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Abstract. Measure Many Quantum Finite Automaton is not the strongest
known model of quantum automaton but, it is still an open question
what is the class of languages recognized by it when only bounded error
probability is allowed. In this paper a natural class of ”word set” reg-
ular languages are studied. A proof that in general case the class can
not be recognized by One-way model of Measure Many Quantum Finite
automata is given.
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1 Introduction

Quantum finite automata (QFA) were introduced by several authors in different
ways, and they can recognize different classes of languages. The least capable
QFA are those (later called MO-QFA) introduced by C.Moore and J.Crutchfield
[1]. More powerful notion of QFA (later called MM-QFA) was introduced by
A.Kondacs and J.Watrous [2]. They introduced a 1-way and 2-way model of
MM-QFA.

A.Ambainis and R. Freivalds[3] examined 1-way model and found that for
some languages 1-way MM-QFA (1-QFA) can have exponential size advantages
over classical counterparts. They used a language in a single-letter alphabet to
prove these advantages. A.Ambainis and other authors[4] improved the base of
the exponent in these advantages by using more complicated languages in richer
alphabets. Later A.Ambainis together with N.Nahimovs [5] simpified the con-
struction and improved the exponent even more. Nonetheless A.Kondacs and
J.Watrous [2] showed that 1-QFA can only recognize regular languages, more-
over, 1-QFA cannot recognize all the regular languages.

Future research had emphasis on 2-way automata because it was shown that
they could recognize, all regular languages [6]. Also more general 1-way models
of QFA where discovered[7][8], that could recognize all regular languages. Later
more general models of quantum automata were introduced and studied[9].

There are still open problems for 1-QFA model. There are two models of
1-QFA: one that recognizes languages with bounded error probability and other
� Supported by ESF project 2009/0216/1DP/1.1.1.2.0/09/APIA/VIAA/044.

SCIENTIFIC PAPERS, UNIVERSITY OF LATVIA, 2012. Vol. 787
COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES 147–152 P.

LURaksti787-datorzinatne.indd   147LURaksti787-datorzinatne.indd   147 23.10.2012   12:02:5823.10.2012   12:02:58



that recognizes languages with unbounded error probability. It has been shown
that unbounded model recognizes all and only stochastic languages[10]. It is not
known what is the language class recognized by 1-QFA with bounded error[11].
The study of this class is interesting and challenging because it has been shown
that it is not closed under union or any standard Boolean operation[12].

Due to these facts the study of different natural language classes recogniz-
able by 1-QFA is reasonable and justifiable even if stronger models of quantum
automata exist. In this paper we study a natural class of ”word set” languages.
We show that in general case it cannot be recognized by 1-QFA with bounded
error.

2 Preliminaries

2.1 1-Way Measure Many Quantum Finite Automata(1-QFA)

We define 1-QFA as follows[13].

Definition 21 A one-way quantum finite automaton A is specified by the finite
(input) alphabet Σ, the finite set of states Q, the initial state q0, the sets Qa ⊆ Q
and Qr ⊆ Q of accepting and rejecting states, respectively, with Qa ∩ Qr =
empty − set, and the transition function

δ : Q× Γ ×Q→ C[0,1],

where Γ = Σ∪{#, $} is the tape alphabet of A, and # and $ are endmarkers not
in Σ. The evolution (computation) of A is performed in the inner-product space
l2(Q), i.e., with the basis {|q〉|q ∈ Q}, using the linear operators Vσ, σ ∈ Γ ,
defined by

Vσ(|q〉) =
∑
q′∈Q

σ(q, σ, q′)|q′〉,

which are required to be unitary.

In computation of A the so-called computational observable O is used that
corresponds to the orthogonal decomposition

l2(Q) = Ea ⊕ Er ⊕ En,

where Ea = span{|q〉|q ∈ Qa} and Er = span{|q〉|q ∈ Qr} and En is the
orthogonal complement of Ea ⊕ Er. Denote by Pp,p ∈ {a, r, n} the projection
operator into the subspace Ep.
A computation of A on an input #σ1 . . . σn$ proceeds as follows. The operator
V# is first applied to the starting configuration |q0〉 and then the observable O
is applied to the resulting configuration V#|q0〉. This observable projects V#|q0〉
into a vector |ψ′〉 of one of the subspaces Ea, Er, En, with the probability equal to
the square of the norm of |ψ′〉. If |ψ′〉 inEa the input is accepted; if |ψ′〉 ∈ Erthe
input is rejected. If |ψ′〉 ∈ En, then, after the normalization of |ψ′〉, the operator
Vσ1 is applied to |ψ′〉 and after that the observableO to the resulting vector. This
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process goes on. Operators Vσ1, Vσ2, . . . , Vσn are applied one after another, and
after each such application the measurement by the observable O is performed.
In all cases the computation continues only if a projection into En occurs.
When no termination occurs the computation can be seen as an application of
the composed operator

V ′
σnV

′
σn−1 . . . V

′
σ1|q0〉,

where V ′
σ1 = PnVσ1.

In order to define formally the overall probability with witch an input is accepted
(rejected) by a 1QFA A, we define the set VA = l2(Q)×C×C of so-called ”total
states” of A, that will be used only with the following interpretation. A is at any
time during the computation in the state (ψ, pa, pr) if so far in its computation A
accepted the input with probability pa, rejected with probability pr and neither
with probability 1− pa − pr = ‖ψ‖2, and |ψ〉 is its current, unnormalized state.
For each σ ∈ Γ the evolution of A, with respect to the total state, on an input
σ is given by the operator Tσ defined by

Tσ(ψ, pa, pr) → (PnVσψ, pa + ‖PaVσψ‖2, pr + ‖PrVσψ‖2).

