
On fault-tolerance of Grover’s algorithm

Nikolajs Nahimovs, Alexander Rivosh, Dmitry Kravchenko

Abstract

Grover’s algorithm is a quantum search algorithm solving the un-
structured search problem of size N in O(

√
N) queries, while any clas-

sical algorithm needs O(N) queries [1].
However, if the query transformation might fail (with probability

independent of the number of steps of the algorithm), then quantum
speed-up disappears: no quantum algorithm can be faster than a clas-
sical exhaustive search by more than a constant factor [6].

In this paper we study the effect of a small number of failed queries.
We show that k failed queries with a very high probability change
the number of actually executed steps of Grover’s algorithm from l to

O
(

l√
k

)
.

1 Introduction

Grover’s algorithm is a quantum search algorithm solving the unstructured
search problem in about π

4

√
N queries [1]. It has been analysed in great

detail. The analysis has been mainly focused on the optimality and gen-
eralization of the algorithm [4, 2, 3], as well as on fault-tolerance of the
algorithm to various kind of physical errors, such as decoherence or random
imperfections in either diffusion transformations or black box queries [8, 7].

In this paper we study fault-tolerance of Grover’s algorithm to logical
faults, in our case failure of one or more query transformations. Regev and
Schiff have shown [6] that if the query transformation fails with a fixed
probability (independent of the number of steps of the algorithm), then
quantum speed-up disappears: no quantum algorithm can be faster than a
classical exhaustive search by more than a constant factor.

We find it interesting to understand what happens if only a small number
of failed queries is allowed. We show that even a single failed query can
stop the algorithm from finding any of marked elements. Remarkably, this
property does not depend on a number of marked elements. This makes the
quantum case completely different from the classical case.
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A failure of a single ormultiple query transformations results in a number
of steps not being executed. We show that k failed queries with a very
high probability change the number of actually executed steps of Grover’s

algorithm from l to O
(

l√
k

)
.

2 Grover’s algorithm

Suppose we have an unstructured search space consisting of N elements
x1, . . . , xN ∈ {0, 1}. Our task is to find xi = 1 or to conclude that no such
x exists.

Grover’s algorithm starts with a state |ψstart〉 = 1√
N

∑N
i=1 |i〉. Each step

of the algorithm consists of two transformations: Q – query transformation
defined as Q|i〉 = (−1)xi |i〉 and D – the inversion about average, defined as:

D =

⎡
⎢⎢⎢⎣

−1 + 2
N

2
N . . . 2

N
2
N −1 + 2

N . . . 2
N

. . . . . . . . . . . .
2
N

2
N . . . −1 + 2

N

⎤
⎥⎥⎥⎦ .

The state of the algorithm after t steps is |ψt〉 = (DQ)t|ψstart〉.
Grover’s algorithm has been analysed in detail and many facts about

it are known. If there is one marked element, the probability of finding it
by measuring |ψt〉 reaches 1 − o(1) for t = O(

√
N). If there are k marked

elements, the probability of finding one of them by measuring |ψt〉 reaches
1− o(1) for t = O(

√
N/k).

3 Grover’s algorithm with errors

In this section we study the effect of small number of errors (omitted query
transformations) on the transformation sequence of the algorithm. We show
that an omission of a single or multiple query transformations is equivalent
to replacing a number of steps (DQ transformation pairs) with an identity
transformation, that is performing a smaller number of steps.

Let l be a number of steps of the algorithm. We show that k � l uni-
formly distributed independent errors change the transformation sequence
of the algorithm from (DQ)l to (DQ)L, where L is the random variable

with expectation O( l
k ) and standard deviation O

(
l√
k

)
. Therefore, with a

very high probability the length of the resulting transformation sequence is

O
(

l√
k

)
[5].
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Our further analysis is focused on the omission of the query transforma-
tion Q. However a very similar analysis can be done for an omission of the
D transformation.

3.1 Omitting a single query

The transformation sequence of Grover’s algorithm is

DQDQ . . . DQ = (DQ)l.

If we omit a single query transformation the sequence changes to

(DQ)l1D(DQ)l2 ,

where l1 + l2 + 1 = l, or
D(QD)l1(DQ)l2 .

