network;

. the code is received and stored on the target motes;

. target motes reprogram themselves and run the received code.

=W N

The first stage is performed by MansOS shell (Fig. 4), to which a base sta-
tion’s mote is attached. For this purpose, the shell is extended with Intel ITHEX
file parser and multiple reprogramming related commands. For the second stage,
SSMP is reused. A special object ID signalling binary data is used for code pack-
ets. The third stage is done by the reprogramming component of MansOS, which
is included in application’s binary image by specifying USE_REPROGRAMMING=y
in its configuration file.

MansOS bootloader is responsible for the final stage, the most complicated
one. The bootloader is another MansOS component which can be optionally in-
cluded in application’s binary file. If present, the bootloader is executed before
any other MansOS code. If, before reboot, the reprogramming component has
signalled the need to replace the existing program image, the bootloader per-
forms the actual rewrite: it replaces MCU program memory contents with a new
OS image taken from mote’s external storage. For safety, use of “golden image”
is supported. If bootloader detects that the system has failed to start multiple
times in a row, it loads last usable OS image from the storage.
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Memory address Function
Interrupt vector table
OxFFEO 32 bytes
User code
OxF000 4064 bytes max

System code
0x5000 40kb max

Bootloader code

0x4000 4096 bytes max
RAM
0x200 10 kb
Hardware access registers
0x0 512 bytes

Fig.5: MansOS memory layout of a Tmote Sky application compiled with run-
time reprogramming support

Partial reprogramming is supported for energy-efficiency purposes. We ob-
serve that in WSN applications user code is smaller and require changes much
more often than OS code. Therefore, it makes sense to separate system and
user code, and allow to reprogram only one part without changing the other.
In MansOS, partial reprogramming is implemented through address space sep-
aration of system and user code (Fig. 5). For user section only 4 KB of memory
space is allocated, since the user code can be expected to be much smaller, as
evidenced later in Table 2. For an even more striking example, DemoRedLed re-
programming demo application in MansOS is 14259 bytes long, of which only
56 bytes are user code. Therefore, avoiding system code reprogramming leads to
great efficiency gains.

4.5 Usability and portability

Although ease-to-use is difficult to quantify, we nevertheless believe that it is an
important property of WSN operating systems. Same goes for portability.
MansOS is multi-platform in the sense of supporting multiple hardware plat-
forms (Tmote Sky, Arduino, Zolertia Z1 and more) and multiple architectures
(MSP430 and Atmel AVR). MansOS provides platform-independent APIT for
digital communication protocols (UART, SPI, 12C) and MCU pin configura-
tion. Therefore sensor, external memory and other peripheral drivers can be
designed using platform-independent routines, allowing the same driver to be
reused among multiple platforms and applications. The communication proto-
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cols are provided in both hardware and software versions using unified API.
The version to be used is selected at compile time, allowing to reuse peripheral
drivers without modification.

MansOS is also multi-platform in the sense of multiple development host OS.
While often neglected, quick and easy installation of a WSN OS is an important
aspect of its usability. Therefore, MansOS provides self-executable Windows in-
staller and a single Debian package as installation options.” This solution is
more lightweight than using number of packages in different formats provided
by TinyOS, or the virtual OS image provided by Contiki.

MansOS brings portability further: it is not tied to a particular platform,
and also is not tied to a particular development environment. In particular,
for MSP430 architecture multiple compilers are supported: msp430-gcc versions
three and four, as well as TAR MSP430 compiler.

MSP430 GCC is a popular open-source solution for building MSP430 pro-
grams. It is powerful, full-featured compiler and can be easily integrated with
the GNU debugger (GDB) and make. However, in contrast to its x86 version,
the MSP430 code generator is not very mature. During development of MansOS
we have met all kinds of problems: starting from MSP430 MCU hardware mul-
tiplication being used improperly, to generation of incorrect packet field access
code, to a skipped instruction in the generated object file causing the program
to abort, ending with linker optimizing the main() function away.

TAR Embedded Workbench IDE includes a commercial MSP430 C/C++ com-
piler and debugging options. Compared to open-source alternatives, it supports
more MSP430 MCU models. So far we have had no problems with the code gen-
eration (possibly because IAR has been used much less than GCC). The main
drawbacks of IAR compiler are the severe limitations of all evaluation editions.

In order to provide a visual programming option, we developed MansOS inte-
grated development environment (IDE; Fig. 6). It supports visual and example-
based programming, both frequently used by novice and embedded system pro-
grammers. The IDE is included in MansOS installation options, thus making
the OS easily accessible even to inexperienced users. The IDE uses GCC as the
default compiler, and has options for a single-click WSN mote programming,
including remotely programming multiple motes at once.

