
Frequency Computable Relations �

Madara Augstkalne, Anda Beriņa, Rūsiņš Freivalds,

Institute of Mathematics and Computer Science, University of Latvia,
Raiņa Bulvāris 29, Riga, LV-1459, Latvia

Abstract. A transducer is a finite-state automaton with an input and
an output. We compare possibilities of nondeterministic and probabilis-
tic transducers, and prove several theorems which establish an infinite
hierarchy of relations computed by these transducers. We consider only
left-total relations (where for each input value there is exactly one al-
lowed output value) and Las Vegas probabilistic transducers (for which
the probability of any false answer is 0). It may seem that such limita-
tions allow determinization of these transducers. Nonetheless, quite the
opposite is proved; we show a relation which can only be computed by
probabilistic (but not deterministic) transducers, and one that can only
be computed by nondeterministic (but not probabilistic) transducers.
Frequency computation was introduced by Rose and McNaughton in
early sixties and developed by Trakhtenbrot, Kinber, Degtev, Wechsung,
Hinrichs and others. It turns out that for transducers there is an infi-
nite hierarchy of relations computable by frequency transducers and this
hierarchy differs very much from similar hierarchies for frequency com-
putation by a) Turing machines, b) polynomial time Turing machines,
c) finite state acceptors.

1 Introduction

Frequency computation was introduced by G. Rose [13] as an attempt to have
a deterministic mechanism with properties similar to probabilistic algorithms.
The definition was as follows. A function f : w → w is (m,n)-computable, where
1 ≤ m ≤ n, iff there exists a recursive function R: wn → wn such that, for all
n-tuples (x1, · · · , xn) of distinct natural numbers,

card{i : (R(x1, · · · , xn))i = f(xi)} ≥ m.

R. McNaughton cites in his survey [12] a problem (posed by J. Myhill)
whether f has to be recursive if m is close to n. This problem was answered
by B.A. Trakhtenbrot [14] by showing that f is recursive whenever 2m > n. On
the other hand, in [14] it was proved that with 2m = n nonrecursive functions
can be (m,n)-computed. E.B. Kinber extended the research by considering fre-
quency enumeration of sets [9]. The class of (m,n)-computable sets equals the
class of recursive sets if and only if 2m > n.

� The research was supported by Grant No. 09.1570 from the Latvian Council of
Science.

SCIENTIFIC PAPERS, UNIVERSITY OF LATVIA, 2012. Vol. 787
COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES 125–135 P.

LURaksti787-datorzinatne.indd 125LURaksti787-datorzinatne.indd 125 23.10.2012 12:02:5623.10.2012 12:02:56

For resource bounded computations, frequency computability behaves dif-
ferently. For example, it is known that whenever n′ − m′ > n − m, under any
reasonable resource bound there are sets which are (m′, n′)-computable, but not
(m,n)-computable. However, for finite automata, an analogue of Trakhtenbrot’s
result holds: the class of languages (m,n)-recognizable by deterministic finite
automata equals the class of regular languages if and only if 2m > n. Con-
versely, for 2m ≤ n, the class of languages (m,n)-recognizable by deterministic
finite automata is uncountable for a two-letter alphabet [1]. When restricted to
a one-letter alphabet, every (m,n)-recognizable language is regular. This was
also shown by Kinber.

Frequency computations became increasingly popular when the relation be-
tween frequency computation and computation with a small number of queries
was discovered [11, 6, 2, 3].

We considered problems similar to those in the classical papers [14, 9, 1] for
finite-state transducers. We found the situation to be significantly different.

A finite state transducer is a finite state machine with two tapes: an input
tape and an output tape. These tapes are one-way, i.e. the automaton never
returns to the symbols once read or written. Transducers compute relations
between the input words and output words. A deterministic transducer produces
exactly one output word for every input word processed.

In this paper we consider advantages and disadvantages of nondeterministic,
deterministic, frequency and probabilistic transducers. Obviously, if a relation is
such that several output words are possible for the same input word, then the
relation cannot be computed by a deterministic transducer. For this reason, in
this paper we restrict ourselves to relations which produce exactly one output
word for every input word processed.

Definition 1. We say that a relation R(x, y) is left-total, if for arbitrary x there
is exactly one y satisfying R(x, y).

