SCIENTIFIC PAPERS, UNIVERSITY OF LATVIA, 2012. Vol. 787
COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

106-124 P

Calculating The Layout For Dialog Windows

Specified As Models

Sergejs Kozlovics

University of Latvia, Faculty of Computing
Raiga blvd. 19, LV-1586, Riga, Latvia

Institute of Mathematics and Computer Science, University of Latvia

Raina blvd. 29, LV-1459, Riga, Latvia

sergejs.kozlovics@lumii.lv

Abstract In model-driven engineering, dialog windows can be described
as models conforming to Dialog Metamodel. To make dialog models
simpler, Dialog Metamodel does not require to specify exact coordin-
ates and dimensions of graphical dialog elements. To transform a dialog
model to a running dialog window a solution for laying out dialog ele-
ments is needed. We present an algorithm that calculates the layout by
means of quadratic optimization.

Keywords: dialog metamodel, dialog engine, graphical user interface,

GUI, layout, quadratic optimization.

1 Introduction

Graphical User Interface (GUI) is an essential part of many software products.
There are numerous libraries for creating GUT dialogs and forms such as VCL1,

Windows::Forms?, wxWidgets®, GTK+4, QT®, Java Swing®, etc.

! Visual Component Library. Available in Delphi and C++ Builder (currently main-
tained by CodeGear; previously maintained by Borland followed by Inprise) .

2 Developed by Microsoft for the .NET framework. The open-source cross-platform
.NET implementation Mono tries to re-implement Windows::Forms for various

platforms.

3 An open-source cross platform library providing “a truly native look and feel” for

the applications.

4 An open-source library used by the GNOME desktop environment in Linux.

® An open-source library used by the KDE desktop environment in Linux.

5 A de facto GUI standard in Java. Developed by Sun, currently maintained by

Oracle.

Sergejs Kozlovics. Calculating The Layout For Dialog Windows Specified As Models 107

While GUI elements (buttons, input fields, check boxes, etc.) provided by
these libraries are common, the libraries themselves are based on different con-
ventions and have different APIs (Application Programming Interfaces). When
a graphical dialog window is created directly using such a library, the developers
need to know the API very well. Moreover, they have either to provide concrete
coordinates for GUI elements (which may require certain calculations), or to
specify their relative layout by library-specific facilities (e.g., by means of Java
layout managers) requiring extra knowledge and skills. To help the developers,
GUI designers were invented. With a GUI designer (such as Swing Designer,
Qt Designer, etc.) dialog windows can be specified graphically just in a few
clicks, and the GUI designer will generate the code for the corresponding GUI
library.

Still, the benefits provided by GUI designers are not applicable to all cases.
If the content of a dialog window (not only data, but also GUT elements) is
computed at runtime, a GUI designer can be used to create only a carcass
of a window; the content has to be filled up by means of the corresponding
library API. Thus, the developer still needs a deep understanding of the GUI
library and has to perform a non-trivial job of laying out GUI elements at
runtime, especially when a complex window is being generated. Moreover, the
traditional approach “generate GUI code—compile—run” is undesirable since
the compiler may not be available on a user PC, and the generation process
followed by launching a compiler or an interpreter may take a while.

In this paper we present a solution for creating graphical dialog windows
automatically at runtime. The characteristic features of the proposed solution
are:

— The initial specification of a window is represented as a model. We may
think of the model as of abstract syntax of the sketch of a window on
a sheet of paper. Some benefits of using a model are: independence on a
particular GUI library or a particular programming language; the ability to
create (generate) a model at runtime; the ability to specify dialog windows
using concepts similar to concepts used in the sketch on a paper; support
for model-driven development.

— Developers need to specify only essential layout information in a model.
For instance, if the sizes of an input field and a button, as well as the
spacing between them, have not been specified, these values will be chosen
automatically in a way that contributes to a nice look of the resulting
window.

— A model is automatically transformed to a running dialog window. The co-
ordinates and unspecified dimensions of GUI elements are calculated auto-
matically. When the window is being resized, dimensions and positions of
elements will adapt to the window, preserving a nice look when possible.

108 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

In 2010 we have already published a metamodel” for specifying dialog windows
[1]. In Section 2 we provide a brief summary of that Dialog Metamodel. The rest
of the paper concentrates on the process of transforming a given dialog model to
a running dialog window. We call the module that performs that process Dialog
Engine®. In Section 3 we list certain agreements on layout information specified
in a model and describe how Dialog Engine chooses the values for unspecified
dimensions and positions of GUI elements. These automatically chosen values
become a part of the given dialog model. In Section 4 we show how Dialog
Engine transforms this (adjusted) dialog model to an input of the quadratic
optimization solver. The solver returns the coordinates of GUI elements, and
Dialog Engine displays the window. Section 5 is devoted to related work, and
Section 6 concludes the paper.

