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Abstract. Quantum computers base their operations on optimized circuit designs. These quan-
tum circuits, unlike classic circuits, follow the set of rules determined by quantum mechanics.
Currently, one of the main problems to solve in Quantum Computation is Shor’s algorithm, which
consists in factoring large numbers. It is based on arithmetic operations, therefore to optimize
such operations is hence relevant. In this work, a novel half subtractor circuit is presented; it
is referred to as FGE∗ and it has demonstrated to be a 25% faster than the state-of-the-arts
reversible circuits. It is based on reversible quantum gates and it does not have any garbage out-
put. Moreover, a robust metric is considered for comparing, in terms of resources and speed, the
proposed circuit with other circuits in the literature.

Keywords: Quantum subtractor circuit, Quantum half subtractor circuit, Reversible half sub-
tractor, Reversible circuits

1 Introduction

Quantum Computation and quantum information are the study of the information -
processing tasks that can be accomplished using quantum mechanical systems. One of
the goals of them is to develop tools which improve our intuition about quantum me-
chanics, and make its prediction more transparent to our minds. It is well-known that
quantum mechanics, which is a mechanical framework for the construction of physi-
cal theories, is counterintuitive in spite of the fact that its rules are simple (Nielsen et
al., 2017). Nevertheless, it gives some improvements that classical computation cannot
offer (Heilmann et al., 2015).

The Church-Turing thesis says that any algorithmic process can be simulated effi-
ciently using a Turing machine (Goldin et al., 2005). However, randomized algorithms
and other problems cannot be efficiently solved on a deterministic Turing machine (Pa-
padimitriou et al., 2003). Inspired by this idea, David Deutch was able to define a class
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of computing machines that was capable of efficiently simulating an arbitrary phys-
ical system. These machines are the quantum generalization of the Turing machines
(Deutsch, 1985). So, the idea is that there are several problems which can be efficiently
solved on these quantum computers, but not in classical computers. Quantum Compu-
tation is used in a wide variety of situations such as optical computation (Nielsen et al.,
2004), coloring images using encryption/ decryption methods (Yang et al., 2014) and
machine learning (Lloyd et al., 2017). Currently, the best examples on which Quantum
Computation supplies a more powerful model for computation than classical computers
are Shor’s algorithm for integer factorization (Shor et al., 1999) and Grover’s algorithms
for searching an unsorted database with N entries (Grover, 1996).

Following the idea that quantum computers are more efficient than classical ones
solving several problems, their applicability in supercomputing is of great interest.
Quantum computers take advantage of the quantum mechanics in order to get features
like parallel superposition, which gives the possibility of efficiently computing parallel
and distributed programs (Back et al., 1992). With the superposition of n qubits, the
quantum version of a bit, 2n possibilities can be represented and computed at the same
time, making possible new ways for solving problems. Nowadays, it is not clear what
classes of problems can be efficiently solved using quantum computers. Nevertheless,
the problems studied in (Shor et al., 1999, Grover, 1996) have shown to obtain better
performance -in terms of runtime- on them (Nielsen et al., 2017).

Quantum computers work with a special kind of circuits: quantum circuits. Quan-
tum circuits are based on basic operations with quantum gates, and they are in conso-
nance with the quantum features like the superposition. Even complex operations are
based on a set of basic operations (Möttönen et al., 2004), such as additions and subtrac-
tions. Therefore, the use of optimized basic operations is important to design circuits
which have a suitable exploitation of the available resources (Orts et al., 2018). In the
literature, there are several papers about quantum addition and quantum subtraction of
two positive integers (Gidney, 2018, Murali et al., 2002, Takahashi et al., 2008, Taka-
hashi et al., 2017, Thapliyal, 2016, Thapliyal et al., 2009), which are the most important
basic operations. All these works are focused on getting faster circuits to be used as part
of greater circuits, such as a module in Shor’s algorithm. Since Shor’s discovery, lots
of works have investigated ways of building quantum circuits for this algorithm (Beau-
regard, 2002, Fowler et al., 2004, Proos et al., 2003, Takahashi et al., 2006, Vedral et
al., 1996, Zalka et al., 1998). It is noteworthy that these basic operations are optimized
to implement efficient algorithms. For instance, the subtraction is a basic operation for
constructing quantum circuits for Shor’s algorithm. Thus, to develop an efficient sub-
traction circuit will also benefit a high-performance Shor’s algorithm. A half subtractor
circuit computes the subtraction of two digits, and there are several works which address
it in terms of Quantum Computation (Murali et al., 2002, Thapliyal et al., 2009, Mon-
taser et al., 2017, Theresal et al., 2015, Das et al., 2017, Sarma et al., 2018, Thapliyal,
2016).

