
Baltic J. Modern Computing, Vol. 7 (2019), No. 1, pp. 31–46
https://doi.org/10.22364/bjmc.2019.7.1.03

Is Complexity-based Clustering of Process
Metrics as Effective as in Static Code Metrics

Muhammed Maruf ÖZTÜRK

Suleyman Demirel University, Faculty of Enginnering, Department of Computer Engineering

muhammedozturk@sdu.edu.tr

Abstract. Defect prediction is not a new sub-field of software engineering. However, in this field,
there are various research problems that are still attractive for many researchers. Cross-project de-
fect prediction (CPDP), which is one of the popular issues of defect prediction, is still intriguing.
To address this problem, generally instances or feature-focused experiments are performed but
there is a lack of novel pre-processing methods. The main objective of this work is to propose a
fuzzy clustering method that is based on complexity in CPDP. It helps selecting training data of
CPDP. Hence, an opportunity that provides comparing static code and process metrics emerges.
In this work, complexity-based fuzzy clustering that helps to select training instances of CPDP
is proposed for process metrics. In the method, fuzzy membership levels are associated with a
complexity value based on process metrics. In the experiment, 18 data sets including static code
and process metrics together are employed. The findings of the experiment show that although
static code metrics perform better than process metrics in terms of area under the curve (AUC),
process metrics outperforms static code metrics in matthew’s correlation coefficient (MCC) and
F-measure parameters. Furthermore, in accordance with the used data sets, it has been detected
that there is not any linear model among process metrics including number of revisions (NR),
number of modified lines (NML), and number of distinct committers (NDC). This work asserts
that the approach on the basis of training instance selection of CPDP yields remarkable suc-
cess in process metrics. Moreover, in overall performance, process metrics are rather suitable for
clustering-based instance selection.

Keywords: cross-project defect prediction, fuzzy clustering, process metrics

1 Introduction

Software defect prediction is conducted based on software metrics (Moser et al., 2008;
Romano and Pinzger, 2011; Menzies et al., 2010). It is widely known that two types of
metrics are commonly used: static code and process metrics (Shihab et al., 2010; Gray
et al., 2009; Nagappan et al., 2005). Initially, static code metrics had gained a great
popularity but methods developed for process metrics have shown a great growth over
the last decade (Lee et al., 2016; Rahman and Devanbu, 2013).

32 Öztürk

CPDP is one of the defect prediction sub-working fields and maintains its valid-
ity. Software metrics are the origin of many difficulties while performing CPDP. For
instance, metric heterogeneity is of great importance for the reliability of prediction
results. Researchers show intensive effort to handle metric matching problem in het-
erogeneous software metrics. However, it may not be sufficient to match only software
metrics in order to perform a consistent prediction process. In addition to this, practi-
tioners should take pre-processing methods into account during this process. In doing
so, not only proper training instances of CPDP can be selected, but also heterogeneous
defect prediction can be facilitated. Sophisticated and exhaustive experiments are re-
quired to achieve this purpose.

CPDP is twofold: instance and feature-focused works. Further, hybrid methods are
also employed in CPDP (Xia et al., 2016; Yu et al., 2016). However, instance-focused
works mainly include novel prediction models and there are few works that especially
bring novelty in terms of data pre-processing (Li et al., 2017). Data sets are exposed
to various pre-processing methods in software defect prediction. The main purpose of
those methods could be noise filtering (Kim et al., 2011), sampling (Li et al., 2012),
clustering (Jureczko et al., 2010), and normalization (Wang et al., 2016).

Generally, a great number of pre-processing studies have been done in literature
in which they are employed on a specific data set group. However, the effectiveness
of pre-processing methods has not been considered depending on the types of metrics.
Moreover, few works examined the efficacy of preprocessing methods in prediction
performance. One of them is clustering. It is an unsupervised method that divides a
given data sets into clusters. Despite a large amount of clustering alternatives, a deci-
sion should be taken by considering the characteristic of data sets. Some deficiencies
originated from the software development process emerge during gathering the infor-
mation of data sets. These deficiencies may cause misleading labeling of data set in-
stances. Therefore, fuzzy clustering could provide a better insight for the data sets. In
our preceding work (Ozturk, 2017), a complexity-based fuzzy clustering was devel-
oped for static code metrics. This work differs in determining the levels of fuzziness
membership and the type of metrics.