As DD = QQ = I (this follows from the definitions of D and Q transforma-
tions), the shortest subsequence will cancel a part of the longest subsequence.
More precisely

l1 ≥ l2 : D(QD)l1(DQ)l2 = D(QD)l1−l2

l1 < l2 : D(QD)l1(DQ)l2 = D(DQ)l2−l1 .

Thus, a single omitted query transformation changes the transformation se-
quence of the algorithm from (DQ)l to (DQ)O(|l1−l2|), decreasing the number
of successful steps.

Suppose the query transformation can be omitted on a random algorithm
step, that is l1 is a uniformly distributed random variable. The length of
the resulting transformation sequence will also be a random variable. Simple
calculations show that it has mean l

2 +O(1) and variance l2

12 +O(l).

Corollary

A single omitted query transformation on the average will twice decrease
the number of successful steps of the algorithm (or will twice increase the
average running time of the algorithm).

If the query transformation will be omitted right in the middle of the
transformation sequence (l1 = l2), the number of successful steps will be 0.
That is the algorithm will leave the initial state unchanged.
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3.2 Omitting multiple queries

The transformation sequence of the algorithm is

DQDQ . . . DQ = (DQ)l.

If we omit k − 1 query transformations, the sequence changes to

(DQ)l1D(DQ)l2D . . . (DQ)lk−1D(DQ)lk ,

where l1 + l2 + . . .+ lk + (k− 1) = l. By regrouping the brackets we will get

(DQ)l1DD(QD)l2(DQ)l3DD(DQ)l4 . . . =

(DQ)l1(QD)l2(DQ)l3(DQ)l4 . . .

Transformations Q and D have the following commutativity property:

(QD)i(DQ)j = (DQ)j(QD)i.

Thus, the sequence can be rewritten as

(DQ)l1+l3+... (QD)l2+l4+... .

Therefore, k omitted query transformations change the transformation se-
quence of the algorithm from (DQ)l to (DQ)O(l1−l2+l3−l4+...±lk).

We will show that in the continuous approximation case (positions of
errors have continuous uniform distributions and l1 + l2 + . . . + lk = l) the
length of the resulting transformation sequence is a random variable with

mean 0 (even k) or l
k (odd k) and variance O

(
l2

k

)
. These values perfectly

agree with numerical experiment results for discrete case.

Proof of the main result

Suppose we have k − 1 independent random variables X1, X2, . . . , Xk−1.
Each Xi is uniformly distributed between 0 and l. That is the probability
density function of Xi is

fXi(x) =

⎧⎪⎨
⎪⎩

1
l x ∈ [0, l]

0 x /∈ [0, l]
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and the cumulative distribution function is

FXi(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 x < 0

x
l x ∈ [0, l]

1 x > l

.

The above random variables split the segment [0, l] into k subsegments
l1, l2, . . . , lk. The length of each subsegment is also a random variable.

Let us focus on the subsegment l1. Probability that l1 ≤ x is the proba-
bility that at least one of Xi ≤ x. Thus, the cumulative distribution function
of l1 is

Fl1 = 1− (1− FX1)(1− FX2) . . . (1− FXk−1
)

or

Fl1(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 x < 0

1− (1− x
l )

k−1 x ∈ [0, l]

1 x > l

.

The probability density function of l1 is

fl1(x) =

⎧⎪⎨
⎪⎩

k−1
l (1− x

l )
k−2 x ∈ [0, l]

0 x /∈ [0, l]

.

Knowing the probability density function of l1, we can calculate its mean
and variance by using the following formulae:

E[X] =

∫ ∞

−∞
x · fX(x)dx

E[X2] =

∫ ∞

−∞
x2 · fX(x)dx

V ar[X] = E[X2]− E[X]2.

We leave out the details of calculation of integrals and give the results.

E[l1] =

∫ ∞

−∞
x · fl1(x)dx =

∫ l

0
x
k − 1

l
(1− x

l
)k−2dx =

l

k
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E[(l1)
2] =

∫ ∞

−∞
x2 · fl1(x)dx =

∫ l

0
x2

k − 1

l
(1− x

l
)k−2dx =

2l2

k(k + 1)

V ar[l1] =
2l2

k(k + 1)
−
(
l

k

)2

=
k − 1

k + 1
·
(
l

k

)2

.