The main contribution of this work is the description of a novel and optimized quan-
tum half subtractor circuit of integers, which improves the delay of the other state-of-
the-arts half subtractor circuits, being faster than them. The half subtractor circuit is
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based on reversible gates, and it does not have any garbage output. Moreover, it has
been analyzed and compared with other state-of-the-art approaches using a fair metric.

The rest of this work is presented as follows: Section 2 contains a description of
quantum circuits and the quantum gates involved in the half subtractor circuits. Section
3 speaks about the state-of-the-art reversible half subtractor circuits. Section 4 presents
the proposed circuit. Finally, Section 5 summarizes the main conclusions.

2 Concepts of quantum circuits

A quantum circuit works similarly to a classical one. However, it uses its own gates
which have to follow several quantum rules. One of them is that all gates must be re-
versible. That means that knowing the output of a gate (which is a quantum state), must
be possible to obtain the previous quantum state. Such a situation is different in classi-
cal computers, which have irreversible behavior like the XOR gate. Irreversibility is not
possible on quantum computers as the superposition needs to be maintained among the
circuit. Quantum circuits could have extra costs in several classical operations if they
had to transform non-reversible procedures into reversible ones (Shor, 1999).

Another important issue is the fact that quantum circuits do not allow loops. Feed-
back from one part of the quantum circuit to another is not possible, so new ways of
working should be found in order to solve some classical problems. By the other hand,
classical circuits allow joining wires, resulting in a single wire which has the bitwise
of the inputs wires. However, this operation is not reversible so it cannot be done on
quantum circuits. Moreover, a qubit cannot be duplicated, so copies of a quantum state
are not allowed (Nielsen et al., 2017). The value can be copied in several cases. For
instance, if a qubit is set to 1, another can be set to 1, but this concept is different from
to copy a quantum state.

2.1 Quantum gates

Quantum gates are specifically designed to be used in quantum computers. There are
quantum gates which perform the same operations than any classical gates, but there
are also quantum gates which do not have an equivalent gate in classical circuits. These
gates can be seen as reversible matrices, which operate on a qubit or a set of qubits,
transforming their initial states into others. This section briefly describes the gates used
in this work.

2.1.1 The Pauli-X gate For single qubits, there are three gates, called Pauli gates,
which are especially useful and widely used (Williams, 2010). In this work, one of
them is used, the Pauli-X gate (shown in Fig. 1). Such gate consists of a 2×2 (2 inputs
and 2 outputs) matrix which permutes the computational basis states of a qubit. The
Pauli-X gate is the equivalent in quantum terms of the classical NOT gate. Negating
a qubit state is more complicated than to negate a bit. However, in this work only the
standard bases are used, so it can be seen in a similar way than a classical negation.
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A Ā
0 1
1 0

Fig. 1: Symbol used to denote the Pauli-X gate and its matrix form.

2.1.2 The controlled-NOT gate The controlled-NOT (CNOT ) gate performs an
operation with two qubits, a control qubit and a target qubit. Its effect is similar to the
Pauli-X on the target qubit, with the difference that if the control qubit takes the value
0 then the target qubit is unaltered (Deutsch et al., 2000). That is, the operation is only
performed if the control qubit is set to 1. Controlled gates in quantum circuits are built
attaching an identity matrix to the top-left corner of the matrix of the original gate. The
gate representation and its matrix form are shown in Fig. 2. The CNOT gate is similar
to a generalization of the XOR classical gate (Nielsen et al., 2017).

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

B A    B

A A

Fig. 2: Symbol used to denote the CNOT gate and its matrix form.

2.1.3 The V and V + gates The V gates were developed in (Hung et al., 2006).

The V gate is a 1×1 gate which applies the operation V = 1+i
2

(
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)
to the input

value. On the other hand, the V + gate (which is also a 1×1 gate) applies the operation
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)
. Representations and matrix forms are shown in Fig. 3.
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Fig. 3: Symbol used to denote the V and V + gates and their matrix forms.

Only the standard bases 0 and 1 are used in this work, so there are four possibilities:
V (0), V (1), V +(0) and V +(1). The results of each possibility are shown below:
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Taking into account such possibilities, there are three very important properties that
can be derived from the V and V + gates: (1) V (A)×V (A) = A; (2) V +(A)×V +(A) =
A; and (3) V (A)×V +(A) = V +(A)×V (A) = A. These properties are widely used
in several works in order to simplify and reduce quantum circuits (Thapliyal, 2016,
Thapliyal et al., 2009, Maslov et al., 2003).