Defect prediction data could have noisy instances. A noisy instance can be defined
as an instance having wrong label that adversely affect prediction accuracy. They cre-
ate adverse affects in testing process of a machine learning algorithm. To address this
problem, whether checking the type of the data sets, they should be exposed to a reli-
able instance selection process. Fuzzy-rule based methods are preferable in such cases
(Mendel et al. 2017; Ashfaq et al., 2017). They divide a data set into training and testing
sets. However, some selected instances are labeled both for defective and non-defective
due to noisiness. Such gray-labeled instances are used in twofold. In this way, practi-
tioners can achieve a much more clear bias about the labels of the instances.

In this work, a novel fuzzy clustering method relying on the complexity of process
metrics is proposed for selecting CPDP training data sets. This work also discusses
how does fuzzy clustering yield favorable results in static code and process metrics
depending on the complexity. complexFuzzy is the basis for the method presented in
this paper. It was tried on static code metrics in the preceding work. CPDP has taken
a great attention especially with regard to heterogeneity. Investigating static code and

Complexity-based Clustering 33

process metrics together in CPDP via clustering is also of crucial importance for the
researchers who are focused on the heterogeneity of software metrics.

The contribution and the novelty of the paper can be summarized as follows:
1. It is investigated whether process metrics have linear models.
2. A fuzzy clustering method is presented for process metrics.
3. Complexity-based fuzzy clustering is evaluated in process and static code metrics
through some performance parameters.
4. The success of CPDP is discussed in process metrics via training instances selected
with complexity-based fuzzy clustering.

The remainder of the paper is organized as follows. Section 2 summarizes the liter-
ature. Section 3 details the method. Prediction and evaluation are presented in Section
4. The findings of the experiment are in Section 5. The effects of these findings are
discussed in Section 6. Conclusion and future works are given in Section 7.

2 Literature review

The main aim of this section is to give information about the works which investigate
the relationship between process metrics and software quality. In addition to this, sum-
marizing literature explains specific reason why process metrics should regarded in the
methods developed for defect prediction data sets.

It is widely known that static code metrics had been commonly used in initiative
defect prediction works (Menzies et al., 2007). The primary reason is that some met-
ric standards such as Halstead (Bailey and Dingee, 1981) and McCabe (Curtis et al.,
1979) were designed for static code metrics. However, diversifying software develop-
ment models (Clarke et al., 2016; Abrahamsson et al., 2017; Gousios et al., 2014) and
considering other factors of software development revealed process metrics.

Developer behavior varies in open-source and industrial software projects. Process
metrics were examined in detail once this case was noticed. It was observed that in-
dustrial project are far more preferable than open-source projects for process metrics
(Madeyski and Jureczko, 2015). Moreover, the most effective process metrics should
be detected via multi-correlation analysis rather than binary analysis. Micro-interaction
metrics were developed for illustrating implications of developers in software defect
prediction (Lee et al., 2016). They can be defined a sub-type of process metrics. Al-
though these metrics greatly contribute classification, they could only be tested on sin-
gle software project. It is expected that prediction models show better performance in
increasing software versions. This success is directly related to the used software met-
rics. Rahman ve Devanbu (Rahman and Devanbu, 2013) stated that static code metrics
are more stagnant than process metrics. They also detected that static code metrics do
not evolve in varied number of defects. Thus, process metrics should be considered for
each prediction model.

Code review process also makes contribution for process metrics. Poorly reviewed
codes create an adverse effect on software quality (Wiese et al., 2014; Faucault et al.,
2014). It is not negligible that social metrics are of great importance for prediction
models as well as code review. While some of them produce favorable results, some of

34 Öztürk

them do not. For instance, as the number of developers increases, defectiveness becomes
seriously challenged.

Though ownership metrics, which are closely related to process metrics, cannot be
defined as process metrics, their effects on software quality were investigated in preced-
ing works (Faucault et al., 2014). According to the obtained results, ownership metrics
have a poor efficacy on software quality. It is known among researchers that static code
and process metrics yield similar results in terms of prediction performance (Stanic and
Afzal, 2017). However, process metrics include some leading metrics that produce re-
markable success (for instance: NDC). Churn metric (Layman et al., 2008), which is
one of the process metrics, yielded favorable results in terms of prediction accuracy.
This case is an indicator that each intervention to software development creates a favor-
able or unfavorable effect on software quality.