5 Evaluation

This section describes the evaluation of application source code size, binary code
and RAM usage, and resource usage by threads. MansOS is compared to three
other operating systems: Contiki, TinyOS, and Mantis. Comparison with LiteOS
is not performed, since the OS does not run on TelosB platform. We note that
a brief evaluation of a few other aspects of MansOS was given in preceding
sections.

* Available at http://mansos.net.
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// Blink - demo application that blinks a single LED with one second interval

3
1
5 ffinclude "stdmansos.h”
5

7 void appMain void||

8 [

CHE| while (1) {

10 // change the default LED status

1 ledToggle () ;

1= // wait for 1000 milliseconds

12 mdelay (1000) L
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1s “} e
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Fig. 6: MansOS IDE

5.1 Source code organization

For evaluation purposes four programs are implemented in MansOS, using both
event-based and thread-based approach, as well as in Contiki, TinyOS and Man-
tis:

e [oop — the simplest application: execute OS initialization code and then enter
an endless loop;

e radio tr — transmit 100 byte radio packets periodically;

e radio rz — continuously listen for radio packets;

e combined — periodically sample sensors, toggle a LED, and transmit the
sampled data to radio.

Source code for the extended combined application’s event-based implemen-
tation in MansOS is given in Listing 2. The implementation is extended with
external-flash logging.

First we compare source code size for the combined application in all five
implementations (Fig. 7). The size is evaluated excluding comments and empty
lines. Compared to other WSN OS, MansOS allows to write applications with the
same functionality using shorter code. This is an important usability benefit of
the system, because shorter code is more easy to understand and manage (at least
when the complexity is the same). In contrast, large source codes size in TinyOS
signal a potential usability problem with this OS. We point out that even though
TinyOS applications are written in a different programming language (nesC),
the abstraction level of the code is roughly the same: they are both high level
languages. Further analysis is required to determine whether the complexity per
line is small enough in TinyOS to balance out the additional code size.



Atis Elsts, Girts Strazdins, et al. Design and Implementation of MansOS: a Wireless ..

97

Listing 2 Example MansOS application

#include <stdmansos.h>
#include <hil/extflash.h>
// define sampling period in miliseconds
#define SAMPLING_PERIOD 5000
// declare our packet structure
struct Packet_s {

uintl6_t voltage;

uint16_t temperature;
};
typedef struct Packet_s Packet_t;
// declare a software timer
Alarm_t timer;
// declare flash address variable
uint32_t extFlashAddress;

// Timer callback function. The main work is done here.
void onTimer(void *param) {

Packet_t packet;

// turn on LED

ledOn();

// read MCU core voltage

packet.voltage = adcRead (ADC_INTERNAL_VOLTAGE);

// read internal temperature

packet.temperature = adcRead (ADC_INTERNAL_TEMPERATURE) ;

// send the packet to radio

radioSend(&packet, sizeof (packet));

// write the packet to flash

extFlashWrite(extFlashAddress, &packet, sizeof (packet));

extFlashAddress += sizeof (packet);

// reschedule our alarm timer

alarmSchedule (&timer, SAMPLING_PERIOD);

// turn off LED

led0ff () ;

// Application initialization

void appMain(void) {
// wake up external flash chip
extFlashWake() ;
// prepare space for new records to be written
extFlashBulkErase () ;
// initialize and schedule our alarm timer
alarmInit(&timer, onTimer, NULL);
alarmSchedule (&timer, SAMPLING_PERIOD);
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Fig. 7: Source code size comparison for the combined application (samples sen-
sors and sends to radio)

5.2 Binary code size

Perhaps more important results are obtained by evaluating binary code sizes
(Fig. 8). The source code is compiled for TelosB platform, using MSP430 GCC 4.5.3
compiler. For MansOS, -0 optimization level is turned on (the default), since
higher optimization levels historically have led to broken code. For other OS,
their respective default optimization levels are used.

25000
20000
O MansOS
" 15000 T MansOS w/ threads
,2 M Contiki
e}
10000 B TinyOS
W Mantis
5000
0

Loop Radio Tx Radio Rx Combined

Fig. 8: Application binary size comparison for the combined application

MansOS shows the best results in three of four test cases, the only exception
being loop program: in Mantis it uses only 102 bytes, compared to 566 bytes in
MansOS (without threads).

Three of four WSN OS analysed try to reduce binary code size in some way.
MansOS: by using the configuration mechanism, Mantis: by building separate
components as libraries and linking them together, TinyOS: by topologically
sorting all functions in source files and pruning unused ones from the final binary
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Fig.9: Application upload time comparison for the combined application

code. Only Contiki pays no attention to this problem and demonstrates the worst
results of all OS.