2.1.4 The Controlled-V and Controlled-V + gates These gates are similar to the
previous V and V + gates, but adding a controller qubit as it has been explained in
the CNOT gate (Hung et al., 2006). So, such gates are 2×2 gates. They maintain the
properties of the V and V + gates, but they can be activated or deactivated using the
control qubit conveniently. Their symbol and matrix forms are shown in Fig. 4.

A A
1 0 0 0
0 1 0 0
0 0 1 -i
0 0 -i 1

B If A
Then V   (B)

V+

V = 
1 + i

2

V   = 
1 - i

2

B If A
Then V(B)

V

A A 1 0 0 0
0 1 0 0
0 0 1 i
0 0  i 1+ 

+

Fig. 4: Symbol used to denote the Controlled-V and Controlled-V + gates and their matrix forms.

2.1.5 The Toffoli gate The Toffoli gate (Toffoli, 1980) is similar to the CNOT gate.
However, it has two control qubits. So, the gate only operates on the target qubit if
the other 2 qubits are set to 1. If only the standard (orthonormal) basis |0〉 and |1〉 are
considered, the Toffoli gate can be used to simulate the classical NAND gate (Fig. 6a)
and also to do FANOUT (Fig. 6b) (Nielsen et al., 2017). Taking into account that this
work is about integer subtraction, such consideration is always true. However, in any
other situation on which |α〉 = β |0〉 + γ |1〉 with β 6= 0 and γ 6= 0 that is not true
due to negate a quantum state is not as simple as to negate a bit. The truth table for the
standard basis of the Toffoli gate is shown in Table 1. Nowadays, the design presented in
(Thapliyal, 2016) is the most optimized: it uses 2 Controlled-V gates, 1 Controlled-V +

gate and 2 CNOT gates. Its symbol and matrix form are shown in Fig. 5.
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Table 1: Truth table of the Toffoli gate. i1/o1 and i2/o2 are the control qubits, and i3/o3 is the
target qubit.

Inputs Outputs
i1 i2 i3 o1 o2 o3
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

C AB    C

B B

A A

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

Fig. 5: Symbol used to denote the Toffoli gate and its matrix form.

On the other hand, to build a Multiple-Controlled Toffoli (MCT ) gate (that is, a
Toffoli gate with more than 2 control qubits) is not trivial. In (Miller et al., 2011) a
MCT gate was presented, which was smaller to others built in the past, and also had
fewer ancilla qubits. In this work, such a gate is not used, so it is not necessary to explain
in detail the MCT .

2.2 Measures in a quantum circuit

It is necessary to take into account several important factors to analyze a quantum cir-
cuit. One of them is the number of involved qubits. One of the most important issues

1 1    AB = AB

B B

A A

(a) NAND

0 A

A A

1 1

(b) FANOUT

Fig. 6: (a) A NAND gate using a Toffoli gate. (b) FANOUT using a Toffoli gate.
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quantum computers must face nowadays is the lack of resources. Qubits are scarce, so
it is important to reduce the number of involved qubits. Firstly, the inputs of a problem
and also the auxiliary qubits should be reduced to make possible to compute it in a cur-
rent quantum computer/ simulator. Secondly, the circuit should not have any garbage
outputs (that is, qubits which cannot be used at the end of the circuit as it is impossible
to know their value), so it is necessary to reverse the outputs which are not useful. Un-
less these garbage outputs are reversibly removed (uncomputed), such outputs (qubits)
cannot be used later, which would result in a waste of resources. If they are entangled
with inputs of other circuits, they will produce uncertain results (Nielsen et al., 2017).

In terms of efficiency, the most important parameter is the delay (Thapliyal, 2016).
Delay represents the speed of a circuit. Several metrics can be used. One of the most
popular metrics is to consider any gate has a unit delay (14) (Biswas et al., 2008).
Following this metric, a Toffoli gate (which involves five 2×2 gates) has the same de-
lay that a 1×1 Pauli-X gate. In (Mohammadi et al., 2009), a more realistic metric is
proposed, where each gate is relatively weighed depending on the size. Such a metric
considers the delay of all 1×1 and 2×2 gates to be 14. Moreover, the delay of a N×N
gate can be calculated as its depth when is designed using 1×1 and 2×2 gates. For ex-
ample, the Toffoli gate has a delay of 54 as it is conformed by 2 Controlled-V gates, 1
Controlled-V + gate and 2 CNOT gates, and none of them can be computed in parallel
with another (Thapliyal, 2016). Furthermore, it defines the concept of Quantum Cost of
a circuit as the number of gates with delay 14 which it includes. The Quantum Cost of
the Toffoli gate is also 5.