The works proposing new methods to gather process metrics are needed in this field.
Extracting process metrics during software development is an effort-intensive operation
if there is a lack of record. To solve this problem, Gyimesi (Peter, 2017) developed an
automated tool that computes process metrics in each phase of software development.
This tool is able to compute process metrics through a graph database. The method was
tested with some classifiers and RandomForest was found to be best. The reason may
be the structure of RandomForest that it converts data to trees.

Table 1: Metrics of experimental data sets.

Name Description. Type

wmc Weighted Methods per Class Static code
dit Depth of inheritance Static code
noc Number of children Static code
cbo Coupling between objects Static code
rfc Response for a class Static code
lcom Lack of cohesion Static code
ca Afferent coupling Static code
ce Efferent couplings Static code
npm Number of Public Methods Static code
lcom3 A variant of lcom Static code
loc Line of codes Static code
dam Data Access Metric Static code
moa Measure of. Aggregation Static code
mfa Measure of functionality abstraction Static code
cam Cohesion Among Methods of class Static code
ic Inheritance Coupling Static code
cbm Coupling between Methods Static code
amc Average Method Complexity Static code
nr Number of revisions Process
ndc Number of distinct committers Process
nml Number of modified lines Process
ndpv Number of defects fixed in previous version Process
max cc Maximum Class Coupling Static code
avg cc Average Class Coupling Static code

In summary, the methods examining process metrics have become popular among
researchers. Coding tendencies of development teams give tips to evaluate process met-
rics. Therefore, process metrics should be regarded along with theoric approaches and
related experiments.

Complexity-based Clustering 35

3 Method

In this section, essentials of complexity formula of process metrics, experimental data
sets and developed fuzzy clustering algorithm are detailed. These operations require
sophisticated statistical methods and rely on a powerful metric value observation as
well.

3.1 Data sets

18 open-source data sets have been used in the experiment. These data sets also have
different versions of same project. Further, static code and process metrics are together
in the data sets (Madeyski and Jureczko, 2015). However, some metrics such as micro
interaction are not involved in th experiment so that in its current design, the experi-
ment cannot achieve the ultimate comprehensiveness in terms of the data sets. Micro
interaction metrics are planned to be adopted in improved versions of the paper.

In order to reveal the relationship between those metrics and bugs should be ex-
amined in detail. To this end, connected scatterplot can be used. However, a data sheet
could be generated to gather all the values of the data sets. In this sheet, statistical anal-
ysis can be conducted via regression and other methods. Hence, the fundamentals of
complexity-based fuzzy clustering can be explained well.

The values of process metrics of the data sets are not complete for all projects. This
case also creates a threat for the validity. Madeyski et al. (Madeyski and Jureczko, 2015)
also used those data sets and it is clear that they were incomplete in their experiment.
Note that sharing data corpus is so important in software engineering studies. Hence,
the deficiencies of data sets can be removed or a window of opportunity is opened to
work on complete data sets.

In Table 2, values of all the projects are presented. This table also includes different
versions of a same project. The number of instances and process metric values are
available in this table. For instance, in ”ant”, merely 1568 instances have NR records
that it has 2442 instances. Table 1 gives used metrics with their definitions and types.
There are 24 software metrics. 4 out of 24 metrics are of process metrics.

3.2 Statistical analysis of process metrics

The main aim of the analyzes presented in this section is to determine whether a threat
is available for the formula generated with three process metrics. The corresponding
formula is seen in Equation 2. A three-phase analysis process is designed. First of them
is linear model analysis. This analysis helps to detect whether a linear model is available
among process metrics. Second is scatterplot. It demonstrates that grid value endpoints
are not compatible with metric values that prove nonlinearity. Third is kernel density
analysis. It helps estimate the unknown probability distribution of a random variable
that is taken from a sample of points. Thanks to this analysis, a nonparametric test can
be applied on experimental metric set.

yi = z0 + z1x1 + z2x2 + ...+ ei (1)

36 Öztürk

Table 2: Details of the projects used in the experiment.