Probabilistic algorithms may be of several types: those allowing errors of
all types, Monte Carlo, Las Vegas, etc. Since our relations produce exactly one
output word for every input word processed, it was natural to consider only
Las Vegas transducers, i.e. probabilistic transducers for which the probability
of every false answer is 0. It follows immediately from the definition that ev-
ery relation computed by such a probabilistic transducer can be computed by
a nondeterministic transducer as well. We prove below that nondeterministic
transducers are strictly more powerful than Las Vegas transducers.

The zero probability of all possible false results of a probabilistic transducer
has another unexpected consequence. It turns out that only recursive relations
of small computational complexity can be computed by probabilistic transducers
with a probability, say, 1

4 or 1
7 . Hence a natural question arises, whether every

rational number 0 ≤ p ≤ 1 can be the best probability to compute some relation
by a probabilistic finite-state transducer. It turns out that it is not the case. We
show examples of relations that can be computed by probabilistic finite-state
transducers with probabilities 1

2 ,
1
3 ,

1
4 , etc. and not better. We believe that no

other best probabilities can exist for relations of the type considered by us.

126 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti787-datorzinatne.indd 126LURaksti787-datorzinatne.indd 126 23.10.2012 12:02:5623.10.2012 12:02:56

Madara Augstkalne, Andra Beriņa, Rūsiņš Freivalds. Frequency Computable Relations

This hierarchy of relations turns out to be related to the number of symbols of
help needed for deterministic finite-state transducers that take advice to compute
these relations.

2 Definitions

We use standard definitions of deterministic, nondeterministic and probabilistic
transducers, which are well-established in theoretical computer science literature
[5]. Our model is slightly different in the regard that we allow multiple output
symbols for each transition, however it can be easily seen that the expressive
power of transducer is unaffected.

Definition 2. A nondeterministic transducer D is a six-tuple 〈Q,Σ,Δ, δ, q0, F 〉,
which satisfies the following conditions:

– Q is a finite set, whose members are called states of D. q0 ∈ Q is called the
initial state of D,

– Σ is a set of input symbols of D and is called the input alphabet,
– Δ is a set of output symbols of D and is called the output alphabet,
– δ is a relation from Q × (Σ ∪ {ε}) to Q ×Δ∗. Each tuple ((q, α), (p, β)) is

called a transition rule of D,
– F ⊆ Q is the set of accepting or final states of D

A transducer operates in discrete time t = 1, 2, 3 . . . and handles two one-
way tapes, where one is read-only input tape and contains a string from the
input alphabet Σ and second is write-only output tape with finite output alphabet
Δ.

The computation begins at the start state q0. The computation from state q
proceeds by reading symbol α from the input tape, following a suitable transition
rule ((q, α), (p, β)) (the new state being p) and writing the corresponding output
β to the output tape. The only exception is so called ε-transition ((p, ε), (q, β)),
where the transducer changes the state and possibly writes an output without
reading an input symbol.

We consider all our transducers as machines working infinetely long. At every
moment, let x be the word having been read from the input tape up to this mo-
ment, and let y be the word written on the output tape up to this moment. Then
we say that the pair (x, y) belongs to the relation computed by the transducer.

Definition 3. A deterministic transducer is a nondeterministic transducer such
that transition relation δ is a function, i.e., for each input state and each input
symbol the corresponding output state and output symbol is uniquely determined
according to the transition table δ.

Definition 4. A probabilistic transducer is a transducer of the form
〈Q,Σ,Δ, Ψ, q0, F 〉 where the transition function Ψ is probabilistic, i.e., for every
state q and input symbol α, output state p and output symbol β there is an

127

LURaksti787-datorzinatne.indd 127LURaksti787-datorzinatne.indd 127 23.10.2012 12:02:5623.10.2012 12:02:56

associated probability with which transition occurs. We furthermore stipulate that
probabilities of all transition from any fixed pair of input state and input symbol
must sum to one.

Definition 5. We say that a probabilistic transducer A computes a left-total
relation R with probability p if for arbitrary pair (x, y) ∈ R when A works on
input x the probability to go into an accepting state having produced the output
y is no less than p.