2 A Glance At Dialog Metamodel

Fig. 1 depicts Dialog Metamodel (we published this metamodel in Acta Uni-
versitatis Latviensis in 2010 [1]). Each GUI element is either a separate com-
ponent (such as a button, an input field, etc.; see class Component and its
subclasses on the left in Fig. 1), or a container (a component containing other
components; see class Container). Containers and components logically form
a tree structure (see the composition between Component and Container in
Fig. 1): each container has an ordered list of components lying within it. The
layout of child components is determined by the type of the container. We dis-
tinguish 13 container types encircled by the rounded rectangle on the right in
Fig. 1. Table 1 explains these container types. These are invisible containers
used to construct the structure of a dialog window. The detailed explanation
of other (visible) containers as well as of particular GUI components can be
found in the paper mentioned above [1].

The initial dialog window (represented by the class Form) is a vertical box
by default, but it can be transformed to a container of any other type (say,
HorizonlalBoz) by adding the corresponding container as the only child, and
putting all other components inside that child.

Dialog Metamodel contains also special classes called events (rounded rect-
angles in Fig. 1) and commands (ellipses in Fig. 1). These classes are used
to ensure communication between Dialog Engine and other modules (usually,
model transformations; hereinafter we refer to these modules as transforma-
tions). Transformations create commands for Dialog Engine, and Dialog Engine
creates events that can be handled by transformations. Events and commands
are temporary objects — they are deleted just after the desired action has been
performed.

" A metamodel is a language for specifying models.
8 That is why Dialog Metamodel is also called Dialog Engine Metamodel.

Sergejs Kozlovics. Calculating The Layout For Dialog Windows Specified As Models

109

DialogEngineEvent

source |1 receiver|1

DialogEngineCommand

Component

enabled:Boolean=true
readOnly:Boolean=false
hint:String=""

horizontalSpan:Integer=1
verticalSpan:integer=1
minimumWidth:Integer
preferredwidth:integer
maximumWidth:Integer
minimumHeight:integer
preferredHeight:Integer
maximumHeight:Integer
leftMargin:integer
rightMargin:integer
topMargin:integer
bottomMargin:Integer
onFocusGainedEvent:String
onFocusLostEvent:String

From Kernel Metamodel

From Environment Metamodel

Frame
uri:String
caption:String 1
isResizeable:Boolean
isClosable:Boolean

<<singleton>>
DialogEngine

interfaceMetamodelVersion:String

Container

* {ordered}

horizontalAlignment:HorizontalAlignment
verticalAlignment:VerticalAlignment

orderedFocusableComponent
>

HorizontalRelativelnfo

0.1

minimumRelativeWidth:Real
preferredRelativeWidth:Real
1 maximum RelativeWidth:Real

0.1

VerticalRelativelnfo

1 ireceiver 1:isource

Label
caption:String

CheckBox
caption:String

source

1 minimumRelativeHeight:Real
preferredRelativeHeight:Real

maximumRelativeHeight:Real

l RelativelnfoGroup Relativelnfol

| checked:Boolean

s
onChangeEvent:String|0..

InputField
|— text:String
onChangeEvent:String

, (FocusGai nedEvenh
FocusLostEvent

ChangeEvent

Image
|— location:String
onChangeEvent:String

ComboBox

text:String
editable:Boolean

<<enumeration>>
HorizontalAlignment|

<<enumeration>>
VerticalAlignment
TOP

CENTER

BOTTOM

horizor g:integer
verticalSpacing:Integer
leftBorder:Integer
rightBorder:Integer
topBorder:Integer
bottomBorder:Integer
leftPadding:Integer
rightPadding:Integer
topPadding:Integer

bottomPadding:Iinteger

H_verticaiBox k3| vertcaisplitgox |

—{ HorizonLalBoxk}—{ HorizontalSplitBox|

VerticalScrollBoxWrapper|
HorizontalScrollBox|
JAN

HorizontalScrollBoxWrapper
_J ScrollBox lq_JScrollBoxWrapper‘

N
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
’

.1 currentLin;
0.1 curre e . dite

RadioButton

1 isource

caption:String
[— selected:Boolean
onClickEvent:String

Button source

deleted:Boolean [
edi oolean

edited

*

ClickEvent

caption:String
closeOnClick:Boolean

0.1

defaultButton

MultiLineTextBoxChangeEvent)

CloseCommandy™ "~
——

DeleteCommandy """~
——

|| onChangeEvent:String N m
onDropDownEvent:String Sl \
—_— 0.1 value:String | ||t ~emmefeeememeeooooooooooo -
TabContainer
. selected i ———
ListBox * TabChangeEvent)
multiSelectBoolean * deselected component ‘
onListBoxChangeEvent:String selectedltem * L activeTab|0..1 *
[onRightClickEvent:String source 1 Tab
0.1 ST 1 caption:String] GrqupBox
source 9 previousTab caption:String
0.1 . hasBorder:Boolean=true
* TextLine inserted howModalComman
MultiLineTextBox textLine text:String *
|— onMultiLineTextBoxChangeEvent:Strin inserted:Boolean
9 9 0. deleted m FormCloseEvent

1 i

i receiver] source{l
1 Form

caption:String
clickEventOnClose:

receiver

1| hasMinimizeButton=false
hasMaximizeButton=false
Tl left:Integer
top:Integer

deleteOnClick:Boolean
onClickEvent:String

0.1

cancelButton

width:Integer
height:integer

onFormCloseEvent:String

oolean=true

Fig. 1: Dialog Metamodel.