Project Number of instances Number of NR Number of NDC Number of NML Percentage of defectiveness

ant 2442 1568 2255 1487 14
camel 3576 1225 1228 1062 15
log4j 557 114 404 0 46
jedit 3695 1477 3190 1268 8
ivy 933 593 798 0 12
lucene 1205 587 918 506 36
pBeans 96 14 14 79 66
poi 1683 1141 1383 1 41
prop1 23058 18798 19366 19366 10
prop2 10686 8463 8822 8822 11
prop3 8867 7024 7158 7158 9
prop4 8572 5645 5645 5645 15
prop42 871 404 500 0 7
prop5 20407 14817 17417 17417 13
synapse 661 478 499 399 24
Velocity 731 443 507 0 50
xalan 4171 2597 3279 2249 43
xerces 1937 1481 1731 962 33

Analyzed mathematical model is seen in Equation 1. zs are the coefficients of de-
pendent variables. xs are dependent variables and they predict independent variable.
The error of the model is represented with e. Figure 1 has four sub-figures. These fig-
ures were drawn with lm function of R package. Here NR is the response variable and
it is estimated with NDC and NML. R2 value shows to what extent the model fits the
data. Residuals vs. Fitted investigates whether residuals have a non-linear model. In the
corresponding sub-figure, it can be concluded that there is not a non-linear model if the
values are spread in a straight line. In the figure, we have not a straight line and there
are discrete models. Due to this situation, there is a non-linear relationship among NR,
NDC, and NML.

Normal Q-Q indicates whether residuals have a normal distribution. Scale-Location
looks for equal variances. If there is a straight line, variance is equal. Cook’s distance
gives the magnitude of the effects of the cases on regression analysis. In the figure, the
magnitude is significant. The details of linear model analysis are shown in Table 3. It
can be clearly seen from Figure 1 that the linearity among process metrics is reasonably
poor.

To better understand the underlying structure of the formula adapted to process
metrics, regression and scatterplot analyzes are conducted. The corresponding metrics
should be opposite to a linear relationship. The relationships are presented with scatter-
plot.

Another analysis that investigates whether there is a linear model between variables
is scatterplot. If there is a linear model, fitted plane should be available. In Figure 2
and 3, an example scattterplot and the scatterplot of NR-NDC-NML are presented,
respectively. It can be known from Figure 3 that fitted plane is not as desired. In the
Figure 3, as grid does not comply with extreme values, it is difficult to say that there is
a linear model between three process metrics. On the contrary, double examination of
the metrics may disprove this assertion. Note that these analyzes supports the assertion
that there is not any linear relation between three metrics.

Complexity-based Clustering 37

0 5 10 20 30

−
10

0
5

10

Fitted values

R
es

id
ua

ls

Residuals vs Fitted
67

19
21

−2 −1 0 1 2

−
3

−
1

1
3

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q−Q

19

67

21

0 5 10 20 30

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Scale−Location
19

67
21

0.0 0.1 0.2 0.3 0.4

−
4

−
2

0
2

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Cook’s distance

1
0.5

0.5
1

Residuals vs Leverage

19

66

26

Fig. 1: Lineer model analysis of NR, NML, and NDC.

In order to apply non-parametric tests on data sets, it should be investigated whether
data sets have a normal distribution. To this end, kernel density analysis is performed
with three process metrics. Figure 4 shows that corresponding metrics have not a normal
distribution.

Table 3: Details of the lineer model analysis (NR, NDC, and NML).

Residuals:

Min 1Q Median 3Q Max
-11.1044 -2.1838 -0.3558 2.3380 11.2934

Estimate Std. Error t value Pr(> |t|)
(Intercept) -2.337994 0.931316 -2.510 0.0145
nml 0.005360 0.001288 4.162 9.32e-05
ndc 2.685169 0.264997 10.133 4.43e-15
RSE: 4.087 66 degrees of freedom
Multiple R-squared: 0.7821 Adjusted R-squared: 0.7755
F-statistic: 118.5 on 2 and 66 DF p-value: < 2.2e-16

38 Öztürk

3D Scatterplot

1 2 3 4 5 6

10
15

20
25

30
35

 0

100

200

300

400

500

wt

di
spm

pg

Fig. 2: An example scatterplot that is fitted to plane.

Fig. 3: Scatterplot of NR, NDC, and NML on average values of all the data sets.