Definition 6. We say that a probabilistic transducer A is a Las Vegas trans-
ducer computing a left-total relation R with probability p if for arbitrary pair
(x, y) ∈ R when A works on input x the probability to go into an accepting state
having produced the output y is no less than p, and the probability to go into an
accepting state having produced the output other than y equals 0.

Since we consider in our paper only left-total relations and since our proba-
bilistic transducers are Las Vegas, it easily follows that the transducer for arbi-
trary x and for arbitrary α ∈ {α1, α2, . . . , αn} either produces a correct output
y or reaches a non-accepting state.

Definition 7. A frequency transducer with parameters (m,n) is a transducer
with n input tapes and n output tapes. Every state of the transducer is defined as
(a1, a2, · · · , an)-accepting where each ai ∈ { accepting , nonaccepting }. We say
that a left-total relation R is (m,n)-computed by the transducer if for arbitrary
n-tuple of pairwise distinct input words (x1, x2, · · · , xn) there exist at least m
distinct values of xi such that the i-th output yi satisfies (xi, yi) ∈ R.

Please notice that we do not demand the state of the frequency transducer
to be all-accepting after the reading of the input words. This allows us introduce
a counterpart of Las Vegas transducer.

Definition 8. A Las Vegas frequency transducer with parameters (m,n) is a
transducer with n input tapes and n output tapes. Every state of the transducer is
defined as (a1, a2, · · · , an)-accepting where each ai ∈ { accepting , nonaccepting }.
We say that a left-total relation R is (m,n)-computed by the transducer if for
arbitrary n-tuple of pairwise distinct input words (x1, x2, · · · , xn): 1) there exist
at least m distinct values of xi such that the i-th output yi satisfies (xi, yi) ∈ R,
and 2) if a result yi is produced on any output tape i and the current state of the
transducer is (a1, a2, · · · , ai−1, accepting, ai+1, · · · , an)-accepting, then R(xi, yi).

We consider frequency transducers like all other transducers as machines
working infinitely long. At every moment, let x be the word having been read
from the input tape up to this moment, and let y be the word written (and
accepted) on the output tape up to this moment. Then we say that the pair
(x, y) belongs to the relation computed by the transducer. However, in the case
when the input alphabet contains less than n letters, there is a problem how to
define (m,n)-computation correctly.

128 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti787-datorzinatne.indd 128LURaksti787-datorzinatne.indd 128 23.10.2012 12:02:5623.10.2012 12:02:56

Madara Augstkalne, Andra Beriņa, Rūsiņš Freivalds. Frequency Computable Relations

Definition 9. We say that a frequency transducer is performing a strong (m,n)-
computation if at moments when all the input words (x1, x2, · · · , xn) are distinct
there exist at least m distinct values of xi such that the i-th output yi satisfies
(xi, yi) ∈ R.

Definition 10. We say that a frequency transducer is performing a weak (m,n)-
computation with parameters (b1, b2, · · · bn), where b1, b2, · · · bn are distinct inte-
gers, if the transducer is constructed in such a way that in the beginning of the
work the transducer reads the first b1 symbols from the input word x1, the first
b2 symbols from the input word b2, · · · , the first bn symbols from the input word
xn and at all subsequent moments reads exactly 1 new symbol from every input
tape. This ensures that at all moments the input words (x1, x2, · · · , xn) are dis-
tinct. There is no requirement of the correctness of the results when the length
of input words is (b1, b2, · · · bn) but at all moments afterwards there exist at least
m distinct values of xi such that the i-th output yi satisfies (xi, yi) ∈ R.

3 Frequency transducers

First of all, it should be noted that a frequency transducer does not specify
uniquely the relation computed by it. For instance, a transducer with 3 input
tapes and 3 output tapes (2, 3)-computing the relation

R(x, y) =

⎧⎨
⎩

true, if x = y and x
= 258714,
true, if y = 0 and x = 258714,
false, if otherwise.

can output y = x for all possible inputs and, nonetheless, the result is always
correct for at least 2 out of 3 inputs since the inputs always distinct. Please
notice that the program of the frequency transducer does not contain the
”magical” number 258714. Hence the number of states for an equivalent deter-
ministic transducer can be enormously larger.

Theorem 1. There exists a strong finite-state frequency transducer (1, 2)-computing
a continuum of left-total relations.