110

COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

Table 1: Laying out child components in different container types.

Container Type

‘The layout of child components

Vertical Box Vertical, components are laid one beyond another.

VerticalSplit Box Components are laid one beyond another, but visible
splitters are inserted between components. Each
splitter can be moved by the user to enlarge a
component on one side and to lessen a component on
the other side.

HorizonalBox Horizontal, components are laid one after another.

HorizontalSplitBox Similar to VerticalSplitBoz, but components are laid
horizontally, and splitters are vertical lines.

VerticalScrollBox Similar to HorizontalBoz, but with a vertical

scrollbar. Components are laid out horizontally one
after another until the border of a scrollbar is reached.
The remaining components continue at the next “row”.

VerticalScrollBoz Wrapper

Can be used to add a vertical scroll bar for a
component without scrollbars. Technically, the same
as VerticalScrollBoz, but the default values for layout
information differ to provide better look.

HorizontalSerollBox

FElements are laid out like columns in a newspaper.
“Columns” can be scrolled horizontally by means of a
horizontal scrollbar.

HorizontalScrollBox Wrapper

Can be used to add a horizontal scroll bar for a
component without scrollbars.

ScrollBox

The same as VerticalBoz, but one or two scrollbars
may appear, when the visible part of this scroll box is
not able to accommodate all the children. Can be
turned into a HorizontalBoz by adding a
HorizontalBox as a child.

ScrollBox Wrapper

Can be used to scroll horizontally and vertically a
component without scrollbars.

Column

Similar to VerticalBoz, but components inside two
neighbouring columns are aligned to form a table-like
structure (have the same y-coordinates).

Row

Similar to HorizontalBoz, but components inside two
neighbouring rows are aligned (have the same
z-coordinates).

Stack

Components are laid out like cards, occupying the
same space on a dialog window. Used to implement
tabs (see TabContainer).

Sergejs Kozlovics. Calculating The Layout For Dialog Windows Specified As Models 111

When a model transformation needs to show a dialog window for a given
dialog model, it creates either a ShowModalCommand, or a ShowCommand
instance depending on whether the dialog needs to be modal or modeless. The
control is passed to Dialog Engine, which displays the corresponding window on
the screen. Execution of a ShowModalCommand finishes only after the window
is closed. On the contrary, ShowCommand returns immediately after displaying
the window, which remains visible while the transformation continues.

When a dialog window is active, certain events (usually, corresponding
to user clicks and keystrokes) can occur. On each such event, Dialog Engine
creates some Event instance. In Dialog Metamodel (Fig. 1), attributes starting
with “on” (e.g., onClickEvent) are used to specify model transformations that
Dialog Engine will call on the corresponding events. After the transformation
processes the event, the event instance is deleted. When processing events,
transformations can issue new commands to Dialog Engine, e.g., a command
to show another dialog, or a RefreshCommand to refresh an already running
dialog or its part (a subtree rooted at the given component) when some changes
have been made to the corresponding dialog model.”

On certain events (e.g., when processing a ClickEvent of some “Close” but-
ton, or on a FormClose Event, which occurs when the user clicks the “X” button),
a transformation can issue a CloseCommand to ask Dialog Engine to close an
active dialog window. If the dialog is modal, CloseCommand also indicates that
execution of the corresponding ShowModalCommand must finish.

After closing the dialog window, a DeleteCommand can be used to delete
a dialog model that is not needed any more.

In this paper we focus at layout information common to all GUI compon-
ents, even to components that may be added later. This layout information is
found in classes Component (excluding the first three and the last two attrib-
utes), HorizontalRelativeInfo, VerticalRelativeInfo, and Container. The next
section explains what do these attributes mean'® and how to choose the un-
specified values of these attributes.

3 Specifying The Layout Of GUI Elements

The horizontalSpan and wverticalSpan attributes of the Component class are
used in rows and columns, where a component needs to span multiple cells.
Without these two attributes, it could be impossible to lay out containers as
depicted in Fig. 2(a). Fig. 2(b) shows how this structure can be specified with
the appropriate values of horizontalSpan and verticalSpan. The default value
for both these attributes is 1 meaning that a component occupies a single cell,
when placed in a row or column container.

9 Thus, a call stack similar to function call stack can occur.
10 We repeat some relevant information published earlier [1].