It is easy to see that all li subsegments have the same mean and variance.
This follows from the fact that all Xi are independent and are uniformly
distributed. We should also note that, although Xi are independent random
variables, li are not independent (the length of one subsegment increases as
other decreases and vice versa) .

Now let us focus on L = l1 − l2 + l3 − ...± lk. First we will calculate the
mean of L. We will use the following well known formulae:

E[−X] = −E[X]

E[X1 + . . .+Xk] = E[X1] + . . .+ E[Xk].

As all li have the same mean

E[L] = E[l1]− E[l2] + . . .± E[lk] =

⎧⎪⎨
⎪⎩

0 k = 2m

l
k k = 2m+ 1

.

Now we will calculate the variance of L. As li subsegments are correlated,
we have to use the following formula:

V ar[X1 + . . .+Xk] =
k∑

i=1

V ar[Xi] +
∑
i �=j

Cov[Xi, Xj ]

The subsegment covariance can be easily calculated from the following
trivial fact:

V ar(l1 + . . .+ lk) = 0.

This is so because l1+ . . .+ lk is always equal to l. Using the above formula,
we will get:

V ar[l1 + . . .+ lk] =
k∑

i=1

V ar[li] +
∑
i �=j

Cov[li, lj ] = 0
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or
k∑

i=1

V ar[li] = −
∑
i �=j

Cov[li, lj ].

As all li have the same mean and variance, they will also have the same
covariances Cov[li, lj ]. Using this fact, we will get

k · V ar[li] = −k(k − 1) · Cov[li, lj ]

or

Cov[li, lj ] = − 1

k − 1
· V ar[li] = − 1

k + 1
·
(
l

k

)2

.

Now let us return to the variance of L:

V ar[L] =
k∑

i=1

V ar[li]±
∑
i �=j

Cov[li, lj ].

Covariance sign will depend on li and lj signs (whether they are the same
or not). More precisely:

Cov[−X,Y ] = Cov[X,−Y ] = −Cov[X,Y ]

Cov[−X,−Y ] = Cov[X,Y ].

If k = 2m, then m subsegments have plus sign and m subsegments have
minus sign. There are 2m(m−1) subsegment pairs with the same signs and
2m2 subsegment pairs with opposite signs (we should count both (li, lj) and
(lj , li) pairs). Thus, we can rewrite the formula as:

V ar[L] = k · V ar[li] + Cov[li, lj ] ·
(
2m(m− 1)− 2m2

)
=

= k · V ar[li]− k · Cov[li, lj ] =

= k · V ar[li] +
k

k − 1
· V ar[li] =

= k · V ar[li] · k

k − 1
.

If k = 2m+1, then m+1 subsegments have plus sign and m subsegments
have minus sign. There are (m+ 1)m+m(m− 1) = 2m2 subsegment pairs
with the same signs and 2(m + 1)m subsegment pairs with opposite signs.
Thus, we can rewrite the formula as:

V ar[L] = k · V ar[li] + Cov[li, lj ] ·
(
2m2 − 2m(m− 1)

)
=
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= k · V ar[li] + (k − 1) · Cov[li, lj ] =

= k · V ar[li]− V ar[li] =

= k · V ar[li] · k − 1

k
.

Using O notation, we can rewrite both cases as O(k) · V ar[li] = O
(
l2

k

)
.

This ends the proof.

Corollary

We have shown that k− 1 omitted query transformations change the length
of the transformation sequence of the algorithm from l to a random variable

with mean 0 (even k) or l
k (odd k) and variance O

(
l2

k

)
.

Using Chebyshev’s inequality, we can show that with 96% probability L
value will lie within five standard deviations from its mean [5]. For large k
(but still k � l) even a more tight bound can be applied. In the next section
we will show that the probability distribution of L for large k is close to the
normal distribution. Thus, with 99.7% probability L will lie within three
standard deviations from the mean.