Complexity-based Clustering 39

Algorithm 1 complexFuzzy Algorithm
Step1:Input all instances as p(x,y) with clusters, fuzziness, and coEfficient.
Step2: Define membership matrix U depending on the number of instances and the number of
clusters.
Step3: Iterate through all instances to create initial U matrix. (Compute diff =√

(px − cx)2 + (py − cy)2), IF coefficient > 10 diff+=50 else diff-=50; U [i, j]=(diff==0)
? 10−5 : diff , S+=U [i, j]
Step4:Update U [i, j] for each cluster by calculate U [i, j] =
1.0/((U [i, j]/sum)2.0/(fuzziness−1.0) sum2+=U [i, j]
Step5:U [i, j] = U [i, j]/sum2;
Step6:Recalculate cluster indexes by comparing max and U [i, j] values.

−500 0 500 1000 1500 2000 2500

0.
00

0
0.

00
1

0.
00

2
0.

00
3

value

D
en

si
ty

metric distribution

nr
nml
ndc

Fig. 4: Kernel density analysis of NR, NML, and NDC. The graph has been drawn with the mean
values of all data sets.

3.3 Algorithm

First version of complexFuzzy had used static code metrics including WMC, LCOM,
and RFC. In this study, coEfficient of complexFuzzy is calculated using NR, NML,

40 Öztürk

and NDC. The steps presented in Algorithm 1 and its preceding version is the same ex-
cept for complexity-based fuzziness computation. While p(x, y) denotes the instances,
U is the membership matrix of clusters. They are represented with c and diff refers
to the distance from points to the cluster. In Step 3, coEfficient affecting the level
of membership is calculated. Cluster values of all instances are re-calculated by com-
paring with max. The difference emerges in the computation of coEfficient. In this
computation, complexFuzzy had used static code metrics. Rather, a modified version of
complexFuzzy has been designed. That formula is seen in Equation 2. In the formula,
NR and NML are in numerator. The reason is that the number of revision and the num-
ber of modified code lines have similar correlation with complexity. However, these
calculations are inversely proportional with NR. In other words, they are performed
depending on the discrete commit count.

coEfficient =

∑n
i=0(NRi ∗NMLi)/NDCi

n
(2)

4 Prediction and evaluation

Prediction experiment is established in accordance with CPDP configurations. For this
purpose, combinations of CPDP are utilized. First, training data groups are selected by
developed algorithm for each data set. Mean prediction performance is then recorded
in which training data groups are tested on the other data sets. This process is repeated
for SVM, Naive Bayes, Random Forest, and C4.5 algorithms. 10*10 cross-validation is
conducted to obtain prediction results. In 10 fold cross-validation, a data set is divided
into 10 sub-sets. For each iteration, one sub-set is used for testing and the others are
utilized in training. During this process, testing sub-set is changed and average error is
computed. Since total CPDP operations is n = 18, 306 is the number of predictions
calculated with combinationCount = n ∗ (n− 1).

Performance parameters recorded during the experiment are F-measure, MCC, and
AUC. The corresponding values are of the average of four predictors. AUC is area under
the curve of receiver operating characteristic (ROC). The formulas of other parameters
are presented in Table 4.

Table 4: Performance parameters used in the experiment.

name formula
MCC (TP∗TN−FP∗FN)√

(TP+FP)∗(TP+FN)∗(TN+FP)∗(TN+FN)

F-measure (2∗Recall∗Precision)
(Recall+Precision)

Experimental details of hardware and software of the study are seen in Table 5.
As seen from this table, the experiment has been completed with two programming
environments including C# and R package. These platforms have different advantages

Complexity-based Clustering 41

when they are employed in a software engineering case study. C# is easy to implement.
On the other hand, R package has powerful options to conduct a statistical analysis with
a machine learning model.

Table 5: Experimental environments.

Feature Configuration
Processor Intel i3-4005U
RAM 4 Gb
Machine word 64
CPU 1.70 Ghz
Operating System Windows 8
Programming software C#, R package

5 Results

Initially, it should be determined that what sort of tests to be used to evaluate the results.
First of them is ROC. In this analysis, static code metrics yielded better results than
process metrics in CPDP. Figure 5 and 6 illustrate the results. Data sets are composed
of the same metrics that this case may have affected the results. Despite the fact that
there is not any need for matching metrics to handle with heterogeneity, static code
metrics are better than process metrics in terms of AUC if training instances are taken
from a clustering method. However, the results need to be tested on some industrial data
sets to generalize the bias.