112 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

JEE
[

(a)

Fig. 2: (a) An example of five containers that cannot be laid out using horizontal
and vertical boxes only. (b) The arrangement of the same five containers using rows.
The first row contains two components: the first one spans two columns (horizont-
alSpan=2, verticalSpan=1), and the second one spans two rows (horizontalSpan=1,
verticalSpan—2). The first component of the second row spans two rows (horizont-
alSpan—1, verticalSpan—2); neither rows nor columns are spanned by the second com-
ponent (horizontalSpan=1, verticalSpan=1). The third row has only one component
that spans two columns (horizontalSpan=2, verticalSpan=1).

The minimumWidth and minimumHeight attributes specify strict lower
bounds (in pixels) for the width and height, respectively. The preferred Width
and preferredHeight attributes specify the preferred width and height. These
values are not strict: when preferred dimensions of a component conflict with
other, more important, constraints, deviations from the preferred dimensions
are allowed. The mazimum Width and mazimumHeight attributes specify the
upper bound for the dimensions. These constraints are considered strict, but
with the following exception: when other strict constraints are unsatisfiable,
maximum width and height are allowed to increase by a minimal value to satisfy
those constraints. The reason for introducing non-strict constraints relies on the
following principle: if all the constraints are unsatisfiable, it is better to show
a dialog window that violates some non-important layout constraints than to
throw an exception and leave the user without the dialog window at all.

Ezxample. If a button has minimumWidth set to 100, but mazimum-
Width set to 0, the actual width of the button will be 100, i.e., the
maximum width will increase by 100 pixels — the minimal value that
satisfies the minimum Width constraint. In this case, the preferred Width
value does not matter, since the width is determined by more strict
minimum and maximum constraints.

The meaning of attributes for specifying margins, borders, spacings, and pad-
dings (from classes Component and Container) is depicted in Fig. 3 (only
horizontal values are depicted; vertical values have similar meaning).

The semantics of Dialog Metamodel states that there exists gravity between
each container and its child components. That means that children edges tend
to “stick” to the corresponding parent edges. However, if a child component

Sergejs Kozlovics. Calculating The Layout For Dialog Windows Specified As Models 113

. JeftBorder righttarging, . lefifMargin rightBarder
LA container

|t - - - - - - - ---- I

| o |

I o I

| o |

I o I

| o |

I o I

| o |

| o I

leftPadding . 1hnr|;{0nta|8pac:|ng , 1r|ghtF'a|:||:||ng

Fig. 8: An example illustrating what do values for margins, borders, paddings and
spacings mean.

reaches its mazimumWidth or mazimumHeight constraint, the gravity does
not work any more. In this case we have to specify how such children have
to be put within the parent. The horizontalAlignment and vertical Alignment
attributes of the Container class come to aid here. These values specify the
horizontal alignment (left, center, or right) as well as vertical alignment (top,
center, or bottom) for child components when they cannot not be stretched (by
means of “gravity”) any more.

Not only absolute, but also relative dimensions are supported by Dialog
Metamodel. Relative widths and heights that relate to each other are grouped
(see class RelativelnfoGroup). For example, to specify that widths of some three
components have ratio 2:3:4, we attach three HorizontalRelativelnfo instances,
one to each component, and set the values of preferredRelative Width to 2,
3, and 4, respectively. Finally, we attach all the three HorizontalRelativelnfo
instances to a RelativelnfoGroup instance. Note that there is no need to specify
more than one HorizontalRelativelnfo and more than one VerticalRelativelnfo
for each component: if a particular width or height of some component appears
in several groups, then these groups depend on each other and may be replaced
by a single group by adjusting the ratio.

The minimum and maximum relative widths and heights are useful to con-
trol relative dimensions of components, when the dialog is being resized. An ex-
ample is given in Fig. 4. The button 1 is not resizeable, and the preferred width
ratio for both buttons is 1:1. If the user resizes the form, and the preferred ratio
1:1 could not be met, the button 2 is allowed to be up to two times wider (maz-
imumRelative Width=2) or shorter (minimumRelative Width=0.5) than the but-
ton 1.

Like preferred absolute dimensions, preferred relative dimensions are not
strict. However, minimum and maximum relative sizes are strict, but they are
used in cooperation with the corresponding absolute sizes: having both relative
and absolute minimum and maximum bounds, we can make absolute bounds

114 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

bL_monl:Button :HorizontalRelativelnfo
caption="1" minimum RelativeWidth=1
minimumWidth=80 preferredRelativeWidth=1
maximumWidth=80 maximumRelativeWidth=1

:RelativelnfoGroup

:HorizontalRelativelnfo
button2:Button minimumRelativeWidth=0.5

caption="2" preferredRelativeWidth=1

maximumRelativeWidth=2

= Form/1

< Formt (S]E)X)

2|

(b)

Fig. 4: An instance (a) demonstrating the usage of minimum and maximum relative
sizes. The minimum (b) and the maximum (c) sizes of button 2.

more strict and forget about the relative bounds (see the next section for de-
tails).