This work considers the metric presented in (Mohammadi et al., 2009).

3 A half subtractor as a quantum circuit

As it was aforementioned, a half subtractor is a circuit used to compute the subtraction
of two digits. In the quantum case, it performs the subtraction of two digits A (the
minuend) and B (the subtrahend) using qubits, which are set into the states |0〉 or |1〉,
so their values can be considered as a normal bits. There are two outputs: the difference
D = A⊕B, and the borrow Bout = AB. The truth table is shown in Table 2.

Table 2: Truth table of a half subtraction circuit. A is the minuend, B the subtrahend, D the
difference and Bout the borrow.

Inputs Outputs
A B D Bout

0 0 0 0
0 1 1 1
1 0 1 0
1 1 0 0

Several previous works have approached the design of half subtractors in terms of
quantum circuits. Their contributions were focused on reducing the required resources
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to construct a subtractor circuit and also decreasing the delay of the circuits. As it was
mentioned in the previous section, qubits are limited and also the more depth of a circuit
is, the more runtime to compute it. Moreover, quantum circuits must be reversible,
which can imply that quantum circuits could have extra costs than classical ones to
compute some kinds of problems. Due to this limitation, circuits must be optimized in
order to avoid waste of resources and to reduce their computation time.

A design of a subtractor was introduced in (Murali et al., 2002). It has a Quantum
Cost of 7 and a delay of 74. It needs two input qubits and a auxiliary one, and it
produces no garbage outputs. The design of the circuit consists of 2 CNOT gates and
1 Toffoli gate. The difference D is calculated using only one CNOT gate, and the
remaining gates are used to compute the borrow.

Another reversible half subtractor was introduced in (Thapliyal et al., 2009), which
improves the previous one. This circuit has a Quantum Cost of 6 and a delay of 64.
As the previous one, it uses three qubits as input (A,B and an auxiliary one), and there
are not any garbage output. It implements the half subtractor by benefiting from the
described principles of the V and V + gates.

A new reversible half adder/subtractor using R gate was presented in (Montaser et
al., 2017). The authors affirm that the quantum cost of this circuit is 4 as they consider
each gate as 14. Due to the fact that it consists of 2 CNOT gates, 1 Pauli-X gate and
1 Toffoli gate, its quantum cost would be 8 (delay would be also 84) following the
metrics of (Mohammadi et al., 2009). Because this half subtractor can be also used as
an adder, so this extra cost is justified. In (Theresal et al., 2015) another half adder/-
subtractor is presented, with a quantum cost of 7, delay of 74 and 4 inputs. The extra
inputs of (Montaser et al., 2017) and (Theresal et al., 2015) are used to switch between
addition and subtraction. A similar proposal is presented in (Sarma et al., 2018) with a
quantum cost of 5, delay of 54 and 3 inputs.

In (Thapliyal, 2016) was presented the fastest half subtractor currently available. It
has a delay of 44. Moreover, it reduces the quantum cost to 4, maintaining 3 inputs
qubits and no garbage outputs. It is an optimized version of the circuit of (Thapliyal et
al., 2009), using the design of a new gate called TR as a reversible half subtractor. Such
gate is shown in Fig. 7. After (Thapliyal, 2016), (Das et al., 2017) proposed a reversible
half-subtractor using a DG gate (Dehgan et al., 2014) and a Pauli-X gate, as it is shown
in Fig. 12 of (Das et al., 2017). DG gate has a quantum cost of 5 and a delay of 44.
Adding the Pauli-X gate, the half-subtractor has a quantum cost of 6 and a delay of 54.

A

B

0 V+ V V ĀB

B

A   B

Fig. 7: Quantum implementation of TR gate based on the reversible half subtractor presented in
(Thapliyal, 2016).
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4 Proposed half subtractor

The TR gate presented in (Thapliyal, 2016) is able to compute the half subtraction
with a delay of 44. This delay cannot be improved as the operations contained in the
gate cannot be computed in parallel. Taking into account that the A ⊕ B operation
and the first Controlled-V gate cannot be computed in parallel since there are two read
operations over the same qubit (simultaneous read operations are not allowed by the
rules of quantum mechanics), in this work we have designed a new gate to sort the
operations of TR gate, postponing the A⊕ B operation. This will be extremely useful
to reduce the delay. This new gate is called FGE, and it is shown in Fig. 8.