MCC values of two algorithms obtained on static code and process metrics are pre-
sented in Table 6. These values are the mean of results recorded in CPDP combina-
tions. During the experiment, all the training data groups have been generated using
complexity-based fuzzy clustering. As known from the results, process metrics, which
are not superior to static code metrics in AUC, outperformed static code metrics in
MCC. The churn in MCC values may have originated from the scale of the data sets
and project characteristics.

δij = +1→ G1 > G2;−1→ G1 < G2; 0→ G1 = G2 (3)

result =
1

nm

m∑
i=1

n∑
j=1

δij (4)

Table 7 compares F-measure results of all the data sets both in static code and process
metrics. Overall, static code metrics produced worse results than static code metrics
except five data sets. In Section 3.2, it is demonstrated that process metrics of the ex-
periments have not a normal distribution. Therefore, F-measure results are exposed to
Cliff ′sDelta that is one of the non-parametric tests. To conduct this test, a domi-
nance matrix δ is generated. Each value of this matrix emerges by using Equation 3

42 Öztürk

Fig. 5: Average AUC of process metrics of all the data sets. (AUC=0.75)

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 6: Average AUC of static code metrics of all the data sets. (AUC=0.96)

of two observation groups. One of three values is added to the matrix by comparing
two data groups. If this operation is completed for all values of data groups, this means
that matrix is full. In the matrix, n denotes the number of column and m denotes the
number of rows. With these parameters, Equation 4 is applied. As the value becomes
close to +1, the magnitude of the effect increases. This test compares the magnitude
of two vectorial result groups. The result of the test is taken with Cliff ′sDelta =

Complexity-based Clustering 43

Table 6: Details of MCC results. The results have been obtained using two distinct clustering
algorithms based on fuzzy. First is for static code metrics and the second is designed using NR,
NML, and NCDC. The values are the mean of 306 cross-project combinations.

Static code Process metrics
ant 0.6858126 0.926
camel 0.676 0.91
log4j 0.616 0.89
jedit 0.606 0.9234
ivy 0.641 0.9568
lucene 0.59707496 0.9102
pBeans 0.58111244 0.8236
poi 0.56514992 0.8301
prop1 0.5491874 0.774533333
prop2 0.53322488 0.734483333
prop3 0.51726236 0.824433333
prop4 0.50129984 0.825438333
prop42 0.48533732 0.826443333
prop5 0.4693748 0.827448333
synapse 0.45341228 0.828453333
Velocity 0.43744976 0.829458333
xalan 0.42148724 0.830463333
xerces 0.40552472 0.831468333

0.4691358(medium). Note that the magnitude of two groups is not high but signifi-
cant.

6 Threats to validity

In this section, elements that threat the validity are presented by comparing the chal-
lenges encountered during the experiment. Firstly, the values of NR, NML, and NDC
of data sets are incomplete. In some instances, values are not specified. The method
proposed in this study works with numeric values. Thus, missing values are assigned to
”0” to disregard incompleteness. Because, values to be assigned should not affect the
statistical analyzes of metric values.

Second, the experiment is focused on three different process metrics. The corre-
sponding metrics do not include any other process metric. Although this case creates a
threat for the validity, as the number of parameters that affects membership function of
fuzzy clustering increases, the algorithm becomes more complex. To address this prob-
lem, if a great number of metrics are available, they can be minimized with conducting
a feature selection operation.

Throughout the paper, process and static code metrics are compared over two ver-
sions of fuzzy clustering. Success rates of two different clustering are evaluated in
CPDP. Concretely, the generality of the results can be validated by applying various
clustering methods. All the data sets have same metric set. Thus, despite having ho-

44 Öztürk

Table 7: Mean F-measure values of four predictors involving Bayes, naiveBayes, Random For-
est, and J48 on 29 data sets. Values have been generated employing 306 cross combinations.
complexFuzzy are used to generate testing data. Boldfaced values are the best in related rows.