Proof. Consider the following frequency transducer with 2 input tapes and 2
output tapes. If the inputs x1 and x2 are such that x1 is an initial fragment of
x2, then the output y1 equals x1, and y2 = 0. If the inputs x1 and x2 are such
that x2 is an initial fragment of x1, then the output y2 equals x2, and y1 = 0.
In all the other cases y1 = y2 = 0.

Let R be a relation defined by taking an arbitrary infinite sequence ω of zeros
and ones, and defining

R(x, y) =

⎧⎨
⎩

true, if y = x and x is an initial fragment of ω,
true, if y = 0 and x is not an initial fragment of ω,
false, if otherwise.

There is a continuum of such sequences and a continuum of the corresponding
relations. Each of them is (1, 2)-computed by the frequency transducer. ��

129

LURaksti787-datorzinatne.indd 129LURaksti787-datorzinatne.indd 129 23.10.2012 12:02:5623.10.2012 12:02:56

Theorem 2. If 2m > n and there exists a strong finite-state frequency trans-
ducer (m,n)-computing a left-total relation R then R can also be computed by a
deterministic finite-state transducer.

Proof. Let R be a left-total relation and A be a strong finite-state frequency
transducer (m,n)-computing it. Let Q be (another) left-total relation (m,n)-
computed by the same transducer A. Let x1, x2, · · · , xk be distinct input words
such that the pairs (x1, y

′
1), (x2, y

′
2), · · · , (xk, y

′
k) are in R, the pairs (x1, y

′′
1),

(x2, y
′′
2), · · · , (xk, y

′′
k) are in Q, and y′1
= y′′1 , y

′
2
= y′′2 , · · · , y′k
= y′′k . What happens

if k ≥ n and the transducer gets an input-tuple containing only values from
{x1, x2, · · · , xk}? The transducer has to output at least m correct values for R
and at least m correct values for Q which is impossible because 2m > n. A
careful count shows that k ≤ 2n− 2m .

Hence for arbitrary given relation R (m,n)-computable by A there is a con-
stant k such that any relation Q (m,n)-computable by A differs from R on no
more that k0 pairs (x, y). Let Q0 be one of the relations where indeed k such pairs
exist, and let (x1, y

′
1), (x2, y

′
2), · · · , (xk, y

′
k) and (x1, y

′′
1), (x2, y

′′
2), · · · , (xk, y

′′
k) be

these pairs. Of course, there is no algorithm to construct k and Q0 effectively,
but they cannot fail to exist. For arbitrary x the value of y such that (x, y) ∈ R
can be calculated effectively using n-tuples of input words involving the input
words x1, x2, · · · , xk and remembering that no relation computed by A can dif-
fer from R and from Q0 in more than k values. Since A is a finite automaton,
the standard cut-and-paste arguments show that this computation needs only
input words which differ from x only on the last d digits where d is a suitable
constant. ��
Theorem 3. There exists a left-total relation R (2, 3)-computed by a weak finite-
state Las Vegas frequency transducer and not computed by any deterministic
finite-state transducer.

Proof. We consider the relation

R(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

true, if y = 1|x| and | x |≡ 0(mod3),
true, if y = 1|x| and | x |≡ 1(mod3)
true, if y = 1|x|−1 and | x |≡ 2(mod3)
false, if otherwise.

The weak finite-state Las Vegas frequency (2, 3)-transducer starts with read-
ing 1 symbol from the first input tape, 2 symbols from the second input tape and
3 symbols from the third input tape and reads exactly 1 symbol from each input
tape at any moment. Hence at any moment the transducer has no more than one
input word xi with | xi |≡ 2(mod3). To have a correct result for the other two
input words, it suffices to keep the length of the output being equal the length
of the corresponding input. In case if the length of the input is | xi |≡ 2(mod3),
the state becomes non accepting.

The relation cannot be computed by a deterministic transducer because the
length of the output y decreases when the length of of the input increases from
3k + 1 to 3k + 2. ��

130 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti787-datorzinatne.indd 130LURaksti787-datorzinatne.indd 130 23.10.2012 12:02:5623.10.2012 12:02:56

Madara Augstkalne, Andra Beriņa, Rūsiņš Freivalds. Frequency Computable Relations

This proof can easily be extended to prove the following Theorem 4.

Theorem 4. If m < n then there exists a left-total relation R (m,n)-computed
by a weak finite-state Las Vegas frequency transducer and not computed by any
deterministic finite-state transducer.