Larger binary code size in TinyOS are partially caused by limitations in
this OS hardware abstraction model: direct access to radio chip’s driver code is
prohibited and Active Message interface has to be used.

As for Mantis, their approach is efficient, but suffers from usability problems.
A number of changes are required to build their latest release with the current
GNU compiler version, including defining putchar () as dummy function in user
code and commenting out multiple references to mos_led_display() function in
kernel code. The problems are caused by circular dependencies of the libraries.
We can conclude that increasing the number of separately compiled components
is detrimental to the usability of the core system, since the number of inter-
component dependencies grows too fast.

Table 2: Flash memory usage in the extended combined application, bytes
No threads With threads

Radio 1394 1644
Kernel 702 720
Flash 454 454
USART & SPI 446 496
Arch & platform 308 370
ADC 182 182
User code 138 188
LEDs 38 38
Library routines 2 132
Threads 0 686
Total 3270 4966

Shorter binary code size means tangible benefits to the WSN OS user. Firstly,
energy requirements in reprogramming are directly proportional to the code size,
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Table 3: RAM usage in the extended combined application, bytes
No threads With threads

User code 14 4
Kernel 10 14

Radio 8 8

USART & SPI 8 8
Flash 2 2

ADC 2 2

Arch & platform 0 0
Threads 0 36

Total 44 74

if full reprogramming is used. Even though all OS allow some kind of partial re-
programming, full is still required when core parts of the system are changed. Sec-
ondly, smaller code leads to shorter development times, as putting the program
on the mote becomes faster (Fig. 9). Furthermore, building MansOS programs
is faster than their counterparts in other OS, because MansOS configuration
mechanism excludes most of unnecessary source files from the build by default.
TinyOS approach is efficient in this regard as well — we hypothesize it’s because
all nesC files are pre-compiled to a single C file for fast processing.

The MansOS in event-based form takes considerably less flash space than
the threaded version. The difference is mostly due to the complexity of the
thread implementation itself (Table 2). While using more resources in general,
the threaded version leads to shorter user code and smaller RAM usage in it,
because smaller state information has to be kept inside application’s logic.

RAM usage is given without including memory allocated for stacks (256 bytes
for each thread by default). Even though comparatively large amount of memory
is used in this way, it would seldom cause problems for real applications, because
code memory, not RAM, is the scarcest resource on Tmote Sky. This is evidenced
by the example application (Table 2 and 3), because it uses proportionally more
of total code memory (4966 bytes of 48 KB) than of total RAM (74 + 256 bytes
of 10KB).

5.3 Thread implementation

Thread implementation is compared with Mantis, because of the four operating
systems considered only MansOS and Mantis include preemptive multithreading
by default. Both include support for theoretically unlimited number of threads,
although in MansOS the upper bound must be specified in compile time, and
usually is small. The thread structure takes 12 to 16 bytes in RAM in MansOS
(minimal and maximal configuration) and 21 bytes in Mantis.

Two distinctive features of MansOS thread implementation become apparent
(Fig. 10):

e lower resource requirements. The scheduler used in MansOS is simpler, e.g.
it has no separated queues for ready and sleeping threads. This trade-off
is justified by the low number of threads typical in a WSN application,
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Fig.10: Component usage comparison of a threaded application. PB: priority
based scheduling, RR: round-robin based scheduling.

which allows the scheduler to process all threads in each context switch.
Furthermore, in WSN applications the user threads can be expected to be
cooperative, so the fairness of the scheduler is not a critical requirement.
Finally, thread hierarchy in MansOS (user threads cannot preempt kernel)
allows to reduce the number of locks required for thread-safe design.

e better adaptation. Mantis requirements are constant (the flash usage changes
are due to longer user code), MansOS requirements are flexible and depend
on the number of threads used;

For technical details it should be noted that Mantis example applications
uses 128 byte stacks by default. Our selection of 256 byte stacks is motivated
by large stack space requirements of library functions. For example, the PRINTF
macro in MansOS eventually calls libc functions. The macro, when called without
arguments, already uses 62 bytes of stack. The arguments passed to PRINTF
can easily use ten or more bytes additionally. Therefore, future work includes
implementing formatted print in the OS itself and in a more optimized fashion,
as is done in Mantis. On the other hand, Mantis allocates stacks in heap, so
more than the amount pictured (Fig. 10b) is used. Finally, we clarify that flash
usage differences in Mantis are due to user code changes only.