A

B

0 V V+ V ĀB

A   B

A

1 2 3 4

Fig. 8: Quantum implementation of a reversible half subtractor based on a FGE gate. FGE
gate has a delay of 44, the same delay of the TR gate presented in (Thapliyal et al., 2009).

FGE gate has similar Quantum Cost and delay to TR gate. However, it allows
to improve the delay if a new auxiliary qubit Q is added. Steps 2 and 3 of the Fig. 8
cannot be computed in parallel for the same reason as it was mentioned in the previous
paragraph. Nevertheless, if the value of A is moved into the new auxiliary qubit Q in
the first step, theA⊕B operation can be supplied byQ⊕B, which can be computed in
parallel with the Controlled-V + of the step 2. Then, the obtained circuit, called FGE∗,
has a delay of 34. It is necessary to reverse Q avoiding a garbage output, but this can
be done in the last step in parallel with the last Controlled-V gate. The circuit of FGE∗

is shown in Fig. 9.

A

B

0 V V+ V ĀB

A   B

A

1 2 3

0 0

Fig. 9: Our proposal FGE∗, which is the optimization of FGE gate. It has a delay of 34. It
requires an auxiliary qubit to improve the delay in 14.
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Table 3: A comparison of the different designs of half subtractor circuits in terms of delay, quan-
tum cost, auxiliary inputs and garbage outputs.

Design proposed in Delay Quantum Auxiliary Garbage
Cost Inputs Outputs

(Montaser et al., 2017) 8 8 1 0
(Theresal et al., 2015) 7 7 2 0
(Murali et al., 2002) 7 7 1 0
(Thapliyal et al., 2009) 6 6 1 0
(Das et al., 2017) 6 5 1 0
(Sarma et al., 2018) 5 5 1 0
(Thapliyal, 2016) 4 4 1 0
FGE 4 4 1 0
FGE∗ 3 6 2 0

4.1 Evaluation of half subtractor circuits

A full comparison between the studied half subtractors is shown in Table 3 in terms
of delay, quantum cost, auxiliary inputs and garbage outputs. This table shows that
the proposal presented in (Thapliyal, 2016) is the most competitive among the half
subtractor circuits currently available. Focusing on (Thapliyal, 2016), our proposal has
two disadvantages. Firstly, the number of gates. The proposed circuit needs two extra
gates: one gate to copy the value of A to the new auxiliary qubit, and another to reverse
such a qubit. On the other hand, it needs two auxiliary qubits, whereas the circuit of
(Thapliyal, 2016) only needs one. However, our proposed circuit shows better results in
terms of delay with respect to the other designs of the table.

Table 4: Rate of improvement of FGE∗ gate (in %) over the remaining designs, in terms of
delay, quantum cost, auxiliary inputs and garbage outputs.

Improvement of FGE∗ (in %)
Design proposed in Delay Quantum Auxiliary Garbage

Cost Inputs Outputs
(Montaser et al., 2017) 62 25 −50 0
(Theresal et al., 2015) 57 14 0 0
(Murali et al., 2002) 57 14 −50 0

(Thapliyal et al., 2009) 50 0 −50 0
(Das et al., 2017) 50 −14 −50 0

(Sarma et al., 2018) 38 −14 −50 0
(Thapliyal, 2016) 25 −33 −50 0



A Faster Half Subtractor Circuit Using Reversible Quantum Gates 109

The percentage of improvement of FGE∗ gate over the remaining designs in terms
of delay, quantum cost, auxiliary inputs and garbage outputs is shown in Table 4. The
table shows that FGE∗ implies the use of more quantum gates than (Das et al., 2017,
Sarma et al., 2018, Thapliyal, 2016). Moreover, FGE∗ needs an extra input qubit with
respect to (Montaser et al., 2017, Murali et al., 2002, Thapliyal et al., 2009, Das et al.,
2017, Sarma et al., 2018, Thapliyal, 2016) to improve the delay. Also, in a similar way
to the other approaches, the number of garbage outputs is 0. If we focus our attention in
the delay column of Table 4, it can be observed that FGE∗ overcomes even the fastest
one (Thapliyal, 2016). This means that our proposal can be seen as the fastest half
subtractor in the literature, and it is the best option when speed is the most important
factor to be considered.

5 Conclusions

In this paper, a quantum half subtractor circuit has been presented, called FGE∗. It is a
25% faster than other state-of-the-arts half subtractor circuits. Its depth is only 34, and
it does not have any garbage output. The design of the circuit has been explained and
studied in detail. Moreover, a robust metric to evaluate the proposed circuit in compar-
ison to the currently available circuits to compute reversible half subtractors has been
followed.
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