Theorem 5. There exists a left-total relation R (2, 4)-computed by a weak finite-
state Las Vegas frequency transducer and not computed by any finite-state (1, 2)-
frequency transducer.

Proof. We consider the relation

R(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

true, if y = 1|x| and | x |≡ 0(mod9),
true, if y = 1|x| and | x |≡ 3(mod9),
true, if y = 1|x| and | x |≡ 4(mod9),
true, if y = 1|x| and | x |≡ 6(mod9),
true, if y = 1|x| and | x |≡ 8(mod9),
true, if y = 0 and | x |≡ 1(mod9),
true, if y = 0 and | x |≡ 2(mod9),
true, if y = 0 and | x |≡ 5(mod9),
true, if y = 0 and | x |≡ 7(mod9),
false, if otherwise.

(1) The weak finite-state Las Vegas frequency (2, 4)-transducer starts with read-
ing 1 symbol from the first input tape, 2 symbols from the second input tape
and 3 symbols from the third input tape, 4 symbols from fourth input tape and
reads exactly 1 symbol from each input tape at any moment. The transducer
always outputs yi = 1|xi| on the i-th output tape. Since the transducer can count
the length of the input modulo 9, the false outputs (in cases | xi | congruent to
1,2,5 or 7 (mod 9)) are not accepted and the transducer is Las Vegas.

At every moment the lengths of the input words are k, k + 1, k + 2, k + 3 for
some natural k. At least two of them are congruent to 0,3,4,6 or 8 (mod 9).

(2) Assume that the relation is (1, 2)-computed by a transducer performing
a weak (1, 2)-computation with parameters (b1, b2). Whatever the difference d =
b2 − b1, there exists a value of s such that both s+ b1 and s+ b2 are congruent
to 1,2,5 or 7 (mod 9). Hence the transducer produces two wrong results on the
pair 1s+b1 , 1s+b2 in contradiction with the (1, 2)-computability. ��

4 Nonconstructive methods for frequency transducers

Unfortunately, it is not clear how to generalize the explicit construction of the
relation R(x, y) in Theorem 5 to prove distinction between (m,n)-computability
and (km, kn)-computability for weak finite-state frequency transducers. Luckily,
there is a non-constructive method to do so. This method is based on usage of
algorithmic information theory.

131

LURaksti787-datorzinatne.indd 131LURaksti787-datorzinatne.indd 131 23.10.2012 12:02:5623.10.2012 12:02:56

Definition 11. We define a transformation I which takes words x ∈ {0, 1}∗ into
I(x) ∈ {0, 1}∗ by the following rule. Every symbol 0 is replaced by 1100110100
and every symbol 1 is replaced by 1011001010.

Definition 12. We define a transformation J which takes words x ∈ {0, 1}∗
into J(x) ∈ {0, 1}∗ by the following rule. Every symbol 0 is replaced by 0100110100
and every symbol 1 is replaced by 0011001010.

Lemma 1. For arbitrary x ∈ {0, 1}∗ the result of the transformation I is a word
I(x) such that | I(x) |= 10 | x |, and I(x) contains equal number of zeros and
ones.

Lemma 2. For arbitrary x ∈ {0, 1}∗ the result of the transformation J is a
word J(x) such that | J(x) |= 10 | x |, and every subword y of J(x) such that
| J(x) |= 10 contains no more than 5 symbols 1.

Definition 13. We define a transformation K which takes words x ∈ {0, 1}∗
into a 2-dimensional array

K(x) =

⎛
⎜⎜⎝

K11 K12 · · · K1n

K21 K22 · · · K2n

· · · · · · · · · · · ·
Kn1 Kn2 · · · Knn

⎞
⎟⎟⎠

of size 10 | x | × 10 | x | by the following rule. The first row (
K11 K12 · · · K1n

)
copies I(x). Every next row is a cyclic copy of the preceding one:

(
Ks1 Ks2 · · · Ksn

)
=
(
K(s−1)2 K(s−1)3 · · · K(s−1)1

)
.