Specifying all the constraints and sizes from above forces the developer to
think more on layout than on the content of a dialog window. Thus, we allow
the developer to leave all values unspecified, while preserving the possibility to
specify important values (or all, if all are important). A question arises: how
to choose values, if they have not been specified? The answer depends on a
particular component or container. Table 2 lists some examples. The principles
shown in Table 2 can be applied, when choosing values for other GUT elements.

4 Using Quadratic Optimization To Obtain Coordinates

This section explains how, given a dialog instance specified according to Dialog
Metamodel, the quadratic optimization can be used to lay out GUI components
in that dialog window.

4.1 The QMDC and the Extended QMDC Problems

The problem of quadratic minimization subject to difference constraints (QMDC)

is as follows. Given n variables xg, z2,...,T,_1, minimize the quadratic func-
tion
Z aix? + Z bijl‘il’j + Z CiT;
0<i<n 0<i<j<n 0<i<n

subject to difference constraints

r; —x; > dij, where 0 <4,5 <n.

Sergejs Kozlovics. Calculating The Layout For Dialog Windows Specified As Models

115

Table 2: How Dialog Engine chooses values for unspecified layout attributes.

Component or
container

Values

Button (a
non-resizeable
component)

minimumWidth=preferred Width=maximumWidth
=TextWidth(caption)+ci;

minimumHeight=preferredHeight=maximumHeight
=TextHeight(caption)+cs;

all margins—=0;

for all buttons within the same container: all relative sizes set

to 1 (this ensures that buttons within the same container
have equal sizes regardless their labels)

InputField
(horizontally
resizeable, but
vertically
non-resizable)

minimumWidth—cs; preferredWidth—cy;

maximumWidth=occ;

minimumHeight=preferredHeight=maximumHeight
=TextHeight(text)+cs;

all margins=0

HorizontalBox
(resizeable container
with no visible
borders and zero
paddings; horizontal
layout of children)

minimumWidth=minimumHeight=0;
maximumWidth=maximumHeight=o0;

all margins—0;

horizontal Alignment=verticalAlignment=CENTER;
horizontalSpacing=cs; verticalSpacing is not applicable;

all borders=0;
all paddings=0;

GroupBox (a visible
container with
borders and
padding; vertical
layout of children)

minimumWidth=TextWidth(caption)-+tcr;
minimumHeight=TextHeight(caption)+cs;
maximumWidth=maximumHeight=co

all margins—0;

horizontal Alignment=vertical Alignment=CENTER;
horizontalSpacing is not applicable; verticalSpacing=cg;
leftBorder=cio; rightBorder=ci1;
topBorder=TextHeight(caption)-+ci2; bottomBorder=cis;
leftPadding=c14; rightPadding=c;5; topPadding=cis;

bottomPadding=ci7;

Note 1. If preferred size for a container has not been specified, Dialog Engine is allowed to leave that

value unspecified; in this case this preferred value will not be considered by quadratic optimization,

and the preferred size of the container will be determined by inner components. For non-containers

(final components such as a button or an input field) preferred sizes still have to be chosen by

Dialog Engine.

Note 2. Constants ¢; depend on the GUI library.

Note 3. The infinity constantoo is the absolute maximum size for any GUI component (e.g., 10 000

pixels). If some size reaches oo, the component becomes so huge that it is unreasonable to show it

to the user, so Dialog Engine throws an exception.

116 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

If also the constraints in the form
Ty — x5 > dij > My, (1)

are allowed, then we get the Extended QMDC problem (EQMDC). Here d;;
are the desired values and m,; are the minimum values. In case the constraints
taking into a consideration only d;; are unsatisfiable, one or more of d;; values
may be decreased preserving d;; > mg;, i.e., d;; cannot be decreased by more
than by d;; —m;;.

4.2 The application of EQMDC

This section explains how to transform a dialog instance to the input of the
EQMDC problem. The EQMDC solver is described in Section 4.7.

The variables we need are as follows. For each component C four variables
are introduced to specify the left, right, top and bottom coordinates: xf, x%,
y$¢ and y§. The variables that bound the component with its margins are
&0 80, ¥$o, and y§,,. If C is a container, then the variables for storing C
bounds without its border are me, :CgB, ygB and ygB. Finally, the variables
for bounding the inner area of C' (without padding) are 255, 285, ¥$p, ¥Sp.

The following subsections explain which constraints and terms to be minim-
ized are introduced for 1) absolute sizes; 2) relative sizes; 3) margins, borders,
padding and spacing, and 4) gravity and alignment. We provide the constraints
for the z-dimension only since the constraints for the y-dimension are similar.