The heart of the thread implementation in MansOS is the schedule () func-
tion that selects which thread to run next. The binary code size of this function
depends on the number of threads used (Fig. 11). Round-robin based scheduling
is more costly, partially because 32-bit last-time-run values are used instead of
16-bit priority values, and partially because thread’s last-time-run is updated
every time a thread is run, while priorities are kept unchanged during whole ex-
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Fig.11: Thread resource usage comparison: flash memory used by schedule ()
function.

ecution time. However, in all cases the space requirements can be easily satisfied
by a typical WSN mote.

5.4 File system

The MansOS file system is evaluated against the Contiki file system, Coffee [15],
because both of them have support for the TelosB platform’s flash chip. Both
are compiled with the GCC 4.6 compiler and the same optimization level.

1400 4500
1200 - 4000 T
- 3500
e} I
g 1000 S 3000
(5] o
2 800 & 2500
8 600 8 2000 O MansOS
3 8 [ Coffee
2 T 1500
8 400 S
2 200 £ 1000
m 500
0 0
8 32 128 8 32 128
Record size Record size
(a) Write (b) Read

Fig.12: File system write and read throughput

The most important function of a WSN node’s storage system is the logging
of sensor data. The data typically consist of constant-sized samples. To reflect
this, the file systems are tested for how many data records of fixed size they
can handle in a unit of time. The results for different record sizes are shown in
Fig. 12a (write throughput) and Fig. 12b (read throughput).

The MansOS file system has better performance at writing data, but is slower
than Coffee at reading data. Better write performance stems from the fact that
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Coffee spends additional time relocating data as the file grows. The read perfor-
mance of the MansOS file system could be impacted by additional logic layers
that increase function call overhead. The read and write speed, at any rate, ex-
ceeds typical WSN requirements (from 1 to 100 measurements per second) by a
far margin.

30000

25000 —

20000

15000 OMansOS
10000 8 Coffee
all ﬂ
0

128K 192K 256K 384K 512K

ms

File size

Fig. 13: File system write times

The file systems are also examined for the time it takes to write a file of
a certain size: this shows how good the system is at allocating free space and
handling files whose size is not known a priori (Fig. 13). The time taken by the
MansOS file system scales linearly with size of files. Coffee demonstrates a more
irregular pattern, which can be explained by that Coffee doubles the size of a file
and copies its data once the file capacity is exceeded. Due to the same reason,
Coffee cannot handle files that are larger than ~ 66% of the flash chip capacity
(unless the planned file size is told before data are written to the file), while the
MansOS file system allows allocating the whole chip to a single file.

6 Conclusions

We have described MansOS, a portable and easy-to-use operating system for
wireless sensor networks and resource constrained embedded devices. MansOS is
a feature-complete WSN OS with well-structured code. Compact binary code al-
lows MansOS to avoid flash memory overuse problems that are especially promi-
nent in Contiki.

Compared to LiteOS, MansOS is more portable, as it has logical separation
between architecture and platform-specific code and the rest of the system.

Compared to Mantis, MansOS has lighter weight threads, as well as separa-
tion between the kernel thread and user threads, which in turn facilitates the
design of the rest of the system. Locking is often not required, as user threads
have no privilegies to preempt the kernel thread.

Compared to Contiki, MansOS is more modular, which in turn leads to lower
resource usage overhead, as a MansOS application can use only those compo-
nents it actually needs. The configuration system reduces both the number of
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files that are compiled and the size of binary code, therefore usability is im-
proved, as time taken to build and upload application becomes shorter. Further-
more, using MansOS means less run-time overhead, because module selection
and function binding are done at compile time, not at execution time. Finally,
MansOS provides a platform-independent (as much as possible) implementation
of preemptive threads, complete with scheduler and thread-local variables, while
Contiki gives only an interface of such a model.

Compared to TinyOS, MansOS is more approachable to users without WSN
programming knowledge, especially if they are experienced in C programming,
because MansOS includes support for multithreaded execution model and is
written in plain C. Application source code tends to be significantly shorter as
well, with no large obvious increase of complexity per code line, which means
that programs written in MansOS are easier to understand and manage because
of improved readability.

The OS is friendly to users regardless of their previous WSN programming
experience. On one hand, MansOS is targeted towards novice users: it is easy
to install, since Windows installer and Debian package are provided, and easy
to start using, since MansOS IDE supports visual programming and example-
based programming paradigms. On the other hand, MansOS offers a powerful
and flexible configuration system for power users and developers of new hardware
platforms. The system allows including and excluding specific features, even the
MansOS kernel itself, thus providing seamless integration with existing user code
and not forcing use of any resource-hungry features.

At the moment MansOS is evaluated in several environmental monitoring
projects. In addition, the OS is used to teach WSN programming courses at
University of Latvia as an alternative to TinyOS. Our future plans include more
field tests of the OS, and support of new hardware platforms, including Intel
8051-compatible architectures.
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