Definition 14. We define a transformation L which takes words x ∈ {0, 1}∗
into a 2-dimensional array

L(x) =

⎛
⎜⎜⎝

L11 L12 · · · L1n

L21 L22 · · · L2n

· · · · · · · · · · · ·
Ln1 Ln2 · · · Lnn

⎞
⎟⎟⎠

of size 10 | x | × 10 | x | by the following rule. The first row (
L11 L12 · · · L1n

)
copies J(x). Every next row is a cyclic copy of the preceding one:

(
Ls1 Ls2 · · · Lsn

)
=
(
L(s−1)2 L(s−1)3 · · · L(s−1)1

)
.

There is a dichotomy: 1) either there exist 4 rows (say, with numbers b1, b2, b3,
b4) inK(x) such that in every column Z such that among the valuesK(b1)z,K(b2)z,
K(b3)z,K(b4)z there are exactly 2 zeros and 2 ones, or 2) for arbitrary 4 rows (with

132 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti787-datorzinatne.indd 132LURaksti787-datorzinatne.indd 132 23.10.2012 12:02:5623.10.2012 12:02:56

Madara Augstkalne, Andra Beriņa, Rūsiņš Freivalds. Frequency Computable Relations

numbers b1, b2, b3, b4 in K(x)) there is a column z such that among the values
K(b1)z,K(b2)z,K(b3)z,K(b4)z there are at least 3 values equal to 1. (Please remem-
ber that by Lemma 2 the total number of zeros and ones in every row is the
same.) We will prove that if the Kolmogorov complexity of x is maximal and
the length of x is sufficiently large then the possibility 1) does not exist.

Lemma 3. If n is sufficiently large and x is a Kolmogorov-maximal word of
length n then for arbitrary 4 rows (with numbers b1, b2, b3, b4 in K(x)) there is
a column z such that among the values K(b1)z,K(b2)z,K(b3)z,K(b4)z there are at
least 3 values equal to 1.

Proof. Assume from the contrary that there exist 4 rows (say, with num-
bers b1, b2, b3, b4) in K(x) such that in every column z such that among the
values K(b1)z,K(b2)z,K(b3)z,K(b4)z there are exactly 2 zeros and 2 ones. By def-
inition of K, K(bi)z = K1(z+bi−1). Hence every assertion ”among the values
K(b1)z,K(b2)z,K(b3)z,K(b4)z there are exactly 2 zeros and 2 ones” can be written
as ”among the values K1(c1),K1(c2),K1(c3),K1(c4) there are exactly 2 zeros and
2 ones” which is equivalent to ”among the values I(d1), I(d2), I(d3), I(d4) there
are exactly 2 zeros and 2 ones”.

Every value I(d) was obtained from a single letter in the word x. Namely,
the letters I(10j + 1), I(10j + 2), · · · , I(10j + 10) were obtained from the j-th
letterx(j) of x. I(10j + 1) = 1 both for x(j) being a or b. I(10j + 2) = 1 if x(j)
equals a but not b. I(10j+3) = 1 if x(j) equals b but not a. Hence we introduce
a functional

h(x(j)) =

⎧⎪⎪⎨
⎪⎪⎩

1 , if d ≡ 0(mod10)

x(j) , if d ≡ 1 or 4 or 5 or 7(mod10)
x(j) , if d ≡ 2 or 3 or 6 or 8(mod10)
0 , if d ≡ 9(mod10)

Using this functional we transform every assertion of ”among the values
I(d1), I(d2), I(d3), I(d4) there are exactly 2 zeros and 2 ones” type into a Boolean
formula ”among the values h(xj1), h(xj2), h(xj3), h(xj4) there are exactly 2 zeros
and 2 ones”.

Let a set S of such Boolean formulas be given. We say that another formula
F is independent from the set S if F cannot be proved using formulas from the
set S. For instance, if F contains a variable not present in any formula of S then
F is independent from S.

Take a large integer n and consider the set T of all binary words from {a, b}2n.
There are 22n words in T . Let T1 be the subset of T containing all words with
equal number of a’s and b’s. Cardinality of T1 equals 2

2n−o(n). The set S contains
2n formulas but not all of them are independent. However, since each formula
contains only 4 variables, there are at least 2n

4 independent formulas in S. Apply
one-by-one these independent formulas and removes from T1 all the words where
some formula fails. Notice that application of a new formula independent from
the preceding ones remove at least half of the words. Hence after all removals
no more than 2

3n
2 −o(n) words remain. Effective enumeration of all the remaining

133

LURaksti787-datorzinatne.indd 133LURaksti787-datorzinatne.indd 133 23.10.2012 12:02:5723.10.2012 12:02:57

words and usage of Kolmogorov numbering as in Section 4 gives a method to
compress each x to a length not exceeding 3n

2 − o(n). This contradicts non-
compressibility of Kolmogorov-maximal words. ��

Since independence of formulas in our argument was based only on the used
variables the same argument proves the following lemma.