Data Set Process metrics Static code metrics

ant 0.53 0.50
camel 0.57 0.57
log4j 0.59 0.57
jedit 0.62 0.64
ivy 0.71 0.67

lucene 0.77 0.79
pBeans 0.78 0.78

poi 0.79 0.65
prop1 0.79 0.65
prop2 0.81 0.6
prop3 0.83 0.61
prop4 0.77 0.79
prop42 0.78 0.7
prop5 0.76 0.68

synapse 0.74 0.7
velocity 0.78 0.74

xalan 0.81 0.75
xerces 0.83 0.56

mogeneous metrics facilitates conducting the experiment, the fluctuations of the results
should be observed in heterogeneous data sets.

7 Conclusion and future remarks

In this study, a fuzzy-clustering algorithm is proposed for selecting training data of
CPDP. The algorithm updates the values of membership function based on the complex-
ity of process metrics. The experiment including 18 data sets evaluates the performance
of four different classifiers in three performance parameters.

In summary, while static code metrics produce better results in AUC, process met-
rics surpassed static code metrics in F-measure and MCC. In the experiment, 10*10
cross-validation is performed in other data sets after training data group of each data set
is selected. Process metrics yielded high CPDP results especially in xerces and prop3
data sets. In general, process metrics outperformed static code metrics in training data
groups that are selected with fuzzy clustering. Furthermore, any linear model was not
found in the process metrics used in the experiment. It is expected that this work will
close significant gap in CPDP with regard to the training instance selection.

In future works, the comprehensiveness of complexity formula utilized in fuzzy-
clustering may be extended by adding new process metrics. Last, proposed formula is
planned to adapt to micro-interaction and ownership metrics.

Complexity-based Clustering 45

References

Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J. (2017). Agile software development meth-
ods: Review and analysis. arXiv preprint arXiv:1709.08439.

Ashfaq, R. A. R., He, Y. L., Chen, D. G. (2017). Toward an efficient fuzziness based instance se-
lection methodology for intrusion detection system. International Journal of Machine Learn-
ing and Cybernetics, 8(6), 1767-1776.

Bailey, C. T., Dingee, W. L. (1981). A software study using Halstead metrics. ACM SIGMET-
RICS Performance Evaluation Review, vol. 10(1), pp. 189-197.

Clarke, P., OConnor, R. V., Leavy, B. (2016). A complexity theory viewpoint on the software
development process and situational context. In Software and System Processes (ICSSP),
2016 IEEE/ACM International Conference, pp. 86-90.

Curtis, B., Sheppard, S. B., Milliman, P., Borst, M. A., Love, T. (1979). Measuring the psycho-
logical complexity of software maintenance tasks with the Halstead and McCabe metrics.
IEEE Transactions on software engineering, vol. 2, pp. 96-104.

Foucault, M., Falleri, J. R., Blanc, X. (2014). Code ownership in open-source software. In Pro-
ceedings of the 18th International Conference on Evaluation and Assessment in Software
Engineering, p. 39.

Gousios, G., Pinzger, M., Deursen, A. V. (2014). An exploratory study of the pull-based soft-
ware development model. In Proceedings of the 36th International Conference on Software
Engineering, pp. 345-355.

Gray, D., Bowes, D., Davey, N., Sun, Y., Christianson, B. (2009). Using the support vector ma-
chine as a classification method for software defect prediction with static code metrics. In
International Conference on Engineering Applications of Neural Networks, pp. 223-234.

Jureczko, M., Madeyski, L. (2010). Towards identifying software project clusters with regard to
defect prediction. In Proceedings of the 6th International Conference on Predictive Models
in Software Engineering, p. 9.

Kim, S., Zhang, H., Wu, R., Gong, L. (2011). Dealing with noise in defect prediction. In Software
Engineering (ICSE), 2011 33rd International Conference, pp. 481-490.

Layman, L., Kudrjavets, G., Nagappan, N. (2008). Iterative identification of fault-prone binaries
using in-process metrics. In Proceedings of the Second ACM-IEEE international symposium
on Empirical software engineering and measurement, pp. 206-212.

Lee, T., Nam, J., Han, D., Kim, S., In, H. P. (2016). Developer micro interaction metrics for
software defect prediction. IEEE Transactions on Software Engineering, vol. 42(11), 1015-
1035.

Li, Y., Huang, Z., Wang, Y., Fang, B. (2017). Evaluating Data Filter on Cross-Project Defect
Prediction: Comparison and Improvements. IEEE Access, 5, pp. 25646-25656.