Therefore, with a very high probability the length of the resulting trans-

formation sequence changes from l to O
(

l√
k

)
.

4 Probability distribution of the median

In the previous section we have studied the following model. We have in-
dependent random variables X1, X2, . . . , Xk−1. Each Xi is uniformly dis-
tributed between 0 and l. The random variables split the segment [0, l] into
k subsegments l1, l2, . . . , lk. Our task was to estimate L = l1 − l2 + l3 − l4 +
. . . ± lk. Due to symmetry of li, L is equal to l

2 − Xm, where Xm is the
median of X1, X2, . . . , Xk−1, that is the point separating the higher half of
the points from the lower half of the points.

In this section we will show that for a large number of uniformly dis-
tributed random variables (points), the probability distribution of the me-
dian is close to the normal distribution.

2k + 1 points

Let us consider a real number interval [−N ;N ] and 2k + 1 random points,
each having a uniform distribution. Median is the point number k + 1.
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Probability density of the median at position x, which is at the distance
|x| from 0, can be expressed by the formula

fM (x) =
(N − x)k (N + x)k

(2N)2k+1
× (2k + 1)!

k!k!
=

(
N2 − x2

)k
(2k)! (2k + 1)

(2N)2k+1 k!k!
(1)

Using the Stirling approximation we can rewrite (1):

FM (x) ≈
(
N2 − x2

)k √
4πk

(
2k
e

)2k
(2k + 1)

(2N)2k+1
√
2πk

(
k
e

)k √
2πk

(
k
e

)k =

(
N2 − x2

)k
(2k + 1)

2N2k+1
√
πk

(2)

=

(
1− x2

N2

)k
(2k + 1)

2N
√
πk

(3)

For large k we can approximate 2k + 1 with 2k:

fM (x) ≈
(
1− x2

N2

)k √
k

N
√
π

(4)

For small x
N values (4) can be approximated (applying 1− z ≈ e−z) by

fM (x) ≈

(
e−

x2

N2

)k √
k

N
√
π

=

√
k

N
√
π
e−k x2

N2 (5)

which corresponds to the normal distribution with mean 0 and variance N2

2k .

2k points

Let us consider a real number interval [−N ;N ] and 2k random points, each
having a uniform distribution. Median is the point number k.

Probability density of the median at position X, which is at the distance
|X| from 0, can be expressed by the formula

fM (x) =
(N − x)k−1 (N + x)k

(2N)2k
× (2k)!

(k − 1)!k!
=

(
N2 − x2

)k
k (2k)!

(2N)2k (N − x)k!k!
(6)
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Using the Stirling approximation we can rewrite (6):

fM (x) ≈
(
N2 − x2

)k
k
√
4πk

(
2k
e

)2k

(2N)2k (N − x)
√
2πk

(
k
e

)k √
2πk

(
k
e

)k =

(
N2 − x2

)k √
k

N2k(N − x)
√
π

(7)

=

(
1− x2

N2

)k √
k(

1− x
N

)
N
√
π

(8)

For small X
N values (8) can be approximated (applying 1− z ≈ e−z) by

fM (X) ≈

(
e−

x2

N2

)k √
k

(
e−

x
N

)
N
√
π

=

√
k

N
√
π
e−k x2

N2+
x
N (9)

By multiplying (9) with e−
1
4k , which for large k is close to 1, we will get

fM (x) ≈
√
k

N
√
π
e−k x2

N2+
x
N
− 1

4k =

√
k

N
√
π
e−k

(x− N
2k

)2

N2 (10)

which corresponds to the normal distribution with mean N
2k and variance

N2

2k .

5 Conclusions

We have shown that even a single failed query can change the resulting trans-
formation sequence of the algorithm to an identity transformation. On the
average, a single failed query will twice decrease the length of the resulting
transformation sequence. In case of k failed queries with a very high proba-
bility the length of the resulting transformation sequence will be decreased
O(

√
k) times.
Similar argument can be applied to a wide range of other quantum query

algorithms, such as amplitude amplification, some variants of quantum walks
and NAND formula evaluation, etc. That is to any quantum query algorithm
for which the transformation X applied between queries has the property
X2 = I.
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