Lemma 4. If n is sufficiently large and x is a Kolmogorov-maximal word of
length n then for arbitrary 4 rows (with numbers b1, b2, b3, b4 in L(x)) there is
a column z such that among the values L(b1)z, L(b2)z, L(b3)z, L(b4)z there are at
least 3 values equal to 1.

We are ready to prove the main theorem of this paper.

Theorem 6. There exists a left-total relation R (3, 6)-computed by a weak finite-
state frequency transducer and not computed by any finite-state (2, 4)-frequency
transducer.

Proof. Consider the relation

R(x, y) =

⎧⎨
⎩

true, if y = 1|x| and | x |≡ j(modn) and L1j = 0
true, if y = 0 and | x |≡ j(modn) and L1j = 1
false, if otherwise.

where L(x) is as described above. ��

References

1. Holger Austinat, Volker Diekert, Ulrich Hertrampf, Holger Petersen. Regular fre-
quency computations. Theoretical Computer Science, vol. 330 No. 1, pp. 15–20,
2005.

2. Richard Beigel, William I. Gasarch, Efim B. Kinber. Frequency computation and
bounded queries. Theoretical Computer Science, vol. 163 No. 1/2, pp. 177–192,
1996.

3. John Case, Susanne Kaufmann, Efim B. Kinber, Martin Kummer. Learning re-
cursive functions from approximations. Journal of Computer and System Sciences,
vol. 55, No. 1, pp. 183–196, 1997.

4. A.N.Degtev. On (m,n)-computable sets. Algebraic Systems, Edited by D.I. Molda-
vanskij, Ivanovo Gos. Universitet, pp. 88–99, 1981.

5. Eitan Gurari. An Introduction to the Theory of Computation. Computer Science
Press, an imprint of E. H. Freeman, Chapter 2.2, 1989.

6. Valentina Harizanova, Martin Kummer, Jim Owings. Frequency computations and
the cardinality theorem. The Journal of Symbolic Logic, vol. 57, No. 2, pp. 682–687,
1992.

7. Maren Hinrichs and Gerd Wechsung. Time bounded frequency computations. In-
formation and Computation, vol. 139, pp. 234-257, 1997.

8. Richard M. Karp and Richard Lipton. Turing machines that take advice. L’ En-
seignement Mathematique, vol. 28, pp. 191–209, 1982.

134 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES

LURaksti787-datorzinatne.indd 134LURaksti787-datorzinatne.indd 134 23.10.2012 12:02:5723.10.2012 12:02:57

Madara Augstkalne, Andra Beriņa, Rūsiņš Freivalds. Frequency Computable Relations

9. Efim B. Kinber. Frequency calculations of general recursive predicates and fre-
quency enumeration of sets. Soviet Mathematics Doklady, vol. 13, pp. 873–876,
1972.

10. Efim B. Kinber. Frequency computations in finite automata, Kibernetika, No. 2,
pp. 7–15, 1976(Russian; English translation in Cybernetics 12 (1976) 179-187).

11. Martin Kummer. A proof of Beigel’s Cardinality Conjecture. The Journal of Sym-
bolic Logic, vol. 57, No. 2, pp. 677–681, 1992.

12. Robert McNaughton. The Theory of Automata, a Survey. Advances in Computers,
vol. 2, pp. 379–421, 1961.

13. Gene F. Rose. An extended notion of computability. Abstracts of International
Congress for Logic, Methodology and Philosophy of Science, p.14, 1960.

14. Boris A. Trakhtenbrot. On the frequency computation of functions. Algebra i
Logika, vol. 2, pp.25–32, 1964 (Russian)

135

LURaksti787-datorzinatne.indd 135LURaksti787-datorzinatne.indd 135 23.10.2012 12:02:5723.10.2012 12:02:57