Li, M., Zhang, H., Wu, R., Zhou, Z. H. (2012). Sample-based software defect prediction with
active and semi-supervised learning. Automated Software Engineering, vol. 19(2), pp. 201-
230.

Madeyski, L., Jureczko, M. (2015). Which process metrics can significantly improve defect pre-
diction models? An empirical study. Software Quality Journal, vol. 23(3), pp. 393-422.

McIntosh, S., Kamei, Y., Adams, B., Hassan, A. E. (2016). An empirical study of the impact
of modern code review practices on software quality. Empirical Software Engineering, vol.
21(5), pp. 2146-2189.

Mendel, J. M. (2017). Uncertain rule-based fuzzy systems. Springer, Cham CrossRef MATH
Google Scholar.

Menzies, T., Dekhtyar, A., Distefano, J., Greenwald, J. (2007). Problems with Precision: A Re-
sponse to” comments on’data mining static code attributes to learn defect predictors’”. IEEE
Transactions on Software Engineering, vol. 33(9), pp. 637-640.

46 Öztürk

Menzies, T., Greenwald, J., Frank, A. (2007). Data mining static code attributes to learn defect
predictors. IEEE transactions on software engineering, vol. 33(1), pp. 2-13.

Menzies, T., Milton, Z., Turhan, B., Cukic, B., Jiang, Y., Bener, A. (2010). Defect prediction
from static code features: current results, limitations, new approaches. Automated Software
Engineering, 17(4), 375-407.

Moser, R., Pedrycz, W., Succi, G. (2008). A comparative analysis of the efficiency of change met-
rics and static code attributes for defect prediction. In Proceedings of the 30th international
conference on Software engineering, pp. 181-190.

Nagappan, N., Williams, L., Osborne, J., Vouk, M., Abrahamsson, P. (2005). Providing test qual-
ity feedback using static source code and automatic test suite metrics. In Software Reliability
Engineering, 2005. ISSRE 2005. 16th IEEE International Symposium, pp. 10-94.

ÖZTÜRK, M. M., complexFuzzy: A novel clustering method for selecting training instances of
cross-project defect prediction, unpublished.

Pter, G. (2017). Automatic calculation of process metrics and their bug prediction capabilities.
Acta Cybernetica, vol. 23(2), pp. 537-559.

Rahman, F., Devanbu, P. (2013). How, and why, process metrics are better. In Software Engineer-
ing (ICSE), 2013 35th International Conference on pp. 432-441.

Romano, D., Pinzger, M. (2011). Using source code metrics to predict change-prone java inter-
faces. In Software Maintenance (ICSM), 27th IEEE International Conference, pp. 303-312.

Shihab, E., Jiang, Z. M., Ibrahim, W. M., Adams, B., Hassan, A. E. (2010). Understanding the im-
pact of code and process metrics on post-release defects: a case study on the eclipse project.
In Proceedings of the 2010 ACM-IEEE International Symposium on Empirical Software En-
gineering and Measurement, page 4.

Stanic, B., Afzal, W. (2017). Process Metrics are not Bad Predictors of Fault Proneness. In The
2017 IEEE International Workshop on Software Engineering and Knowledge Management
SEKM’17, 25 Jul 2017, Prague, Sweden, pp. 493-499.

Xia, X., Lo, D., Pan, S. J., Nagappan, N., Wang, X. (2016). Hydra: Massively compositional
model for cross-project defect prediction. IEEE Transactions on software Engineering, vol.
42(10), pp. 977-998.

Wang, S., Liu, T., Tan, L. (2016). Automatically learning semantic features for defect prediction.
In Proceedings of the 38th International Conference on Software Engineering, pp. 297-308.

Wiese, I. S., Cgo, F. R., R, R., Steinmacher, I., Gerosa, M. A. (2014). Social metrics included
in prediction models on software engineering: a mapping study. In Proceedings of the 10th
International Conference on Predictive Models in Software Engineering, pp. 72-81.

Yu, Q., Jiang, S., Qian, J. (2016). Which Is More Important for Cross-Project Defect Prediction:
Instance or Feature?. In Software Analysis, Testing and Evolution (SATE), International Con-
ference, pp. 90-95.

Received June 9, 2018 , revised December 17, 2018, accepted January 27, 2019