4.3 Constraints and minimization terms for absolute sizes
The constraint concerning minimum width, obviously, is:

x% — :Ef > minemum Width;
But the constraint for the maximum width is being written in the extended
form:

xf — 2§ > —mazimum Width

> —o0.
This is the same as
acg — Jig < mazimum Width
< oo,

but written in the form of (1).
The preferred sizes are specified not by means of constraints, but as terms
of the function to be minimized. We add to the minimization the term

c- ((xg —) - preferredWidth)2 .

Here the penalty for the actual width (2§ —2¢) to be distinct from the preferred
width grows quadratically. This ensures that even the component cannot have

Sergejs Kozlovics. Calculating The Layout For Dialog Windows Specified As Models 117

the preferred size (due to constraints), the actual size will be close to the
preferred. The constant ¢ may be determined in the experimental way taking
into a consideration other terms to be minimized.

4.4 The minimization terms for relative sizes

Figure 5 shows that specifying relative sizes may easily lead to unsatisfiability.

relative=1 relative=1
group=1, | group=1_

relative=1 relative=2
group=2| | group=2_

Fig. 5: An example of the unsatisfiable constrains on relative sizes. Two rows, each
consisting of two components. The word relative may refer to any of the min-
imum/preferred/maximum relative width fields. The word group refers to the relative
width group. If all these components have also some positive minimum Width values,
then the constraints on relative sizes cannot be satisfied.

There are two rows, each consisting of two components. The component
sizes should be aligned to grid. On the one hand, all relative widths (min-
imum, preferred and maximum) for the first two components are set to 1, i.e.,
the widths of the first row components should be equal. On the other hand,
the second component in the second row must be two times wider than the
first component in the same row. Obviously, the only solution is when all the
components have zero widths. But specifying some positive values for minim-
um Width fields of these components gives us no solution at all. To make the
layout engine flexible, we use the method described below that will find an
approximate solution should such a situation as in Figure 5 occur.

Assume there are two components, A and B, in the same relative width
group (for the heights the method is similar). Let them have preferred relative
widths r; and 7o, and let xf and xﬂ be variables for the left and the right
bounds of the first component as well as zf and :Eg for the second. Then,
obviously, the desired equation is:

ro- (v —ag) =7 - (2R —af). (2)
Since not always this equation may be satisfied by the reasons mentioned above,
it is better to replace it with the approximate equation. Let’s write (2) in this

118 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

form:

ro - (zh —) —r - (28 —2P) = 0.
But this form may be rewritten as a term to be minimized by quadratic op-
timization algorithm:

(r2- (2t — af) = 1 - (2F —2P))”. 3)

In case all the constraints can be satisfied, this term will be zero, and, thus,
the desired relation will be hold. Otherwise, the difference between the desired
and the actual relation will tend to be zero.

Since for any positive k the relative widths k-ry and k- 7o denote the same
relation as r; and ry, we want the quadratic term (3) also be the same. So,
prior to creating the term (3), we use the assignment,

r n
2 ri1+r2
for the normalization.

If minimum /maximum relative sizes are also specified, then they are used
as follows. Let (Cy,71,51),(Ca,r2,82),...,(Ch, 7 n, s,) be the triples where r;
denote minimum relative widths and /or heights contained in the same group. C;
are the corresponding components and s; are equal to corresponding (absolute)
minimum width and/or height values.

A coefficient k is calculated first:

k emax{si}.
Ti

Then, for each C; we set the corresponding minimum Width or minimumHeight
to the value k - r;.
The same refers to maximum sizes with the following differences:

— For all the triples (C;, 7, ;) with the r; set to maximum relative width /height
and s; set to maximum width /height, r; and s; must be defined.
— To calculate k& we use not max, but min {s;/r;}.
4.5 Constraints for margins, borders, padding and spacing

We introduce the following constrains for the margins:

¢ — 28, > leftMargin,
x%M — xg > rightMargin.

If C is a container, the borders are specified as

28y — 2t > leftBorder,
:L'g — :L'gB > rightBorder.

Sergejs Kozlovics. Calculating The Layout For Dialog Windows Specified As Models 119

Finally, if C' is a non-scrollable container, then we add the following con-
straints for padding:

28 — 2ty > leftPadding,
ng — mgp > rightPadding.

In case of a scrollable container the second constraint is not added.
The spacing between two components A and B (A on the left of B), obvi-
ously, is introduced by the constraint

2Py — Ry = horizontalSpacing

(equation can be replaced by two inequalities).

4.6 Gravity and alignment

Assume there are nested components (see Figure 6).

Fig. 6: The nested components. There exists gravity between the borders that forces
the inner component to be resized (unless it has the maximum size specified) when
the outer component is resized.

If the component C' is not resizeable, we still want the component B to be
resizeable along with component A. Thus, the gravity between components B
and C should be less than between A and B.