For x = σ1σ2 . . . σn ∈ Γ ∗ let T#x$ = T$TσnTσn−1 . . . Tσ1T#. If T#x$(|q〉, 0, 0) =
(ψ, pa, pr), then we say that A accepts x with probability pa and rejects with
probability pr. A 1QFA A is said to accept a language L with probability 1

2 +
ε, ε > 0, if it accepts any x ∈ L with probability at least 1

2 + ε and rejects any
x /∈ L with probability at least 1

2 + ε. If there is an ε > 0 such that A accepts L
with probability at least 1

2 + ε,then L is said to be accepted by A with bounded-
error probability. L is said to be accepted with unbounded error probability if
x ∈ L is accepted with probability at least 1

2 and x /∈ L rejected with probability
at least 1

2 .
On VA we define a ”norm” ‖ · ‖u as follows

‖(ψ, pa, pr)‖u =
1
2
(‖ψ‖+ |pa|+ |pr|)

and let D = {v ∈ VA|‖v‖u ≤ 1}. D contains all global states of A.

2.2 A useful lemma

Consider the following lemma

Lemma 21 If |u〉 and |v〉 are vectors such that for a linear operator A, reals
0 < ε < 1 and μ > 0,‖A(u− v)‖ < ε, and ‖v‖, ‖u‖,‖Au‖, ‖Av‖ are in [μ, μ+ ε],
then there is a constant c, that does not depend on ε, such that ‖u− v‖ < cε

1
4 .

For proof look in [2]
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3 Recognition of ”word set” language class

Given a finite alphabetA and a finite set of words in this alphabet {w1, w2, . . . , wk},
consider the language class that consists of finite words {w1, w2, . . . , wk}∗.

Due to the properties of nondeterministic automata(NFA) it is easy to see
that a NFA that recognizes language from this class can easily be constructed.
Language that is recognizable by NFA is regular, so languages in ”word set”
language class are regular as well.

Theorem 31 Given a language S = {w1, w2, . . . , wk}∗ it is not possible in gen-
eral case to build a 1-QFA that recognizes this language.

Proof. Lets look at the language S1 = {x|x ∈ [{0, 1}61] ∪ [{0, 1}81]}∗ and the
length of the words are greater than 56 (so that each word length could be put
together by parts of length 7 and 9) in other words, language consists of all finite
words of length l = 7 ∗ a + 9 ∗ b that end with 1 and other symbols are from
{0, 1}.
It is easy to see that this language consists of subset of words from {0, 1}∗1
language. Restrictions for determining the subset are: the word length is grater
than 56 and there is no substring that consists of more than 8 following zeros.
A.Kondacs and J.Watrous [2] state that:

Theorem 32 The regular language L0 = {0, 1}∗0 cannot be recognized by a
1QFA with bounded-error probability.

Proof. The proof is by contradiction. Let A= 〈Q,Σ, δ, q0, Qa, Qr〉 be a 1QFA
recognizing the language L0. To each x = σ1 . . . σn ∈ Γ ∗ we assign the state

|ψx〉 = V ′
σn . . . V

′
σ1|q0〉

and let μ = infw∈{0,1}∗{‖ψ#w‖}. For each w ∈ {0, 1}∗, w0 ∈ L0 and w1 /∈ L0.
If μ = 0, then clearly A cannot recognize L0 with bounded-error probability
1
2 + ε. Let us therefore assume that μ > 0. For any ε > 0 there is a w such that
‖ψ#w‖ < μ+ ε, and also ‖ψ#wy‖ ∈ [μ, μ+ ε] for any y ∈ {0, 1}∗. In particular,
for any m > 0

‖V ′m
1 |ψ#w0〉‖ ∈ [μ, μ+ ε). (1)

This implies that the sequence {V ′i
1 |ψ#w0〉}∞i=0 is bounded in the finite dimen-

sional inner-product space and must have a limit point. Therefore there have to
exist j and k such that

‖V ′j
1 (|ψ#w0〉 − V ′k

1 |ψ#w0〉)‖ < ε.

By 21 last inequality together with 1 imply, that there is a constant c which does
not depend on ε and such that

‖|ψ#w0〉 − V ′k
1 |ψ#w0〉‖ < cε

1
4 .
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This implies that

‖T#w0$(|q0〉, 0, 0)− T#01k$(|q0〉, 0, 0)‖u < c′ε
1
4

for fixed c′. However, this has to be valid for an arbitrarily small ε. This is not
possible if A accepts L0 because A should accept the string w0 and reject w01k.
Hence A cannot accept L0 with bounded error probability.
End of proof

From the proof we see that 1-QFA ”has problems” recognizing the last 1
of the word, and that other characters are not of an importance. As a result -
this theorem also apply to the language S1. Language S1 in general case is not
recognizable by 1-QFA.QED
End of proof

4 Conclusion

In this paper a One way Measure Many Quantum Finite Automata model was
studied. Although there are more general and stronger quantum automata mod-
els known, it is still an open question what is the class of languages that this
model recognizes.

After studying a ”word set” language class a theorem has been proven that
there exists a language from ”word set” language class that is not recognizable
by 1-QFA.

The method of construction of the language is rather interesting, and there
is a place for future research to look for specific word sets that can create a
1-QFA recognizable language and perhaps make the size of the minimal 1-QFA
recognizing such language exponentially more efficient than deterministic finite
automata.
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