Referring to Figure 6, gravity tends to minimize the following differences:
v¢ — oP 2B — 2§, 2P — 2! and 28 — 2E. The first two differences must
be “weaker”. That is, if C' is not resizeable, then there should be no gravity
between B and C. In order to achieve this, we use the following linear terms

to be minimized:

ko(af —af) + k- (@ —af) +1- (af —2f) +1- (2 — 2R),

120 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

where k < [. Assume C' is not resizeable, and A has just been stretched. That
means we have fixed the sum (28 — z{') + (24 —). If k < I, then the sum of
the four terms will be minimal when the last two terms are zero. That is also
the desired behaviour for the gravity. If B is a vertical box with n children, the
“weight” k should be divided by n since the minimization terms added by all
children sum up.

We should not forget to specify also

C B

xIé—a:]é>0
x%—x%EO,
xy, —zp, >0

A_ B
xx —ag > 0.

If the children have to be left-aligned, then instead of gravity between the
left container border and the first child we introduce the constraint

xf—xf:O,

where A is a container and B is the left child. The same is when the children
have to be right-aligned. However, if the children are to be centered, we add
the term

c- (28 - 2f) - (ap — 2B))”

to the minimization that is used to make the distances from the component to
the left and right borders of the parent equal. We add also the constraints

4.7 An EQMDC Solver

There exists a method for solving QMDC in a moderate time by a technique
that is based on the projective gradient method [2]. The Extended QMDC
problem can be reduced to the ordinary QMDC in the following way. First,
a constraint graph G = (V, E) is created [3, Section "Difference constraints
and shortest paths”|. Here V = {s,vg,v1,...,v,_1}, where all v; correspond to
variables x; and s is a special start vertex. Edge set F is

E = {(v;,v;) : & —x; > d;; > m,; is a constraint}

U{(s,v0), (8,01), ..., (8, vn—1)}.
In the beginning, we consider only d;; values. Rewriting (1), we have:

l‘j — X S 7d1j

Sergejs Kozlovics. Calculating The Layout For Dialog Windows Specified As Models 121

Then, we assign the weight of the edge (v;,v;) to the value —d;;, while the
edges (s,v;) have the weight 0.

Now, if G does not contain a negative cycle, then the system is solvable, and
m;; can be removed leaving only d;;. If G does contain a negative cycle, then the
weights of the edges in the cycle are increased to meet the constraints on m;;
(corresponding d;; values are decreased). If the cycle cannot be eliminated,
there is no solution. Otherwise, we continue until all the negative cycles are
eliminated.

To achieve practically good execution time, we use the Bellman-Ford-Tarjan
algorithm with the subtree disassembly method for finding the negative cycles.
Since for directed acyclic graphs negative cycle detection can be performed
in linear time, the strongly-connected components are searched in advance.
So, the non-linear Bellman-Ford-Tarjan algorithm (which has the upper bound
O(V?)) is executed only on strongly-connected components, while considering
the edges between these components takes linear time as these edges do not
form a cycle.

5 Related Work

Since there exist algorithms for user interface layout that use linear constraints
[4,5], one may be interested why the quadratic (and not linear, or, possible,
cubic) optimization is preferable here. The two reasons can be mentioned: 1) it
is impossible to implement some constraints (like constraints for preferred sizes)
by means of a linear function only, and 2) optimizing other non-linear (cubic
et al.) functions can be very time-consuming. Regarding the implementation of
QMDC, any method can be used here (while we use the method by Freivalds
and Kikusts 2], one could use the method by Hosobe, for instance [6]).

It can be proven that expressive power of Dialog Metamodel with predefined
types of containers is at least the same as of standard Java layout managers
from the Java Swing library, including a comprehensive GroupLayout manager.
The main idea of the proof is to show how each standard Java Swing layout
manager can be simulated by means of the container types provided by Dialog
Metamodel.

There is an interesting difference in resizing policy between our approach
and the approach used by the QT library [7]. In QT, when a layout (such as
vertical, horizontal, or grid layout) for a container is set, components inside
this container are resized by default. To prevent resizing, special components
called horizontal and vertical spacers can be used. Spacers act as springs that
produce a counterforce for resizing. In contrast, our approach uses maximum
width and height constraints to prevent resizing.

Model-driven graphical tool building platforms such as Eclipse GMF [8,9],
Microsoft DSL Tools [10], Metaclipse+ [11], and others, usually provide a stand-
ard mechanism for creating dialog boxes such as property editors. These stand-

122 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

ard mechanisms permit only limited customizations of a dialog box (e.g., we
can specify the names of properties and their values, but we cannot add some
extra buttons). While the expressiveness of such simple dialogs is sufficient
for most cases, some tools (like Microsoft DSL Tools) permit also specifying
dialogs of arbitrary complexity in some object-oriented programming language
(e.g. C#). But the additional knowledge and skills are required here. Moreover,
the model-driven approach is lost.

6 Conclusion

Dialog Engine, mentioned in this paper, has been implemented in C++ Builder,
and currently is used in tools based on the Transformation-Driven Architecture,
TDA. Examples of such tools are a graphical ontology editor OWLGrEd [12]
and a UML editor GradeTwo [13]. Quadratic optimization is called each time
when a dialog window is being displayed on the screen, when the user resizes
a dialog window, and when windows are changed and refreshed at runtime (by
issuing a RefreshCommand from Dialog Metamodel).

:Form
caption="Sample form"

:HorizontalBox
:VerticalBox
| :VerticalBox :HorizontalBox verticalAlignment=TOP

:Button

caption="Add" |

:Label |
caption="E-mail"|

:InputField |
text="eve@example.org”|

:Button
caption="Remove"

:ltem
value:"alice@example.org"|

:ltem
selecteditem |vaJue="bob@example.org"” |

:HorizontalBox lo \
horizontaIAIignment:RIGHTI.—| Buton Buton |

I
defaultButton | caption="OK" | |caption="CanceI"|

cancelButton

(a)
1ol x|
E-mail: Ieve@example,arg| Add
alice@example.or Remove

Cancel
(b)

Fig. 7: (a) A model of a sample form. (b) The resulting dialog window on the screen.

Sergejs Kozlovics. Calculating The Layout For Dialog Windows Specified As Models 123

An example of a dialog model that does not specify any coordinates and
dimensions (only containers and some alignments) is depicted in Fig. 7(a). The
resulting dialog window, produced by Dialog Engine, is depicted in Fig. 7(b).
This is a real screenshot.

As noticed by Dmitrijs Logvinovs, the number of variables used in quadratic
optimization can be reduced up to two times by combining them (e.g., variables
for margins can be combined with the corresponding component coordinates).
He also started a Java implementation that reduces the number of variables
and takes an advantage of using Java reflection mechanism for loading GUI
elements at runtime.

Having Dialog Metamodel and a working Dialog Engine for it, Dialog
Metamodel can be used as a formal language for describing abstract syntax
of dialog windows.

Acknowledgements

I thank Karlis Freivalds for valuable personal conversations on quadratic op-
timization. I thank also Dmitrijs Logvinovs for certain improvements that he
noticed and incorporated in the Java version of Dialog Engine.

This work has been partially supported by the European Social Fund within
the project «Support for Doctoral Studies at University of Latvias.

References

1. S. Kozlovics, “A Dialog Engine Metamodel for the Transformation-Driven Archi-
tecture,” in Scientific Papers, University of Latvia, vol. 756, pp. 151-170, 2010.

2. K. Freivalds and P. Kikusts, “Optimum layout adjustment supporting ordering
constraints in graph-like diagram drawing,” in Proceedings of the Latvian Academy
of Sciences, Section B, vol. 55, pp. 43-51, 2001.

3. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to al-
gorithms. MIT Press, Cambridge, MA, U.S.A., 2nd ed., 2001.

4. G.J. Badros, A. Borning, and P. J. Stuckey, “The cassowary linear arithmetic con-
straint solving algorithm,” ACM Trans. Comput.-Hum. Interact., vol. 8, pp. 267—
306, Dec. 2001.

5. A. Borning, K. Marriott, P. Stuckey, and Y. Xiao, “Solving linear arithmetic
constraints for user interface applications,” in Proceedings of the 10th annual ACM
symposium on User interface software and technology, UIST 97, (New York, NY,
USA), pp- 87-96, ACM, 1997.

6. H. Hosobe, “A modular geometric constraint solver for user interface applica-
tions,” in Proceedings of the 14th annual ACM symposium on User interface
software and technology, UIST ’01, (New York, NY, USA), pp. 91 100, ACM,
2001.

7. “QT Developer Network.” http://qt-project.org/.

8. “Graphical Modeling Framework (GMF, Eclipse Modeling subproject).” http:
//www.eclipse.org/gmf.

124 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

9. A. Shatalin and A. Tikhomirov, “Graphical Modeling Framework architecture
overview,” in Eclipse Modeling Symposium, 2006.

10. S. Cook, G. Jones, S. Kent, and A. Wills, Domain-Specific Development with
Visual Studio DSL Tools. Addison-Wesley, 2007.

11. A. Kalnins, O. Vilitis, E. Celms, E. Kalnina, A. Sostaks, and J. Barzdins, “Build-
ing tools by model transformations in Eclipse,” in Proceedings of DSM’07 Work-
shop of OOPSLA 2007, (Montreal, Canada), pp. 194-207, Jyvaskyla University
Printing House, 2007.

12. J. Barzdins, G. Barzdins, K. Cerans, R. Liepins, and A. Sprogis, “OWLGrEd: a
UML style graphical notation and editor for OWL 2, in Proceedings of OWLED
2010, 2010.

13. “The GradeTwo tool.” http://gradetwo.lumii.lv/.

